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Abstract

Environmental tobacco smoke (ETS) is a major contributor to indoor human exposures to fine
particulate matter of 2.5 microns or smaller (PM, 5). The Stochastic Human Exposure and Dose
Simulation for Particulate Matter (SHEDS-PM) model developed by the US Environmental
Protection Agency estimates distributions of outdoor and indoor PM, 5 exposure for a specified
population based on ambient concentrations and indoor emissions sources. A critical assessment
was conducted of the methodology and data used in SHEDS-PM for estimation of indoor exposure
to ETS. For the residential microenvironment, SHEDS uses a mass-balance approach which is
comparable to best practices. The default inputs in SHEDS-PM were reviewed and more recent
and extensive data sources were identified. Sensitivity analysis was used to determine which
inputs should be prioritized for updating. Data regarding the proportion of smokers and “other
smokers,” and cigarette emission rate were found to be important. SHEDS-PM does not currently
account for in-vehicle ETS exposure; however, in-vehicle ETS-related PM5 5 levels can exceed
those in residential microenvironments by a factor of 10 or more. Therefore, a mass-balance based
methodology for estimating in-vehicle ETS PM, 5 concentration is evaluated. Recommendations
are made regarding updating of input data and algorithms related to ETS exposure in the SHEDS-
PM model. Inter-individual variability for ETS exposure was quantified. Geographic variability in
ETS exposure was quantified based on the varying prevalence of smokers in five selected
locations in the U.S.
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1. INTRODUCTION

Epidemiological studies of health effects associated with PM, 5 typically use ambient
concentration as a surrogate for human exposures.(1-3) Therefore, health effects are often
estimated based on concentration-response (C-R) relationships derived from such studies.
(4-6) However, because most people spend the majority of their time indoors, the use of
ambient data does not accurately represent the concentrations to which people are actually
exposed. Hence, there is growing recognition of the need to quantify human exposure to
PM, 5 as an alternative basis for characterizing associated health effects.(7)

Total personal exposure to PM, 5, including both indoor and ambient exposures, is
significantly associated with daily mortality.(8) Air pollution epidemiology and exposure
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studies have identified Environmental Tobacco Smoke (ETS) as a major contributor to
indoor air concentrations and human exposure to PM> 5.(9-10) Smoking is associated with
significantly increased risk of heart disease, stroke, lung and chronic lung diseases.(11-13)
Exposure to second-hand smoke by children is associated with reduced cognitive ability, and
increased risk of serious respiratory problems and middle ear infections.(14-16) Therefore, it
is necessary to account for the contribution of smoking to indoor PM, 5 when estimating
total exposures to PMy 5.

A scenario-based inhalation exposure simulation model is intended to estimate exposures to
simulated individuals by estimating the movement of such individuals through a series of
microenvironments, each with its own air pollutant concentration.(17) The exposure of an
individual during a day is based on the time-weighted concentration from the
microenvironments in which the individual spent time. Examples of such models that
incorporate ETS are the Simulation of Human Activity and Pollutant Exposure (SHAPE)
model, Total Human Exposure Model (THEM), Air Pollution Exposure (APEX) model, and
Stochastic Human Exposure and Dose Simulation model for Particulate Matter (SHEDS-
PM).(18-21)

The objective of SHEDS-PM is to predict total personal exposures to PM5 5. SHEDS-PM
uses a probabilistic approach to estimate inter-individual variability in distributions of
outdoor and indoor PM> 5 exposure for a population of simulated individuals based on
ambient PM> 5 concentrations and sources of indoor PM> 5 emissions. Currently, SHEDS
accounts for ETS exposure for home, restaurant, and bar microenvironments.

The objectives of this paper are to answer four key questions:
»  What are the spatial and temporal trends in factors affecting ETS exposure?

e What are the key factors to which exposure is sensitive for ETS in different
microenvironments?

»  What are the key factors leading to geographic and inter-individual variability in
ETS exposure?

2. MODELING OF ENVIRONMENTAL TOBACCO SMOKE EXPOSURE

Figure 1 illustrates the main inputs and key algorithms in SHEDS-PM for calculating indoor
PM,, 5 concentrations contributable to ETS. Input data include demographic data, ambient
PM, 5 concentration, and human activity data. The demographic data used in SHEDS-PM
were obtained from the US Census for the year 2000. The daily average ambient PM5 5
concentration for each census tract for the geographic area of interest is input by the user
based on ambient monitoring or air quality modeling data. The Consolidated Human
Activity Database (CHAD) is comprised of U.S. human activity pattern diary data compiled
based on a variety of activity studies.(22-26)

SHEDS-PM selects the US Census data for user specified census tracts and randomly
generates demographically representative individuals by age and gender. The number of
individuals simulated, and the distribution of age and gender, is specified by the user. Each
simulated individual is randomly assigned an activity diary record from CHAD based on age
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and gender and other user specified matching criteria (e.g., housing type, employment status,
and smoking status). A cross-sectional simulation is based on a different random sample of
individuals each day, whereas a longitudinal simulation is based on one random set of
individuals each of whose activity pattern is simulated from day-to-day, thereby taking into
account daily dependence in activities.(27) All simulations reported here are based on
longitudinal simulation.

For the residential microenvironment, ETS-related inputs include the cigarette emission rate,
proportions of smokers and “other smokers,” and the number of cigarettes smoked.
Emissions from cigarette smoking include: (1) emissions from smoking by someone who is
a smoker; and (2) emissions to which a non-smoker is exposed because of smoking by
others, who are referred to as “other smokers.” These support assessments of ETS-based
PM,, 5 exposures for smokers and non-smokers, respectively.(21)

In the restaurant and bar microenvironments, the ETS-related inputs are Active Smoking
Count (ASC) and the average incremental increase in indoor PM> 5 concentration caused by
smoking one cigarette smoking (Cgs). ASC is the average number of cigarettes actively
smoked during a defined time interval.(28)

A mass balance approach is applied in the residential microenvironment based on the
assumption of a single steady-state zone, and on parameters for penetration of outdoor
PM, 5, air exchange rate, deposition rate, and indoor volume. The assumption is not strictly
satisfied in most cases, however, in many situations the equation provides good estimates.
(29-32) Exposure events are simulated for exposure time periods of typically minutes to
hours, according to the duration of time spent in a microenvironment per diary sampled from
CHAD.

SHEDS-PM estimates the indoor PM, 5 concentration including ETS but does not estimate
direct inhalation by a smoker from active smoking. PM> 5 concentrations in the residential
microenvironment are estimated by a mass balance: (31-32)

CHome:ﬂ ient +EcigN cigt Eeooktcook T Eeleantclean + Fother tother o
otk (atk) VT
Where,
a = air exchange rate (h™1);
Chome = PM5 5 concentration in the home (ug/md);
Cambient = ambient outdoor PM; 5 concentration (ug/m?);
Ecig = emission rate for cigarette smoking (ug/cig);
Ecook = €mission rate for cooking (mg/m?3);
Eclean = €mission rate for cleaning (mg/m3);
Eother = emission rate for all other activities (mg/m3);

k = deposition rate (h™1);
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Ncig = number of cigarettes smoked during model time step (cig);

P = penetration factor (unitless);

T = model time step (min);

teook = duration of time spent cooking during model time step (min);

telean = duration of time spent cleaning during model time step (min);

tother = duration of time spent doing other activities during model time step (min);
V = volume of microenvironment (m3).

The indoor PM, 5 concentration attributable to penetration of ambient PM 5 is estimated
based on a penetration factor, deposition rate, air exchange rate, and indoor volume. The
second term in Equation (1) describes the contribution from indoor emission sources,
including smoking, cooking, cleaning, and other sources.

Parameter values for Equation (1) can be assigned fixed quantities or frequency
distributions. The model time step ( T) is the duration of a diary event. The emission
generating durations (tcook, telean: tother) are obtained from the CHAD database for each
simulated individual. Several steps are used to calculate the number of cigarettes (Ngig)
smoked. The daily total numbers of cigarettes smoked in the residence are assigned to an
individual who is a smoker or other smoker, based on the user-specified proportions for the
number of cigarettes smoked by smokers and by others, respectively. The rate of smoking in
the home is based on the number of cigarettes smoked at home divided by time spent at
home while not sleeping. For each diary event at home, the hourly rate is multiplied by the
duration of the event in hours to estimate an average number of cigarettes.(27)

Due to lack of data needed to apply Equation (1) to the restaurant and bar
microenvironments, a simplified approach is used instead. The simplified approach is based
ona linear regression to estimate indoor concentration based on outdoor concentration,
incremental impact on indoor air quality from cigarette smoking, and indoor background
concentration. The indoor PM, 5 concentration for the restaurant and bar microenvironments
is (28):

Crcst/bar:B+r1/o - Cambient +ASC - Cogs 2)

Where,

ASC = active smoking count, the average number of cigarettes being actively smoked in
the microenvironment in a defined time interval (cig);

B = background indoor PM, 5 concentration from indoor PMj 5 sources (ug/md);
Crestibar = PMy 5 concentration for of restaurant or bar microenvironment (ug/m?3);
Cambient = ambient outdoor PM 5 concentration (ug/m3);

Cets = incremental PM, 5 concentration caused by smoking a cigarette during a defined
time interval [ug/(m3.cig)];
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ro = ratio of indoor concentration associated with penetration of outdoor
concentration.

The first term of Equation (2) describes the non-ambient contribution to indoor PM5 5
concentration except for ETS. The second term describes the contribution from outdoor
PM, 5. The PM> 5 concentration attributable to ETS is described by the last term.

3. METHODOLOGY

The methodology includes: (1) review literature for ETS data and algorithms used in
SHEDS-PM; (2) sensitivity analysis to identify the key factors to which exposure is
sensitive for ETS in selected microenvironments; (3) assessment of the effect of updated
data on estimated exposures; and (4) characterization of inter-individual and geographical
variability associated with ETS exposure.

3.1 Review of Inputs and Algorithms

The review of existing inputs and algorithms in SHEDS-PM for estimating PM> 5
concentration associated with ETS is based on: (a) detailed review of the SHEDS-PM
model, its user guide, and the literature cited as the basis for default input assumptions; (b)
published peer reviewed papers regarding SHEDS-PM and similar models; and (c) databases
of the U.S. Department of Health and Human Services (DHHS) and the Substance Abuse &
Mental Health Services Administration (SAMHSA).

3.2 Sensitivity Analysis

An overview of sensitivity analysis methods is given by Frey and Patil.(33) Differential
Sensitivity Analysis (DSA) is applicable to linear models for which there are no nonlinear
interactions between terms, as is the case for the ETS aspects of SHEDS-PM. DSA
evaluates the effect on model outputs exerted by individually perturbing only one of the
model inputs, while holding all other inputs at their nominal or base-case values.(34)
Sensitivity in a model output is represented as a positive or negative percentage change
compared to the nominal solution. This type of sensitivity analysis provides a measure of
model responsiveness to a unit change in an input. In separate analyses, inter-individual
variability in exposure is estimated based on simultaneous variation in multiple model inputs
over their plausible ranges of variability.

In the DSA, selected inputs were varied by plus or minus 10 percent, which is well within
the plausible range of values. In subsequent probabilistic simulations, these inputs are varied
over plausible ranges. The differential sensitivity of estimated exposure for selected indoor
microenvironments is based on the time-weighted daily average PM, 5 exposures for the
50th, 90t and 99" percentile of simulated individuals. Because only a small fraction of the
simulated population spent time in the restaurant and bar microenvironments, the sensitivity
analysis for these microenvironments focuses on the 99t percentile.

3.3 Assessment of Updated Inputs and Algorithms

The assessment of the effect of updated input data on estimated exposures are based on
running SHEDS-PM with default data, with updated data for ETS-related inputs, and
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comparison of the two sets of results. Ambient PM> 5 air quality data, demographic data,
sample size, and algorithms are kept the same in both sets of simulations. Frequency
distributions of air exchange rate, penetration factor, and deposition rate are used for the
residential microenvironment. Vehicle air exchange rates have much more variability than
those in a residential microenvironment. Therefore, a mass balance model for estimating in-
vehicle microenvironment PM> 5 concentration is separately evaluated based on sensitivity
to air exchange rates.

3.4 Inter-individual Variability in Residential Exposures

To explore variability in exposure in the residential microenvironment, exposures are
estimated and compared for specific sources of PM> 5 including: (a) infiltration of outdoor
air; (b) indoor sources other than smoking; and (¢) ETS from smoking. Updated data
regarding the proportion of smokers and “other” smokers, and cigarette emission rate, are
used in the simulation.

3.5 Geographic Variability in Exposures

Smoking prevalence, housing types, and demographic factors (i.e. age, gender) vary among
geographic areas. In order to assess the geographic variability in estimated exposure, five
locations were selected as a basis for comparisons from U.S. states that span the lowest to
highest range of smoking prevalence. Utah has only 9.3 percent proportion of smokers
compared to Kentucky, with 25.2 percent, based on 2008 data. California (14.0%), New
York (16.8%), and North Carolina (20.9%) are examples of varying proportions between the
lowest and highest.(35) For each state, the county with the highest population was selected
as the basis for case studies, with an assumption that the county and state smoking
prevalence are the same. For each county, ten census tracts were selected at random. Two
case studies were conducted for each area: (1) base case without ETS; and (2) with ETS.
Updated data were used for Ejg, ASC, and Ces. To focus on the role of ETS without
confounding effects of differences in actual ambient PM, 5 concentrations, the daily average
ambient PM> 5 concentration for each census tract was assigned the same constant value of
10 pg/m3 over space and time for each area, and analysis of results focused on the
incremental contribution of ETS to daily exposure.

4. RESULTS

Results for updated inputs and algorithms are given. An algorithm for ETS exposure in the
in-vehicle microenvironment is evaluated using sensitivity analysis. Inter-individual and
geographic variability in ETS-related exposure is evaluated.

4.1 Evaluation of ETS-Related Input Data

The default data in SHEDS related to smoking prevalence is representative of 1995 and
1993, for adults 18 years and older and adolescents from 12 to 17 years old, respectively.
More recently available U.S. data, representative of 2007 and 2006 for adults and
adolescents, respectively, on the proportion of smokers at home is lower than that of the
default data, especially for adolescents aged from 12-17, because of declining trends in
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smoking prevalence. From 2000 to 2007, the U.S. nationwide prevalence of smoking
decreased from 23.2 to 18.4%.(36) The default and updated inputs are compared in Table I.

There are no recent data regarding the proportion of “other smokers” by gender. However,
updated data are available for age categories. SHEDS takes into account other smokers for
persons older than 12 years old for three age groups. The default proportion of persons
exposed to other smokers varies from 4 to 49 percent depending on the age group. However,
SHEDS does not currently estimate exposures of children 11 years of younger to other
smokers. An estimated 24.9% of children in this age group are exposed to cigarette smoking
at home.(40)

The available data regarding smoking prevalence are on an individual basis.(36) However,
there are no available data on the proportion of residences in which smoking occurs.

The default input for the cigarette emission rate in SHEDS-PM is 10.9 mg per cigarette.
Ozkaynak et al. estimated a cigarette emission rate of 14 + 4 mg/cig by fitting a nonlinear
regression model to average PM> 5 concentrations for 178 homes in Riverside, CA.(31) The
mean value of PM, 5 emission rate among the 50 top brands of cigarettes is 13.8 mg/cig,
with a standard deviation of 3.1 mg/cig and a range of 8 to 23 mg/cig based on a sample size
of 111.(41) Based on a summary of 14 papers, Nazaroff and Klepeis reported a mean PM, 5
emission rate of 13.7 mg/cig.(29) Thus, the default input is lower than the mean value of
cigarette emission rate based on various studies. An updated emission rate of approximately
13.8 mg/cig, which is 27 percent higher than the default, with a range from 8 to 23 mg/cig,
is used here.

In 1993, an average smoker smoked 19.6 cigarettes per day (cpd), with a mean of 21.3 cpd
for men and 17.8 cpd for women. In 2004, the mean was 16.8 cpd, with 18.1 cpd for men
and 15.3 cpd for women.(42) Thus, over an 11 year period, the number of cigarettes smoked
declined on average by 14 percent for women and 15 percent for men. However, updated
data are not available for specific gender and age cohorts. Therefore, the default inputs used
in SHEDS-PM based on NHAPS are retained. However, to assess the implications of
possible reductions in cpd, a sensitivity case was conducted using the example of Wake
County in which a 15 percent reduction was applied for all cohorts.

As a default, ASC for the restaurant and bar microenvironments has a uniform distribution
of 0 to 3. ASC ranged from 0 to 4 cigarettes per hour with an average of 1.3 cigarettes per
hour based on 1993 to 1994 data.(28) Assuming 16 hours of smoking per day, the ASC in
2004 is approximately 1.05 cigarettes per hour per smoker, based on 2004 data. The value of
ASC appears to be decreasing with time.

The SHEDS-PM default for Ce is a triangular distribution with a minimum of 32 ug/m3,
best estimate or mode of 40.4 pg/m3, and a maximum of 50 pg/m3 per cigarette per hour for
both restaurants and bars. Ott et al. used a mass balance approach to estimate an incremental
PM, 5 concentration in a tavern of 42.5 ug/m3 based on a cigarette emission rate of 2.4 mg/
min, and an ASC of 1.17 cigarettes.(28) Based on the range of cigarette emission rate from 8
to 23 mg/cig, and assuming the duration of one cigarette smoking is 10 minutes, the
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estimated Cegts ranges from 14 to 40 pg/m3, which overlaps with the range of defaults used in
SHEDS-PM.

Based on CHAD data, the time people spend in a vehicle is almost 10 times less than that at
home. However, in-vehicle PM5 5 concentrations associated with smoking have been
measured or estimated to be as high as 658 pg/m?3, depending on the status of vehicle
windows and air conditioning system.(43) Vehicles have a wider range of air exchange rates
compared to those measured in homes. The relatively high ETS PM5 5 concentrations inside
a vehicle can be attributed to the smaller interior volume.(43)

4.2 Sensitivity Analysis

To compare the sensitivity of estimated exposure to each of several ETS-related inputs, a
typical case study was developed based on ten randomly selected census tracts in Wake
County, North Carolina. For each census tract, 10,000 individuals were simulated. For each
of the residential, restaurant and bar microenvironments, sensitivity analysis was conducted
based on default inputs.

Seven inputs were varied, including: (1) proportions of smokers and other smokers, cigarette
emission rate, and number of cigarettes, for the residential microenvironment; and (2) ASC
and Cgs for the restaurant and bar microenvironments. One simulation was conducted for
default inputs in all three microenvironments, and 14 simulations were conducted for the
upper and lower bound of each of the 7 inputs except the number of cigarette. One
sensitivity case was conducted for the number cigarettes smoked per day based on 15%
reduction of the default inputs. Each model run was conducted on a Windows XP Pentium 4
computer and had an approximate runtime of 400 minutes. The results for the residential
microenvironment are given in Table 1. The results for restaurants and bars are given in
Table I11.

Over 99 percent of the simulated population spent time in the residential microenvironment.
Based on the default inputs, about 40 percent of people were estimated to be exposed to
ETS. Because ETS concentration is a linear function of proportion of smokers and cigarette
emission rate, therefore, the 90t and 99t percentiles of inter-individual variability in
exposure vary plus or minus 10 percent for a plus or minus 10 percent variation in
proportion of smokers or cigarette emission rate. For an estimated 15 percent decrease in the
average cpd over time, the 90t and 99™" percentiles of exposure also decrease by 15 percent.
The 50t percentile of exposure is less sensitive to ETS-related inputs.

Only 22 and 4 percent of the simulated population spent time in the restaurant and bar
microenvironments, respectively. According to Equation (2), the concentrations inside the
restaurant and bar are linearly proportion to the product of ASC x Cgs. Therefore, the
exposure at the 99t percentile is equally sensitive to relative variations of plus or minus 10
percent to either of these two inputs.

4. 3 Assessment of the Effect of Updated Inputs and Algorithms

Comparison of estimated daily average exposures to individuals based on updated data to
that based on default data is given in Table V. For the residential microenvironment inputs,
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a lognormal distribution was used for air exchange rate, with geometric mean of 0.56 and
geometric standard deviation of 1.84. Normal distributions were used for penetration factor
and deposition rate, with means of 0.91 and 0.79, standard deviation of 0.1 and 0.31,
respectively. The updated data include circa 2006 to 2007 proportions of smokers and
nonsmokers, with Egjg = 13.8 Hg/m3, versus default circa 1995 data on the proportion of
smokers and non-smokers and Ejg = 10.9 pg/m3. The mean exposures, and standard
deviation based on updated data are 8 and 31 percent higher, respectively, than those based
on defaults. Although the mean values of updated proportion of smokers and “other”
smokers are 32% and 5% lower, respectively, than the defaults, the updated mean cigarette
emission rate is 27% higher than the default. The overall increase in the estimated exposure
despite the lower proportions of smokers and other smokers is consistent with the results of
sensitivity analysis, which indicates that exposure is equally sensitive to the proportion of
smokers and “other smokers,” and cigarette emission rate.

4.4 In-Vehicle Exposure to ETS

Turk developed a mass balance equation which contains both indoor and outdoor emission
sources for calculating concentrations in a chamber.(44) Ott et al. summarize previous
studies, and describe and evaluate a mass balance equation used in a chamber.(30) Examples
of exposure models using mass balance approaches are SHAPE, THEM, APEX, Sequential
Cigarette Exposure Model (SCEM),(30) Multi-Chamber Concentration and Exposure Model
(MCCEM),(45) and European Population Particle Exposure Model (EXPOLIS).(46)

Ott et al. evaluates a linear regression equation for estimation of indoor respirable suspended
particle (RSP) concentration based on penetration of ambient RSP.(30) They conclude that
the linear regression approach can be applied to estimate RSP concentrations from ETS in
similar taverns.

A typical mass balance approach for estimation in-vehicle concentration is available in
SCEM. SCEM was developed for predicting the time series of concentration in a well-mixed
vehicle for any cigarette smoking activity pattern. Ott et al. observe that time series of
carbon monoxide and particle concentration agree well (within 5 percent) with the time
series predicted by the model.(30) The mass balance model is:

C _Rmfg : qu -t @)

In— Vehicle a-V-T

Where,
a = air exchange rate (h™1);
Cin-vehicle = PM3 5 concentration for the in-vehicle microenvironment (ug/md);
Ecig = emission rate for cigarette smoking (ug/cig);
Reig = average smoking rate (cig/h);
t = duration of active smoking of an individual (min);

T = duration of diary event in the vehicle (min);
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V = vehicle interior cabin volume (m3).

This model is similar to the second term of Equation (1), except it does not account for
deposition rate.

For the in-vehicle microenvironment, results of sensitivity analysis of Equation (3) are given
in Table V. The air exchange rate was varied, holding other inputs at their default values.
The estimated in-vehicle PM, 5 concentrations range from 8 to 201 ug/m3 based on air
exchange rates ranging from 79 to 3.0 h™1. When all the windows are closed, and with the
air conditioner operated in the “max” AC setting with recirculation, the PM5 5 concentration
reached the largest estimated value. At a vehicle speed of 20 mph, opening a single window
from 3 inches to fully open decreased the estimated concentration by fourfold. Air exchange
rate is more sensitive to the ventilation system status than to the window status and vehicle
speed. With the vehicle speed at 60 mph, windows closed, switching from AC Max (with
recirculation of interior air) to AC Regular (with intake of fresh air) leads to an eightfold
increase in the air exchange rate, and an eightfold decrease in the in-vehicle PM; 5
concentration. At a speed of 20 mph and with AC off, adjusting the window from 3 inches to
fully open leads to a fourfold increase in the air exchange rate and decrease in in-vehicle
PM 5 concentration. With one window open 3 inches and the AC off, increasing the vehicle
speed from 20 mph to 60 mph leads to a threefold increase in the air exchange rate and
decrease in in-vehicle PM, 5 concentration.

4.5 Inter-individual Variability in Residential PM, 5 Exposure with Default Inputs

Simulated cumulative frequency distributions (CDF) of inter-individual variability in daily
average PM, 5 exposures based on selected scenarios for the residential microenvironment
are given in Figure 2. In order to focus comparisons among the exposures attributable to
different emission sources, ambient PM, 5 concentration is set to 10 pg/m?3 for 24 hours and
kept constant for each simulated day. Updated inputs are used in the simulation. The PM5 g
sources considered are ETS only, cooking only, and infiltration of ambient air only. A
comparison of these three scenarios provides insight regarding their relative importance to
exposure.

About 25 percent of simulated individuals are exposed to ETS in the residential
microenvironment. The CDF attributable to only ETS has a mean of 7.0 pg/m?3, with a range
of 0 to 519 pg/m3, and a standard deviation of 20 pug/m3. For an ambient concentration of 10
Hg/m3, the average exposure associated with infiltration of outdoor air is 2.4 pg/m3. The
average exposure from cooking is 1.6 pg/m3. Hence, unless ambient concentration is very
high, ETS is likely to contribute a plurality or majority of the average residential indoor
exposure in homes where smoking occurs. However, the contribution of ETS to individual
exposure is much higher for some individuals, and is zero for households without any
smoking.

4.6 Geographic Variability in Daily Average ETS-related PM, 5 Exposure

There are geographic differences in factors such as the distribution of smoking prevalence
by age and gender, distribution of the population by age and gender, and the distribution of
housing stock, which affect comparisons of estimated concentrations. The variation in these
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factors among geographic areas is shown in Table VI. These data are among the inputs to
SHEDS-PM.

The average proportion of smokers, including all age groups and both genders, ranges from
9.3 to 25.2 percent among the selected geographic areas, with Jefferson County, KY being
the highest and Salt Lake County, UT being the lowest. Jefferson County generally has the
highest smoking prevalence for all age groups between ages 14 to 64 for both male and
female compared to the other four geographic areas, with the exception of male smokers in
Wake County, NC aged 45 to 64.

The average age of the population in Wake County, NC and Los Angeles, CA is slightly
younger than in the other areas, whereas the other three areas have similar average ages. For
Wake and Los Angeles, approximately 54 percent of the population is aged 12 to 34, versus
only 42 percent for Jefferson County. In Jefferson County, taking into account the
distribution of both smoking prevalence and of the population by age and gender, the
cohorts that typically contribute the most to smoking are for ages 35 to 44 for both genders,
with a nearly similar contribution from the 45 to 64 age cohorts. Although New York and
Salt Lake Counties have a similar proportion of the population in the 45 to 64 age groups as
Jefferson County, there is a lower contribution of these groups to ETS exposure because of
lower smoking prevalence.

The distribution of housing stock varies geographically. Larger houses are estimated to have
lower indoor concentrations of ETS for the same air exchange rate and emission rate
compared to smaller houses. Single family homes, whether detached or attached (e.g.,
townhouses), tend have larger interior volumes than either multiple family homes
(apartments) or mobile homes. Los Angeles, Salt Lake, and Jefferson Counties have 67 to 71
percent single family housing, versus only 46 percent for New York County. Conversely,
New York County has the highest proportion of smaller homes, at 54 percent.

Results of estimated incremental daily average PM> 5 exposure attributable to ETS are
summarized in Table VII. These average exposures range from 4.6 to 7.7 ug/m3 among the
five analyzed geographic areas. The mean exposure to ETS increases monotonically with
respect to the average proportion of smokers, a metric that takes into account both the
population distribution and the smoking prevalence for individual age and gender cohorts.
However, housing stock is also an influential factor. For example, even though New York
County has a smoking prevalence approximately one-third lower than for Jefferson County,
the average ETS exposure is only 12 percent lower at least in part because of the generally
smaller housing volumes.

5. CONCLUSIONS

SHEDS-PM default inputs regarding the proportion of smokers and “other smokers” should
be updated to account for the desired time period for which exposures are simulated, since
there are significant differences in these proportions over time. The default data regarding
cigarette emission rate is low compared to average emission rates estimated from several
studies, and thus should be updated. Furthermore, emission rates vary by approximately a
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factor of three among cigarettes. This variability can be accounted for as part of a
probabilistic simulation of exposure. Data on the market-share weighted distribution of
variability in cigarette emission rate are needed in order to allow better estimation of the
contribution of ETS to indoor air. The algorithms used for ETS exposure in the residential,
restaurant, and bar microenvironments are generally based on best practice.

ETS-related PM, 5 exposure is sensitive to the proportion of smokers and “other smokers,
and cigarette emission rate for the residential indoor microenvironment, and to the
incremental increase in indoor PMs 5 concentration associated with smoking a cigarette
during an hour in the residential and bar microenvironments. Hence, these inputs and
parameters are the ones that merit the most attention when developing input data.

For the in-vehicle microenvironment, the most sensitive parameter is the air exchange rate,
which in turn depends on the status of windows, the air conditioning and heating system,
and vehicle speed. An implication of the sensitivity analysis results is that in-vehicle
exposure to ETS can be very high particularly in warm weather for drivers who use air
conditioning on recirculation with windows closed. For some individuals, in-vehicle
exposures to ETS could be a significant component of daily average exposure even though
the time spent in vehicle is less than that of other indoor microenvironments.

For a population of individuals, exposure to ETS can be the largest single contributor to
daily average exposure to fine particulate matter, even though only a portion of all
individuals are exposed to ETS. For those who are exposed to ETS, there is a wide range of
variability in such exposures.

Geographic variability in the prevalence of smokers and demographic factors such as the
distribution of the population by age and gender are among factors that lead to geographic
variability in daily average PM> 5 exposures attributable to ETS. Thus, area-specific data for
the proportion of smokers and for demographics should be used.

There are some limitations in available data and models that lead to recommendations for
future efforts to improve ETS exposure modeling. Even though the proportion of smokers
and the number of cigarettes smoked per smoker per day appear to be declining with time in
the U.S., they are still significant and should be tracked consistently over time by age and
gender. Some demographic factors that affect smoking prevalence, such as education or
socioeconomic status, are not incorporated into existing exposure models. Exposure of
young children to ETS and data on the proportion of households in which smoking occur
merit quantification. Data are not currently available for avoidance behaviors, such as a non-
smoker who avoids proximity to a smoker during a smoking event. Furthermore, changes in
smoker activity patterns due to bans on smoking in public indoor spaces, such as whether
the rate of smoking is differentially affected in other microenvironments, are not yet
quantified.

Despite a variety of actions and messages aimed at reducing the prevalence of smoking,
smoking nonetheless continues to be a significant source of exposure to fine particulate
matter. The residential and in-vehicle microenvironments in particular are conducive to
potentially high exposure concentrations.
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FIGURE 1.
Conceptual Diagram of the Components of the Stochastic Human Exposure and Dose

Simulation Model for Particulate Matter (SHEDS-PM) Relevant to Environmental Tobacco
Smoke (ETS)
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FIGURE 2.
Comparison of Cumulative Frequency Distributions of Estimated Daily Average PM, 5

Exposures (ug/m3) in the Residential Microenvironment

Note: Simulation assumptions: 100,000 individuals, 10 census tracts in Wake County, NC.
Same random seeds are used in each simulation Emission Rate; 13.8 mg/cig. Ambient PM> g
concentration: 10 pg/m3.
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Table Il

Results of Sensitivity Analysis of Total Daily Exposure for SHEDS-PM for the Restaurant and Bar
Microenvironment?

Restaurant Bar
Input
Assumption  ggth percentile PMys 9% Change in 99t 99™ Percentile PM,5 9% Change in 99t
Exposure (ug/m?3) Percentile Exposure (ug/m3) Percentile

Default Inputs 12 / 10 /

ASC +10% 13 10 13 10

ASC -10% 11 -10 11 -10

Cers +10% 13 10 13 10

Ces —10% 11 -10 11 -10

a._. . . A . . . . .
Simulation assumptions: 100,000 individuals, 10 census tracts in Wake County, NC; same random seeds are used in each simulation; ambient

PM2 5 concentration: 10 ug/m3; ASC = 1.05 cigarette; Cats= 40.4 ug/m3 in restaurant and bar.

bASC was varied from 0.95 to 1.16 cig/hr.

CCe’(s was varied from 36.4 to 44.4 pg/mg.
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Table V

Estimated In-vehicle PM, 5 Concentrations for Selected ETS Exposure Scenarios?

Speed Windows Ventilation  Air Exchange Rates? P"EdiCt?d PM; 5
(mph) System ACH (h™) ConcentrationsC(pg/m3)
20 One fully Open AC Off 78.6 8
60 One Open 3 inches AC Off 56.4 11
60 All Closed AC Regular 38.6 16
20 One Open 3 inches AC Off 20.9 29
0 (parked) One Fully Open AC Off 19.2 31
60 All Closed AC Max 5.1 118
20 All Closed AC Max 3.0 201

aSimuIation assumptions: V =4 m3, Ecig = 13800 pg/cig, Reig = 1.05 cig/h, t = 10 min, T = 60 min, and ACH as shown.

bAir exchange rates were obtain from Ott et al. (2008).(43)

c . .
PM2 5 concentrations are calculated based on the mass balance Equation (3).
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