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ADENOSINE AND BRAIN: THE VIEWS AND THE VISTAS
Ten years ago, Newby introduced a new description of adenosine: “the retaliatory
metabolite.”1 The theoretical notion that adenosine may protect against tissue injury2

evolved rapidly into a practical demonstration of powerful neuroprotective effects of
endogenous adenosine and its analogues.3–5 Subsequent improvement in understanding both
the effects of adenosine receptor stimulation and the pathological processes that accompany
numerous neurological disorders ultimately led to proposals that adenosine-based therapies
may be effective not only in stroke and seizures, but also in Alzheimer's, Huntington's and
Parkinson's diseases, and a number of psychiatric pathologies.5,6

ADENOSINE AND BRAIN: THE FUNCTIONS
Endogenous Brain Adenosine and Pathologic Stress

Technical difficulties complicate the exact measurement of extracellular brain adenosine
concentration.4 Currently, the level of free adenosine level in the interstitial brain space of
unanesthetized, freely moving animals is estimated at 50–300 nM.4 More importantly,
however, several laboratories have consistently reported that the amount of extracellular
adenosine increases dramatically following cerebral metabolic stress caused by seizures,
hypoxia, or ischemia.4

In focal ischemia (and probably global as well), the reduction of cerebral blood flow (CBF)
correlates with the concomitant elevation of both adenosine and glutamate.7 However, while
increased release of adenosine occurs at CBF values of 25 ml/100 g/min, further reduction
ofCBF (20 ml/100 g/min) is necessary to elevate concentration of the extracellular
glutamate. Quite recently, Hoehn and White8,9 showed that release of excitatory amino acids
elicited by electrical field stimulation also results in the release of adenosine—an effect
mediated in part by both N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-
methylisoxazole-4-proprionic acid (AMPA) receptors. It appears, therefore, that glutamate-
mediated hyperexcitation of neurons (such as seen in cerebral ischemia) may provide an
additional, and somewhat unexpected, stimulus for further increase in adenosine release.
These observations indicate that, in view of the powerful inhibitory effect of adenosine on
the release of several excitatory neurotransmitters (see below), it is quite likely that increase
in the concentration of interstitial adenosine, which both precedes and accompanies massive
intraischemic release of glutamate,10–13 constitutes part of a mechanism whose operation
provides a transient, endogenous protection of the brain against injury.5
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Cerebral Receptors of Adenosine
Endogenous adenosine acts at three principal G-protein-associated receptor subtypes: A1, A2
and A3.14,15 Both the molecular structure and the nature of the effector coupling are known
for all three subtypes.16,17 Cerebral A1 receptors are linked to several second messenger
systems, and one of their characteristic responses to stimulation is inhibition of adenylate
cyclase.14 Activation of A2 receptors stimulates adenylate cyclase,14 whereas activation of
A3 receptors inhibits it, and also stimulates phosphoinositide metabolism.18 Although their
specific distribution varies,19 all three adenosine receptor subtypes are found in the
brain.15,20 A1 receptors are predominantly found in the hippocampus, IV–VI laminas of the
cortex, striatum, amygdala, and superior colliculus, and appear to be codistributed with
NMDA receptors,21,22

A2 receptors, of which two subclasses (A2a and A2b) exist, abound on smooth muscle and
endothelial cells of cerebral blood vessels, where they mediate vascular effects of
adenosine.23 High-affinity A2a receptors are particularly well represented in the striatum and
other dopamine-rich regions of the brain,19 where they are colocalized with dopamine D2
receptors, and exert profound modulatory effect on dopaminergic transmission.24 Adenosine
receptors on glial cells helong, most likely, to the low-affinity A2b subclass.4 Cerebral
distribution of A1 and A2 receptors follows an intriguing pattern, i.e., A2 appear to be less
abundant within regions where the density of A1 sites is elevated, and vice versa.
Differences in the anatomical distribution of A1 and A2 receptors may have striking
behavioral consequences.25 A3 receptors are found throughout the brain but their density is
much lower than that of either A1 or A2.20 The cell type on which they are located is
unknown.

Physiological Effects of Adenosine Receptor Stimulation
The principal function of adenosine in the brain is that of an inhibitory neuromodulator,26,27

The inhibitory effects of adenosine are mediated mainly via both pre- and postsynaptic A1
receptors.

Activation of presynaptic A1 sites inhibits neuronal calcium uptake28-30 and results in
reduced release of several neurotransmitters, e.g., acetylcholine, noradrenaline, dopamine,
serotonin, and glutamate.31–34

Stimulation of both pre- and postsynaptic A1 receptors causes activation of potassium35–37

and chloride38 conductances. The resultant elevation of the membrane potential and the
depression of the membrane resistance35,39 decrease neuronal excitability and firing
rate.35,40,41

Apart from the involvement of adenosine A2 receptors in regulation of CBF23 adenosine A2

receptors are responsible for accumulation of cyclic adenosine monophosphate (cAMP) in
the brain.4 The details of A2 receptor involvement in neuronal physiology are still poorly
understood, although existing evidence indicates that excitatory A2 receptors are present in
the hippocampus42 and may be involved in potentiation of calcium-dependent
neurotransmitter release43,44 and in modulation of electrically evoked release of gamma-
aminobutyric acid (GABA) in globus pallidus.45 It is also known that in the striatum, A2
receptors mediate control of gene expression in enkephalinergic neurons,46 and that A2
activation attenuates activity of the colocalized dopamine D2 receptors through reduction of
their affinity for D2 agonists.25,47,48 Finally, participation of A2 receptors in generation of
astrocytic edema has been also suggested.49
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ADENOSINE AND NEUROPROTECTION: THE THEORETICALS
The first experimental confirmation of neuroprotective properties of adenosine analogues in
cerebral ischemia has been provided by Evans et al.52 and von Lubitz et al.53,54 A variety of
in vitro and in vivo models of hypoxic/ischemic models of neuronal injury have been used in
most of the subsequent studies of neuroprotection afforded by adenosine, its analogues, and
inhibitors of its uptake.4 Moreover, the effect of these approaches has been also investigated
in seizures55 and in either clinical56 or in vitro hypoglycemia.57 Since pathophysiology of
cerebral ischemia has been extensively reviewed,58–60 for the purpose of the present review
suffice to say that the arrest of brain blood supply results in a rapid depolarization of
neuronal membranes,61 massive release of excitatory neurotransmitters11 and excitation of
postsynaptic glutamate receptors (NMDA and non-NMDA59), followed by influx of calcium
and its release from intracellular stores.62 The latter process triggers a series of cascading
events60 that ultimately lead to neuronal demise.

From the preceding brief discussion of the effects of adenosine receptor stimulation it is
apparent that adenosine analogues may be applicable in interrupting several iscfiemia-
associated events, e.g., membrane (hypoxic) depolarization, neurotransmitter release,
hyperexcitation of NMDA receptors, and calcium influx.

Endogenous Adenosine and Hypoxic Depolarization
Rapid depolarization of neuronal membrane is one of the initial events evoked by either
impaired or entirely interrupted supply of the cerebral blood flow.63 Moreover, duration of
hypoxic depolarization may be the determining factor that dictates the subsequent fate of
neurons, i.e., their survival or death.64

Hypoxic depolarization is associated with enhanced influx of calcium through voltage-gated
calcium channels,59 and concomitant increase in neurotransmitter release. Since
intraischemic liberation of endogenous adenosine precedes that of glutamate,7 and since
intraischemically released adenosme both significantly delays the onset of hypoxic
depoiarization65 and reduces glutamate release,66 it appears that adenosine-mediated
protective processes take place already at the very beginning of the insult.

Adenosine A1 Receptors and Excitatory Neurotransmitter Release
Significant reduction of intraischemic release of glutamate by the A1 receptor agonist N6-
cyclopentyladenosine (CPA) and the A1/A2 agonist N-ethylcarboxamidoadenosine (NECA)
has been demonstrated in the 4-vessel occlusion rat model of ischemia.66 Reduction of
glutamate release by the A1 agonist N6-cyclohexyladenosine (CHA) has been also reported
in focal ischemia in the rat3 and in forebrain ischemia in the gerbil (Marangos and von
Luhitz, unpublished). However, while glycine levels were significantly attenuated by CRA
in a study of global ischemia in rahhits,67 the reduction of glutamate showed only a dose-
dependent but statistically insignificant trend. Nonetheless, even if in the latter study
glutamate release was affected only to a limited extent, the protective effect of adenosine
agonist is still likely.

Glycine is necessary for activation of the ion-gated channel of the NMDA receptor which
regulates calcium influx.68 Moreover, several studies have showed that glycine antagonists
and partial agonists have a neuroprotective effect.69,70 Therefore, It is conceivable that,
despite a variable effect on the liberation of glutamate, CHA-mediated reduction in glycine
release may diminish the functional efficiency of the NMDA receptor-associated ion-gated
channel, and thereby decrease the subsequent calcium overload.
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Endogenous Adenosine and Glutamate Uptake Sites
Postischemic release of glutamate is comparatively brief and abates within approximately 30
min.11 However, postischemic depression of CBF seen severe ischemia (hypo perfusion
stage) may result in secondary hypoxia,71 Hence, a supplementary elevation in the
extracellular glutamate concentration is also quite possible and may, unless astrocytic
transport mechanisms remain intact, lead to exacerbation of the excitotoxic processes
initiated by the primary event. Interestingly, Anderson et al.72 have showed that even a brief
(5-min) ischemia results in a prolonged upregulation of high-affinity excitatory amino acid
(EAA) transport sites. At the same time, Schmidt et al.73 have showed that a brief 10-min
exposure to adenosine produces a significant increase in the density of high-affinity
glutamate and aspartate uptake sites in rat hippocampal slices. Therefore, it is possible that
intraischemic elevation of brain adenosine74 may, apart from its effect on neurotransmitter
release, also result in a sustained upregulation of EAA transport ers. Consequently, due to its
control of both release and uptake of EAAs, endogenous adenosine may play an important
role in prevention of excitotoxic damage following very brief ischemic periods, the absence
of which has been noted by several authors.75,76

Postsynaptic Effects of Adenosine and Neurodegeneration
The intensity of excitatory synaptic input depends on the amount of NMDA-mediated influx
of Ca2+77 which, in turn, increases membrane depolarization and acts as a synaptic
amplifier. Since the evoked influx of calcium is tightly controlled by postsynaptic A1
receptors even at low extracellular Ca2+ concentrations,29,30,78 such control tends to
attenuate calcium-mediated synaptic amplification.4 Consequently, adenosine and its
postsynaptic A1 receptors regulate critical input frequencies required to operate postsynaptic
NMDA receptors, as was recently demonstrated by Schubert and his colleagues.30,79

The additional, albeit indirect, benefit of reduced NMDA receptor-mediated depolarization
elicited by interaction of adenosine with its A1 receptors is the effect on voltage-sensitive K+

currents.35 DepolarizatIOn appears to block these currents and enhances neuronal
excitability and firing rate.80 Hence, vigorous activatIOn of A1 receptors by elevated
concentrations of extracellular adenosine may counteract NMDA receptor-mediated
depolarization, and drive the membrane potential toward voltage ranges at which
depolarization-dependent block of potassium conductance is either less likely or does not
occur.4

Apart from its enhancing effect on potassium conductance,36,37,81 adenosine stimulates
voltage-dependent Cl- conductance as well.38,82 It has been suggested that the openmg of
this conductance may diminish accumulation of intraneuronal Cl- during repetitive firing4

which, unless prevented, will eventually impair GABAergic inhibition.83 Elevation in
extracellular adenosine during periods of enhanced neuronal activity41 may, therefore, assist
in maintaining GABA-mediated inhibition, and constitute another functional aspect of the
protective adenosine/adenosine receptor complex.

Adenosine A2 Receptors and Neurodegeneration
The concept of A2 receptor involvement in neurodegeneration has not been pursued with the
same vigor as that of A1 receptors. There is, however, indirect, evidence that A2 receptors
may play a pivotal role in neuronal death observed in the striatum, and possibly also in the
substantia nigra. Contrary to general belief, it is the dorsolateral aspect of striatum rather
than the hippocampal CA4 sector75 that appears to be endowed with the highest sensitivity
to ischemic insult.84,85 Light microscopic evidence of neuronal impairment in the striatum is
clearly discernible already 1 h after a very light ischemic episode. while acute ischemic
damage in the hippocampal CA4 appears 6–12 h after the event.84 Rapid, intraischemic
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release of dopamine and glutamate,85,86 persistent elevation of cAMP,87 and eventual loss
of dopamine D2 receptors86 precede morphologic damage of striatal neurons.

Globus et al.85 have showed that, while increased concentration of intrastriatal dopamine
alone has no adverse effect, elevated concentration of both dopamine and glutamate is
associated with striatal vulnerability to ischemia. Since dopamine D2 receptors attenuate the
effect of glutamatergic stimulation,88 it is possible that accelerated postischemic loss of D2
receptors, rather than elevated concentration of both qeurotransmitters per se may constitute
one of the critical factors resulting in the apparent potentiation of glutamate-evoked damage.
The most characteristic aspect of this damage is its containment to the medium-sized spiny
neurons containing enkephalin and substance P,84i.e., neurons receiving glutamatergic input
from both substantia nigra and neocortex.88 Moreover, the same medium-sized GABAergic
enkephalin-containing neurons are also characterized by the highest density of adenosine A2
receptors.24

Based on the existing evidence, and on the fact that stimulation of adenosine A2 receptor
decreases the affinity of D2 receptors to agonist stimulation,48 it is possible to construct a
chain of conjectural events that may ultimately lead to the selective neuronal loss in the
striatum. Most likely, the initial intraischemic surge of adenosine agitates high-affinity A2a
receptors located on enkephalin-containing GABAergic neurons. At the same time, the
colocahzed D2 receptors which attenuate glutamatergic excitation supplied by cortical and
nigro-striatal fibers88 will be stimulated by dopamine, whose concentration also increases.
However, the activated A2 receptors decrease affinity of the colocalized D2 sites to
dopamine,24 thereby diminishing the efficiency of their counterexcitatory effect. Ultimately,
combination of A2-D2 interactions and postischemic loss of D2 receptors86 will result in a
progressive shift toward unopposed glutamatergic hyperexcitation whose intensity will,
eventually, attain the level sufficient to induce excitotoxic damage of enkephalin-containing
GABAergic neurons.

Contrary to A1 receptors, the time course of ischemia-induced adenosine A2 receptor
disappearance is unknown. However, cerebral ischemia causes elevation in striatal cAMP
that persists for at least 4 h after the reperfusion.87 Since stimulation of A2 receptors leads to
production of cAMP,4,14 its prolonged postischemic presence may indicate that the
functional A2 receptors are preserved for several hours following the insult. Moreover, it
was shown recently that A2 receptor stimulation enhances ischemia-evoked release of
glutamate and aspartate.44 Thus, although the mechanism involved in this process is
unknown, the sustained operation of A2 receptors may amplify the damage to enkephalin-
containing GABAergic neurons even further.

Allowing that this speculative sequence of events is correct, its repercussions on
“downstream” damage caused by ischemia may be significant. Both global and prolonged
forebrain ischemia cause damage in the substantia nigra as well as in the striatum and the
hippocampus.89,90 Hence, possible involvement of A2 receptors in development of the rapid
damage to the inhibitory enkephalin-containing neurons in the striatum may contribute to
the subsequent loss of inhibitory input to the substantia nigra, and amplify the adverse
effects of ischemia-associated hyperstimulation also in that region.

The pattern of striatal neuron loss in cerebral ischemia is very similar to that observed in
Huntington's chorea84 and, although the postischemic fate of A2 receptors is presently
unknown, a significant decrease in their density was observed in striatal tissue of patients
with Huntington's disease,91 Since adenosine A2 receptors appear to play an important role
in pathophysiology basal ganglia associated with Huntington's and Parkinson's
diseases,25,46,92 drugs acting at these receptors may prove very useful in the treatment of
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these disorders. Involvement of A2 receptors in neurodegenerative processes of different
etiology is the subject of current, intensive studies at our laboratory.

Striatum apart, stimulation of adenosine A2 receptors may result in an improved
postischemic survival of neurons in other regions through, e.g., improvement of
postischemic CBF93 or prevention of postischemic inflammatory processes.94 Normalization
of postischemic CBF may be obtained through A2 receptor-mediated vasodilation5,23,95 and
through antithrombotic effects.96,97 Moreover, since stimulation of A2 receptors prevents
activation of neutrophils, it may, through concomitant reduction in free radical release,
diminish the damage to the endothelial lining of cerebral blood vessels.98 Finally,
stimulation of leukocyte A2 receptors decreases their adherence to capillary walls, and
appears to be involved in prevent ing postischemic “plugging” of cerebral capillaries.99

ADENOSINE AND NEUROPROTECTlON: THE PRACTICALS
Effects of Acute Administration

The results of experimental studies of the neuroprotective effects of adenosine, its
analogues, and agents affecting its turnover are the subject of several recent
reviews.3–5,100,101 Most of those studies concentrate on investigations of either forebrain or
global cerebral ischemia, and use survival and/or neuropathology as the measures of
outcome.

Due to their well-known physiological properties and their relevance in treatment of cerebral
ischemia, A1 receptors are the chief subject of the existing experimental work.3,4 Significant
neuroprotection has been reported in virtually all studies of focal (but see Roussel et al,
1991), global, and forebrain ischemia in which A1 receptor agonists have been administered
either shortly before or after the insult, whose duration ranged from 5 to 30 min.3,4

However, since the maximum interval between pretreatment and ischemia was 15 min, and
maximum postischemic delay did not exceed 30 min, the dimension of the therapeutic
window within which acutely administered adenosine agonists are effective is uncertain. It is
known, however, that rapid downregulation of A1 receptors follows even a mild anoxic or
ischemic episode,103,104 and that 14–24 h after ischemia, A1 receptors become
dysfunctional.4 Thus, since the strength of adenosine modulation depends on the density of
A1 receptors,105 the therapeutic window for administration of A1 analogues is probably not
an extensive one.4

The veracity of neuroprotective effects of A1 receptor agonists has been confirmed by
studies in which A1 antagonists have been used.4 Uniformly, administration of antagonists
has resulted in severe exacerbation of mortality,106 and in amplified neuronal destruction.4

Contrary to the effects of A1 receptor agonists, the results following acute administration of
agents active at A2 receptors is virtually unknown. Recently, however, Gao and Phillis107

showed that pretreatment with a weakly selective A2 antagonist CGS 15943 resulted in
protection of the hippocampus against ischemic damage.Our own results (von Lubitz et al.,
in preparation) indicate that A2 antagonists administered prior to 10-min ischemia protect
not only hippocampus but striatum as well.

Presently, only one report describes the effect of acute A3 receptor stimulation on the
outcome offorebrain ischemia,50 The study shows that preischemic administration of a small
dose (100 μg/kg) of a selective A3 agonist, N6 – (3-iodobenzyl)-adenosine-5′-
methylcarboxamide (IB-MECA), results in an extensive hippocampal damage and a very
high mortality (90%) within the initial 24 h after ischemia.
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Despite their neuroprotective efficacy, the acute treatment with adenosine A1 agonists is
accompanied by two major side effects, i.e., hypothermia and hypotension. Since
hypothermia results in a significant reduction of postischemic neuronal damage,107 it is
possible that A1 agonists mediate their neutron-sparing effect chiefly through the depression
of brain temperature. However, both in vitro sutdies108 and studies in which brain
temperature has been carefully maintained106 indicate that the protective effect is preserved
also in the normothermic environment. Moreover, it must be remembered that, in the context
of therapies aimed at stroke and brain ischemia, the comparatively mild hypothermic impact
of A1 receptor agonists may constitute a benefit rather than a hindrance.

Failure of cerebral perfusion pressure after ischemia is among the most critical factors that
influence clinical recovery,109,110 and hypotension and cardiodepression accompanying
administration of A1 agonists constitute potentially serious side effects of A1 receptor-based
therapies. Cardiovascular side effects of A1 receptor agomsts may be countered by
coadministration of peripheral adenosine antagonists. However, von Lubitz and
Marangos111 have showed that, although concomitant postischemic administration of the A1
receptor agonist CHA and the peripheral adenosine antagonist 8-P-sulphophenyladenosine
(8-SPT) in gerbils resulted in a full normalization of CHA-evoked hypotension, the
combined CHA/8-SPT treatment does not improve either survival and neurological
impairment scores beyond those attained with CHA alone.

Effects of Chronic Administration
Among all disorders for which adenosine-based therapies have been envisated, only stroke
offers a target for their acute administration while most, if not all, other central nervous
system (CNS) diseases require chronic, frequently even life-long, exposure. However, very
little is known about the chronic effects of agents acting at adenosine receptors in the
context of neuronal pathologies. The pioneering study of Rudolphi et al.112 showed that
chronic treatment with caffeine—a nonspecific A1/A2 antagonist—resulted in protection
against ischemic damage in gerbils (i.e., the exactly opposite effect to that obtained with
acute administration of another nonspecific antagonist, theophylline),76 Von Lubitz et
al.106,112,113,115 have investigated the consequences of chronic administration of drugs
acting at adenosine receptors further, and have used the highly potent A1 agonist CPA or
antagonist 8-cyclopentyl-1,3-dipropylxanthine (CPX). The work of the latter authors has
confirmed the results of Rudolphi and his colleagues,76,112 and has also showed that while
acute treatment with a selective A1 receptor agonist is highly protectlve, chronic treatment
with the same drug has a profoundly aggravating effect in several measures of postischemic
recovery, i.e., survival, neurological status, and preservation of ischemia-vulnerable brain
regions. Treatment with A1 receptor antagonists, on the other hand, produced a diametrically
opposite effect, I.e., acute administration enhanced, and chronic administration protected
against the damage.106 The same authors also showed that while acute treatment with
adenosine A3 receptor agonist enhanced ischemia-associated damage, chronic treatment was
highly ameliorative,50 Preliminary studies with agents acting at A2 receptors indicate the
same pattern of regimen-dependent reversal. Interestingly, regimen-dependency of the
therapeutic outcome of adenosine-based treatment has been also described in NMDA-
evoked seizures,50,113,116 and in the water maze modd of learning and memory.114

ADENOSINE AND NEUROPROTECTION: THE PUZZLES AND THE
PARADOXICALS

Despite numerous and convincing demonstrations of neuroprotective effects of endogenous
adenosine, and despite highly alluring results of experimental treatment of cerebral ischemia
with agents acting at all three adenosine receptor subtypes, a number of unsolved puzzles
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exists. We have already mentioned the fact that, although critical from the therapeutic point
of view, time limits for efficient administration of acute adenosine therapies in stroke and
cerebral ischemia are unknown. Glial response to the activation of their A1 and A2 receptors
is also very poorly known, although there are indications that both glycogenolysis117 and
astrocytic edema118 may ensue.

Degradation of endogenous adenosine contributes to the generation of highly destructive
free radicals.119 Since administration of free radical scavengers virtually, eliminated
production of superoxide species during and after cerebral ischemia,119 therapies based upon
elevation of endogenous adenosine may be less effective than those employing stimulation
of adenosine receptors with appropriate analogues. Unquestionably, the problem requires a
detailed and urgent examination. Finally, there is virtually no information on the interplay of
individual adenosine receptor subtypes, although there are indications that such interplay
may be critical for neuronal function and survival.50

The paradoxical effects of adenosine receptor-based therapies require further studies as well.
The regimen-dependent nature of the outcome has been already mentioned. Prolonged
stimulation by agonists or blockade by antagonists both in vitro and in vivo produces,
respectively, either down- or upregulation of adenosine receptor density.18,49,120 However,
in some studies, no changes of either receptor density or ligand binding properties (Kd) were
observed during prolonged exposure to selective A1 agonists and antagonists, and to a
nonselective A1/A2 angatonist theophylline in vivo.106,115,116 On the other hand, Fastbom
and Fredholm have showed that prolonged exposure to theophylline upregulates adenosine
receptors, and Shi et al.122 have reported that chronic treatment with caffeine (a nonspecific
A1/A2 antagonist) both upregulates A1 receptors and results in very dramatic density shifts
of some receptor types (e.g., GABA, dopamine, noradrenaline), while having no effect on
others (e.g., NMDA). Finally, chronic caffeine-mediated upreguiation of A1 sites and its
functional consequences were the most likely source of protection against ischemia reported
by Rudolphi et al.112

Although the protective effect of chronically administered A1 antagonists is easily explained
when accompanied by receptor upregulation, the nature of the mechanisms behind
ameliorative actions of a chronic antagonist regimen observed in absence of increased
density of A1 receptors remains entirely obscure. Changes in G-protein-mediated receptor-
efIector coupling have been proposed as a putative answer to the regimen-dependent shifts
seen after chronic exposure to both nonselective and selective agonists and
antagonists106,115,116 Significant alterations in GSα and GIα proteins that were
unaccompanied by a corresponding change in their mRNAs have been seen in rat adipocytes
following chronic treatment with A1 receptor antagonist.123 However, whether similar
phenomena take place in the brain remains to be demonstrated.

The effect of acute stimulation of A1 and A3 receptors offers another paradox. While both
receptors arc negatively coupled to adenylate cyclase (i.e., reduce its levels), acute
preischemic activation of A1 causes extensive neuroprotection. Acute activation of A3
receptors, on the other hand, has an equally extensive but damaging result in cerebral
ischemia,50 although it is protective against NMDA-evoked seizures.51 Moreover, chronic
administration of A3 receptor agonist protects equally well against cerebral ischemia and
against chemically and electrically evoked seizures.50,51

Clearly, there are a number of questions that require additional, extensive studies. On the
other hand, even if several aspects of adenosine action on a living cell, be it a neuron, a
cardiac myocyte, or a nephron are unknown, Newby's “retaliatory metabolite” has already
found its practical application in cardiology. Thus, under the name “Adenocard™,”
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adenosine is now clinically used in treatment of supraventricular tachycardias, and it is not a
premature hope that soon the concept of adenosine-based therapies will also find its
application in treatment of the disorders of the brain.
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