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The understanding of complex systems has become a central issue because such systems exist in a wide range
of scientific disciplines. We here focus on financial markets as an example of a complex system. In particular
we analyze financial data from the S&P 500 stocks in the 19-year period 1992–2010. We propose a definition
of state for a financial market and use it to identify points of drastic change in the correlation structure.
These points are mapped to occurrences of financial crises. We find that a wide variety of characteristic
correlation structure patterns exist in the observation time window, and that these characteristic correlation
structure patterns can be classified into several typical ‘‘market states’’. Using this classification we recognize
transitions between different market states. A similarity measure we develop thus affords means of
understanding changes in states and of recognizing developments not previously seen.

T
ime series are typical experimental results we have about complex systems. In the analysis of such time series,
stationary situations have been extensively studied and correlations have been found to be a very powerful
tool. Yet most natural processes are non-stationary. In particular, in times of crisis, accident or trouble,

stationarity is lost. As examples we may think of financial markets, biological systems, reactors (both chemical
and nuclear) or the weather. In non-stationary situations analysis becomes very difficult and noise is a severe
problem. Following a natural urge to search for order in the system, we endeavor to define states through which
systems pass and in which they remain for short times. Success in this respect would allow to get a better
understanding of the system and might even lead to methods for controlling the system in more efficient ways.
We here concentrate on financial markets because of the easy access we have to good data, because of our previous
experience and last but not least because of the strong non-stationary effects recently seen.

Results
Using a similarity measure we were able to classify several typical market states between which the market jumps
back and forth. Some of these states can easily be identified in this similarity measure. However, there are several
states in which the market only stays for a short period. Thus, these states are sparsely embedded in time. With a k-
means clustering analysis, we were able to identify these states and disclose a detailed dynamics of the market’s
state.

Our findings offer insight for constructing an ‘‘early warning system’’ for financial markets. By providing a
simple instrument to identify similarities to previous states during an upcoming crisis, one can judge the current
situation properly and be prepared to react if the crisis materializes. Certainly, an indication for a crisis is also
given when the correlation structure undergoes rapid changes.

Another possible application of the similarity measure is risk management. Given the similarity measure, the
portfolio manager is aware of periods in which the market behaved completely differently and thus can choose not
to include them in his calculations. He can furthermore identify regions in which the market behaved similarly
and refer to these regions when estimating the correlation matrix.

Our empirical study is a first step towards the identification of states in financial markets which are a prominent
example of complex non-stationary systems.

Discussion
The effort to understand the dynamics in financial markets is attracting scientists from many fields1–8. Statistical
dependencies between stocks are of particular interest, because they play a major role in the estimation of financial
risk9. Since the market itself is subject to continuous change, the statistical dependencies also change in time. This
non-stationary behavior makes an analysis very difficult10,11. Changes in supply and demand can even lead to a
two phase behavior of the market12,13. Here, we use the correlation matrix to identify and classify the market state.
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In particular we ask: How similar is the present market state, com-
pared to previous states? To calculate this similarity we measure
temporal changes in the statistical dependence between stock
returns.

For stationary systems described by a (generally large) number K
of time series, the Pearson correlation coefficient is extremely useful.
It is defined as

Cij:
rirj
� �

{ rih i rj
� �

sisj
: ð1Þ

Here the ri and rj represent the time series of which the averages Æ…æ
are taken over a given time horizon T. si and sj are their respective
standard deviations. When calculating the correlation coefficients of
K stocks, we obtain the K 3 K correlation matrix C, which gives an
insight into the statistical interdependencies of the time series under
study.

It is necessary to consider data over large time horizons T so as to
obtain reliable statistics. This leads to a fundamental problem that
arises in the case of non-stationary systems: To extract useful
information from empirical data we seek a correlation matrix from
very recent data, in order to provide a good description of current
correlation structure. This is because correlations change dynam-
ically due to the non-stationarity of the process, making it very dif-
ficult to estimate them precisely14–17. However, if the length T of the
time series is short, the correlation matrices C are noisy. On the other
hand, to keep the estimation error low, T can be increased, but this
leads to a correlation matrix that generally does not describe the
present state very well. Various noise reduction techniques provide
methods to conquer noise18–22.

In several non-stationary systems, it is possible to obtain a large
number of correlated data over time. Such systems include, but are
not restricted to, financial markets (which show non-stationary
behavior due to crises), biological or medical time series (such as
EEG), chemical and nuclear reactors (non-stationary behavior
includes, in particular, accidents) or weather data. In the follow-
ing, we only consider the financial markets, since we have studied
extensively some very high quality data of this system, the non-
stationary features of which have been quite striking in the last

years. We propose a definition of a state which is appropriate for
such systems and suggest a method of analysis which allows for a
classification of possible behaviors of the system. When T/K , 1,
which is the case we are interested in, the correlation matrix
becomes singular. However, one can still make significant statist-
ical statements, e.g., for the average correlation level whose
estimation error decreases as 1/K. In the following, we focus on
correlation matrices C(t1) and C(t2) at different times t1 and t2

measured over a short time horizon. These have therefore a pro-
nounced random element. We take these objects as the fun-
damental states of our system. We now propose, as a central
element, to introduce the following concept of distance between
two states. We define the similarity measure

f t1, t2ð Þ: Cij t1ð Þ{Cij t2ð Þ
�� ��� �

ij
ð2Þ

to quantify the difference of the correlation structure for two
points in time, where j…j denotes the absolute value and Æ…æij

denotes the average over all components. Note that in this case,
the random component that is unavoidable in the definition of the
states of the system is strongly suppressed by the average over
K2?1 numbers.

To apply the above general statements to a specific example, we
analyze two datasets: (i) we calculate f(t1, t2) based on the daily returns
of those S&P 500 stocks that remained part of the S&P during the 19-
year period 1992–2010, and (ii) we study the four-year period 2007–
2010 in more detail based on intraday data from the NYSE TAQ
database. Since the noise increases for very high-frequency data23–25,
we extract one-hour returns for dataset (ii). For one-hour returns, we
consider this market microstructure noise as reasonably weak.

However, sudden changes in drift and volatility are present on all
time scales. They can result in erroneous correlation estimates. To
address this problem, we employ a local normalization26 of the return
time series in dataset (i). The results of dataset (i) are presented in left
panel of Fig. 1. In this figure, each point is calculated on correlation
matrices over the previous two months. This new representation
gives a complete overview about structural changes of this financial
market of the past 19 years in a single figure. It allows to compare the
similarity of the market states at different times. To make this

Figure 1 | Financial crisis are accompanied by drastic changes in the correlation structure, indicated by blue shaded areas. The market similarity f in the

left panel is based on daily data. The right panel is a more detailed study of the 2007–2010 period, including the ‘‘credit crunch.’’ The area of the right panel

is a magnification of the lower right square in the left panel.
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procedure concrete, consider the following example. Pick a point on
the diagonal of this panel and designate it as ‘‘now’’. From this point
the similarity to previous times can be found on the vertical line
above this point, or the horizontal line to the left of this point.
Light shading denotes similar market states and dark shading
denotes dissimilar states. We can furthermore identify times of fin-
ancial crises with dark shaded areas. This indicates that the correla-
tion structure completely changes during a crisis. There are also
similarities between crises, as between the ‘‘credit crunch’’ that
induced the 2008–2009 financial crisis and the ‘‘market meltdown’’,
the burst of the ‘‘dot-com bubble’’ in 2002. A further example is the
overall rise in correlation level in the beginning of 2007. This event
can be mapped to drastic events on the Shanghai stock exchange27.

Using dataset (ii) we are able to obtain a more detailed insight into
recent market changes, as shown in the right panel of Fig. 1. This area
is represented by the lower right square of the left panel. Using intra-
day data we calculate the correlation matrices on shorter time scales.
We choose a time horizon of one week because it provides insight
into changes in the correlation structure on a much finer time scale.

This enables us to identify a short sub-period within the 2008–2009
crisis (in the beginning of 2009) during which the market tempor-
arily stabilizes before it returns to the crisis state. While the correla-
tion structure during the crisis displays an overall high correlation
level, the correlation structure of the stable period is similar to the
period before the crisis, one of the typical states in a calm period,
which is identified from daily data in dataset (i). This phenomenon
might be related to the market’s reaction to news about the progress
in rescuing the American International Group (A.I.G.)28. The cor-
relation structure of the stable period and the 2008–2009 crisis is
shown in Supplementary Fig. S2 online.

The evolutionary structure presented in Fig. 1 illustrates that the
correlation matrix sometimes maintains its structure for a long time
(bright regions), sometimes changes abruptly (sharp blue stripes),
and sometimes returns to a structure resembling a structure the
market has experienced before (white stripes). This suggests that
the market might move among several typical market states. To
extract such typical market states, we perform a clustering analysis
in the results of dataset (i). From our clustering analysis (see section

Figure 2 | The correlation between different industry branches as well as the intra-branch correlation characterize the different market states (a-h).
The inter-branch correlation is represented by the off-diagonal blocks, and the intra-branch correlation is represented by the blocks on the diagonal.

Legend: E: Energy, M: Materials, I: Industrials, CD: Consumer Discretionary, CS: Consumer Staples, H: Health Care, F: Financials, IT: Information

Technology, C: Communication, U: Utilities. (i) Similarity tree structure of the 8 market states. (j) Illustration of the overall average correlation matrix.
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Methods), we find that there are ‘‘hidden’’ states sparsely embedded
in time, in addition to regimes that dominate the market during a
continuous period and are easily found by eye. The clustering ana-
lysis separates the set of all correlation matrices, which are measured
on short disjoint subintervals of the observation period, into distinct
clusters. The cluster centers then correspond to distinct correlation
structures which we identify as market states. We note that this
definition of market state depends on the length of the full obser-
vation period to some extend. Enlarging the observation period
might join previously distinct clusters, reducing it might further
divide a cluster.

For the clustering analysis, we use disjunct two-month time
windows ending at the respective dates. Because of the window
length, some financial crashes cannot be resolved. Our aim is
rather to identify the evolution of the market, which is, in some
cases, induced by financial crisis. We can confirm in Fig. 2 that the
typical states obtained from the clustering analysis indeed corre-
spond to different characteristic correlation structures. To visualize
the characteristic structures of each state, we calculate its average
correlation matrix and sort the companies according to their
industry branch, as defined by the Global Industry Classification
Standard (GICS)29. In the resulting matrices, the industry branches
correspond to the blocks on the diagonal. The correlation between
two branches are given by the off-diagonal blocks. The results are
illustrated in Fig. 2. We can confirm that the typical states

obtained from the clustering analysis indeed correspond to differ-
ent characteristic correlation structures.

Our analysis also offers insight into market structure dynamics.
Figure 4 shows the temporal behavior of the market state. The market
sometimes remains for a long time in the same state, and sometimes
stays only for a short time. The typical duration depends upon the
state: Some states (e.g., state 1 and state 2) appear in clusters in time
while other states appear more sparsely in time (e.g., state 4). There
seems to exist a global trend on a long time scale, although the market
state is switching back and forth between states.

In Fig. 2, we can see differences between the states in the correla-
tion between branches as well as in the correlation within a branch.
The correlation within the energy, information technology, and util-
ities branches is very strong in all states. State 1 shows an overall weak
correlation, while states 3 and 4 feature in addition a strong correla-
tion of the finance branch to other branches. State 2 shows very
unusual behavior: In the period of the dot-com bubble, many
branches are anti-correlated with one another. In states 5, 6 and 7,
the overall correlation level rises, although certain branches, such as
energy, consumer staples, and utilities, are either strongly or weakly
correlated with other branches. While some distinct characteristics
of states can be easily identified, some states look quite similar by eye.
Their unique properties can be illustrated when subtracting the mar-
ket’s overall correlation structure, as illustrated in Fig. 3. For
example, state 3 and 4 look very similar in Fig. 2. However, Fig. 3

Figure 4 | Temporal evolution of the market state. The horizontal axis represents the observation time and the vertical axis denotes the market state

obtained from top-down clustering. The market state sometimes remains in the same state for a long time, and sometimes only for a short time. It also can

return to a state that it has previously visited. Some states (e.g., state 1 and state 2) appear to cluster in time, while other states appear more sparsely and

intermittently in time (e.g., state 4).

Figure 3 | (a)–(h): Difference of the states’ correlation matrices to the average correlation matrix. The color-scale is identical to Fig. 2.
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unveils that the correlation within the Energy sector (E) is completely
diverse.

We observe that the energy branch (E) is either strongly correlated
to the rest of the market, weakly correlated, or even anti-correlated.
To analyze this behaviour we study the histogram of the correlation
coefficients Cij(t). We present the results in Fig. 5. In the months
leading up to the credit crunch in October 2008, we observe a bimo-
dal structure in the histogram (see also Ref. [30]). It corresponds to
the time period when the Energy branch shows a strong anti-cor-
relation with other branches. The bimodality suggests that a subset of
stocks – in this case, predominantly the Energy stocks – decouples
from the rest of the market. During the crash, the histogram shows a
very narrow distribution around large values of the correlation coef-
ficients, which corresponds to state 8 in Fig. 2, where the branch
structure is lost almost completely in an overall strongly correlated
market.

Methods
Construction of stock returns. Let S be the price of a specific stock andDt the interval
on which the return is calculated. For our study, we chose the arithmetic return,
defined as

r tð Þ: S tzDtð Þ{S tð Þ
S tð Þ : ð3Þ

For dataset (i), we chose Dt to be 1 day and calculate the stock returns of each day. For
dataset (ii), we choseDt as 1 hour. Furthermore, we obtain this 1-hour return for every
minute of a trading day between 10:45 am and 2:45 pm. We obtained the daily data of
dataset (i) from finance.yahoo.com. The intraday data are obtained from the New
York Stock Exchange’s TAQ database.

Local normalization. Sudden changes in drift and volatility can result in erroneous
correlation estimates. To address this problem, we employ a local normalization
method26. For each return r(t) we subtract the local mean and divide by the local
standard deviation,

~r tð Þ: r tð Þ{ r tð Þh inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 tð Þh in{ r tð Þh i2n

q : ð4Þ

The local average Æ…æn runs over the n most recent sampling points. For daily data,
n 5 13 yields nearly normal distributed time series, as discussed in Ref. [26].

Outline of top-down clustering. Our clustering analysis is based on a top-down
scheme: All m correlation matrices are initially regarded as a single cluster and then
divided into sub-clusters by a procedure based on the k-means algorithm31–33. The
process can be described as follows:

1. Choose two initial cluster centers from all matrices. Label all other matrices by the
more similar cluster center in terms of j(L).

(a) Recast two new sub-cluster centers to the ‘‘center of mass’’ of the matrices
in the sub-cluster.

(b) Re-label all matrices to the new sub-cluster center.
(c) Repeat this process until there is no change in labeling.

Figure 5 | Footprint of the state transition in the 2008 crisis by histograms of the correlation coefficients Cij(t). (a) Surface plot for the time period

September 2007 to March 2009. We use a logarithmic scale to show the bimodal structure more clearly. (b) Histograms for September 2008 (black solid

line) and December 2008 (red dashed line).

Figure 6 | The entire tree of the clustering analysis presented here for the
threshold 0: No termination of the division process takes place until all
the correlation matrices are identified as different components. The large

bold numbers represent the market states each of which consists of the

matrices in the sub-trees below. Each right end of the tree corresponds to

each 2-month term (year-term). Terms 1, 2, …, 6 correspond to January to

February, March to April, …, November to December, respectively. The

length of each branch represents the distance from the center of the

subcluster to the center of the original cluster before the last dual division.
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2. Take the best division out of all possible m(m – 1)/2 initial choices, which gives the
least average (j(L))2 to the cluster centers.

We stop this division process when the average distance from each cluster center to
its members becomes smaller than a certain threshold. To identify the typical market
states presented in the manuscript, we chose the threshold at 0.1465 as it represents
(approximately) the best ratio of the distances between clusters and their intrinsic
radius. One can obtain finer structures by choosing smaller threshold values, ulti-
mately until all the matrices are identified as different components. The complete
results of the clustering analysis is illustrated in Fig. 6.

A possible alternative method for obtaining the states may be choosing a certain
number of cluster centers from the beginning. However, of besides being more
computationally intense, we believe that predefining the number of states would be a
significant disadvantage compared to our dynamic approach.

Alternative measure: Difference of largest eigenvalue of correlation matrices. A
similar result can be archived using a different approach. The largest eigenvalue lmax

of the correlation matrix C describes the collective motion of all stocks. We can also
define the similarity measure by the distance of these eigenvalues,

jalt t1,t2ð Þ: lmax C t1ð Þð Þ{lmax C t2ð Þð Þj j: ð5Þ

The advantage of this technique is that the noise in the correlation matrix only
contributes to small eigenvalues (See Refs. [18] and [19]). Thus, by only taking into
account the largest one, we filter out the noise. However, this approach also presumes
that the corresponding eigenvector does not change. Our results indicate that the
largest eigenvalue almost remains constant, but this might not always be the case.
Especially in financial crises. An alternative distance measure which takes into
account the changes in the eigenvectors is considered in Refs. [34, 35]. The obtained
similarity measure is shown in Supplementary Fig. S1 online.
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26. Schäfer, R. & Guhr, T. Local normalization: Uncovering correlations in non-
stationary financial time series. Physica A 389, 3856–3865 (2010).

27. What The Market Is Telling Us. Bloomberg Businessweek (2007). Cover story.
28. A.I.G. Sells $39.3 Billion in Assets to N.Y. Fed’s Fund’. The New York Times

(2008).
29. http://www.standardandpoors.com/indices/gics/en/us. accessed on 16 Aug 2012.
30. Wyart, M. & Bouchaud, J.-P. Self-referential behaviour, overreaction and

conventions in financial markets. Journal of Economic Behavior & Organization
63, 1–24 (2007).

31. MacQueen, J. B. Some methods for classification and analysis of multivariate
observations. In Cam, L. M. L. & Neyman, J. (eds.) Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1, 281–297
(University of California Press, 1967).

32. Faber, V. Clustering and the continuous k-means algorithm. Los Alamos Science
22, 138–144 (1994).

33. Tanaka, N. K., Awasaki, T., Shimada, T. & Ito, K. Integration of chemosensory
pathways in the drosophila second-order olfactory centers. Current biology 14,
449–457 (2004).

34. Reigneron, P.-A., Allez, R. & Bouchaud, J.-P. Principal regression analysis and the
index leverage effect. Physica A 390, 3026–3035 (2011).

35. Allez, R. & Bouchaud, J.-P. Eigenvector dynamics: theory and some applications
Preprint: arXiv:1108.4258. (2011).

Acknowledgments
MCM acknowledges financial support from the Fulbright program and from
Studienstiftung des Deutschen Volkes. TS acknowledges support from the JSPS
Institutional Program for Young Researcher Overseas Visits, Grant-in-Aid for Young
Scientists (B) no. 21740284 MEXT, Japan, and the Aihara Project, the FIRST program from
JSPS, initiated by CSTP. THS acknowledges support from project 79613 of CONACYT,
Mexico. HES thanks the NSF for support.

Author contribution
MCM, TS and RS performed the calculations and analyzed the results. MCM and RS
prepared the figures. All authors designed the research and wrote and reviewed the paper.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
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