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Glioblastoma (grade IV astrocytoma) is the most common primary adult brain tumor.
Although these tumors rarely metastasize, they almost always recur locally. In spite of
intensive treatment regimens consisting of surgery, radiotherapy and temozolomide
chemotherapy, patients with these tumors have poor prognoses with a median survival of
under one year 1,2. A number of factors may contribute to the resistance of these tumors to
therapy. Conventional chemotherapy is limited by a relatively low drug penetration into the
tumor interstitium, due to the need to cross the blood-brain and blood-tumor barriers 3. In
addition, glioblastomas have regions of hypoxia 4,5 that can lead to resistance to both
chemo- and radiotherapy.

Despite the presence of hypoxic regions, one well-recognized hallmark of glioblastomas is
endothelial cell proliferation and robust neovascularization (Figure 1). This is likely due to
the expression of a variety of angiogenic growth factors such as vascular endothelial growth
factor (VEGF). Recent evidence suggests that stem cell-like glioblasts may be a crucial
source of key angiogenic factors and that targeting proangiogenic factors from these
populations may be a viable therapeutic option 6.

Is the reliance of glioblastoma on angiogenesis the Achilles’ heel of this deadly neoplasm?
Recently, this hypothesis has been put to rigorous tests in both pre-clinical and clinical
settings. Xenograft models, where human glioma cells are implanted either ectopically
(subcutaneously) or orthotopically (intracerebrally) into immunocompromised mice or rats,
are particularly suited to assess the effects of anti-angiogenic molecules on tumor vessel
density, overall growth, and survival 7. Numerous studies in animal models have shown that
inhibiting VEGF function using neutralizing antibodies 8, dominant-negative VEGF receptor
mutants 9 and antisense constructs 10 causes overt regression of blood vessels and thus
precludes growth of glioma cells in vivo 11.

Subsequently, a few promising studies have been performed in human patients. For
example, AZD2171, an oral tyrosine kinase inhibitor of the VEGF receptor, has afforded
significant clinical benefits in alleviating edema and normalizing the tumor vasculature 12.
However, in a recent Phase II clinical trial of bevacizumab (anti-VEGF antibody) plus
irinotecan, six-month progression-free survival probability was only 38% 13. Thus, it
appears that advanced glioblastomas do not rely exclusively on VEGF, and that other
pathways involved in angiogenesis must be targeted in parallel.

One such approach would be the use of natural inhibitors of angiogenesis, whose action does
not depend on neutralization of VEGF. One prominent member of this diverse family is
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thrombospondin-1 (Tsp1). This matricellular protein was the first naturally occurring
angiogenic inhibitor discovered 14, and early on its anti-angiogenic effects were shown to
limit tumor growth and metastasis 15. Many oncogenes, such as c-Myc, down-regulate Tsp1
to promote neovascularization 16,17. Anti-angiogenic activity of Tsp1 is mediated primarily
through its interaction with the scavenger receptor CD36 18. This leads to the inhibition of
endothelial cell migration 19 and the induction of p38 MAPK-dependent apoptosis 20. At the
same time, treatment with thrombospondin-1 results in increased expression of Fas ligand on
the surface of endothelial cells, which makes them vulnerable to Fas-mediated apoptosis 21.
Thrombospondin-1 may be a particularly useful therapeutic agent for glioblastoma because
its expression is often absent in these tumors, due to frequent loss of chromosome 10 on
which the THBS1 gene resides. Importantly, when chromosome 10 is re-introduced, human
glioblastoma cell lines switch to non-angiogenic phenotype and thus lose their ability to
form tumors in athymic mice 22.

The use of thrombospondin-1 as a cancer therapeutic has been limited by its very large size
(>450 kDa as a trimer) and the presence of multiple functional domains 23.

However, its anti-angiogenic potential is attributed mostly to the so-called type 1 repeats, or
TSR 24. In early pre-clinical studies, a recombinant protein encompassing all three TSRs
was found to inhibit the growth of experimental B16F10 melanomas, Lewis lung
carcinomas 25 and human pancreatic cancer cells in an orthotopic mouse model 26. Within
TSRs, the anti-angiogenic activity has been mapped mainly to the DGGWSHWSPWSSC
and GVITRIR amino acid sequences 27, allowing the therapeutic use of even shorter
peptides. The two modified peptides from the TSR region strongly suppressed tumor growth
when administered intravenously to mice bearing MDA-MB435 breast carcinomas 28.

In the last few years, Abbott Laboratories has developed and championed the use of another
TSR-based therapeutic peptide, ABT-510, which is derived from the GVITRIR sequence 29.
Treatment with ABT-510 inhibits the growth of murine melanoma metastases in syngeneic
animals and blocks the progression of orthotopic human bladder cell tumors 30. Its potency
is markedly improved when CD36 is upregulated using ligands of peroxisome proliferator-
activated receptor gamma 31 and when combined with metronomic low-dose
chemotherapy 32 or the histone deacetylase inhibitor valproic acid 33. Last but not least,
ABT-510 has proven safe in canine 34 as well as human cancer patients 35. Does it have the
potential to become a drug of choice for glioblastoma?

In this issue of CB&T, Anderson et al describe the effects of ABT-510 on angiogenesis and
tumor growth in mouse models of glioblastoma 36. The authors observe that ABT-510
induces apoptosis of human brain microvascular endothelial cells (MvEc) by a CD36-
dependent, caspase-8 mediated mechanism. It also inhibits tubulogenesis by MvEc
propagated in 3D-collagen gels. More importantly, ABT-150 inhibits growth of human and
murine glioblastoma grafts in orthotopic locations while decreasing microvascular densities.
This work echoes an earlier study where a WSHWSPW-containing peptide was shown to
significantly slow the growth of rat C6 glioma and 9L gliosarcomas 37. While robust
performance in mouse models certainly does not guarantee success in clinical settings, the
authors’ data argue quite compellingly that ABT-510 should be evaluated in glioblastoma
patients.
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Figure 1.
Hematoxyllin/eosin staining of human glioblastoma multiforme. Neoplastic cells stain blue
and surround the area of central necrosis. Numerous microvessels are richly perfused with
red blood cells.
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