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The Influence of Visual Motion on Motor Learning
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How does visual perception shape the way we coordinate movements? Recent studies suggest that the brain organizes movements based
on minimizing reaching errors in the presence of motor and sensory noise. We present an alternative hypothesis in which movement
trajectories also result from acquired knowledge about the geometrical properties of the object that the brain is controlling. To test this
hypothesis, we asked human subjects to control a simulated kinematic linkage by continuous finger motion, a completely novel experi-
ence. This paradigm removed all biases arising from influences of limb dynamics and past experience. Subjects were exposed to two
different types of visual feedback; some saw the entire simulated linkage and others saw only the moving extremity. Consistent with our
hypothesis, subjects learned to move the simulated linkage along geodesic lines corresponding to the geometrical structure of the
observed motion. Thus, optimizing final accuracy is not the unique determinant of trajectory formation.

Introduction

How do we move our arms to reach the things we need? Goal-
directed reaches, predominantly in the transverse plane, are good
candidate movements to study this issue due to their relative
simplicity. Early studies report that we move our hand, typically
displayed as a cursor-like point, in straight lines and with a bell-
shaped velocity profile (Morasso, 1981; Soechting and Lac-
quaniti, 1981; Abend et al., 1982; Flash and Hogan, 1985). This
result has been repeated many times and persists through un-
usual visual distortions (Flanagan and Rao, 1995; Scheidt and
Ghez, 2007), perturbing forces (Lackner and Dizio, 1994; Shadmehr
and Mussa-Ivaldi, 1994), and experimentally imposed reaching
strategies (Mazzoni and Krakauer, 2006; Taylor etal., 2010). It seems
hard to refute the statement by Flanagan and Rao (1995) that “reach-
ing movements are adapted so as to produce straight lines in visually
perceived space.” An emerging trend is to consider this empirical
observation to be a result of a particular type of optimal controller
(Unoetal., 1989; Wolpert et al., 1995; Dingwell et al., 2004). Accord-
ing to this view, the brain is not concerned about the trajectory of a
movement, but instead, only about reaching a final goal in the most
efficient way. This could be done, for example, by minimizing the
effect of motor noise on the final accuracy of a reaching movement
(Todorov and Jordan, 2002).

We hypothesize that, when we execute movements of a con-
trolled endpoint, we explicitly plan a trajectory, which would require
an expansion of some common optimal control-based descriptions
of movement beyond cost functions based on final errors. Further-
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more, we propose that the planned trajectory is based on the avail-
able information about the geometry of the entire system, not just
the endpoint. Therefore, the resulting movements need not neces-
sarily be straight-line trajectories as previously thought. Instead, they
may be curved paths corresponding to minimum length segments
within the inherent geometry of the system.

To test this hypothesis, subjects remotely controlled objects of
different shape presented on a computer screen via movements of
their fingers. The finger-to-object mapping was novel, eliminat-
ing experience confounds associated with reaching. Subjects who
controlled a planar arm-like linkage, but were only shown a cur-
sor at its endpoint, attempted to move in straight lines. Subjects
who were shown the complete linkage moved in curved arcs of
the endpoint rather than straight paths. Moreover, these arcs are
consistent with the geometrical structure of the linkage, suggest-
ing that the nervous system develops an implicit understanding
of the linkage geometry that causes these particular trajectories.

Our results may explain observed movement curvatures (At-
keson and Hollerbach, 1985), as well as extend computational
work suggesting that “[trajectory] geodesics are an emergent
property of the motor system” (Biess et al., 2007). Moreover,
subject trajectories cannot be accounted for by task demands or
error feedback alone, suggesting an adjustment must be made to
the standard formulation of optimal control theory. Together,
our experiments demonstrate that the machinery of visual per-
ception is capable of identifying the geometry of the controlled
device from visual observation of its motion and adapts to pro-
duce maximally efficient movements in that geometry.

Materials and Methods

Experiment design. Fifty-nine subjects (27 females; 32 males) consented
to participate in this experiment, which was approved by Northwestern
University’s Institutional Review Board. Subjects wore a CyberGlove
(Immersion Corporation) on their hand that captured the movements of
each finger joint, palm arch, thumb rotation, and separation between
fingers via 19 resistive sensors. Data from the glove were sampled at a rate
of 50 Hz (Simulink). Only adult subjects whose hands fit comfortably
(and without noticeable slip) inside the CyberGlove, did not have hand
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tremors, had no history of neurological disorders, and had no prior
knowledge of the experimental procedure were allowed to participate.

All groups of subjects used finger manipulation to execute movements
of a remotely controlled endpoint on a computer monitor directly in
front of them (see Fig. 1, panel 2). The posture of the hand was repre-
sented as a vector in the 19-dimensional space of glove sensors, h. The h
vector was continuously projected from hand space to a two-
dimensional command plane by the 2 X 19 linear mapping, A (see Fig. 1,
panel 1). The location on the command plane, u# and w (Eq. 1), either
directly determined the Cartesian coordinates of the controlled endpoint
(Experiment IIT) or it was the joint angle inputs (Experiments I and II)
that defined the configuration of a two-link simulated planar linkage via
the forward kinematics, ¢ (Egs. 2, 3):
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where § = [1},1,,%,,y,]" is a constant parameter vector that includes the
link lengths and the origin of the proximal (shoulder) joint.

We used this paradigm for greater experimental control and to elimi-
nate confounds. To determine whether trajectory planning is influenced
by the perception of geometry of the moving object, we required the
ability to control the subject’s perception of that geometry. Therefore, we
avoided common reaching movement paradigms that carry the heavy
confounds of past experience. Everyone who can make reaches has done
so millions of times throughout their lives and has acquired so much
information about their arms that any experimental condition that at-
tempts to alter their knowledge of the geometry of their arm would be in
alosing battle with that enormous database. This finger—object interface
is a novel scheme that should have carried minimal control bias for the
subjects. The specific choice to use the cursor-like object (Eq. 2, direct)
was for comparison with the reaching paradigms currently in use that
display the hand as a point on a monitor during movement. The possible
choices for the second object were vast, virtually infinite, since in princi-
ple it could have had any kinematic structure. To have well defined
curvilinear geodesics, the controlled kinematics needed to be smoothly
nonlinear. Another practical constraint was that the object be sufficiently
simple, so that the brain could develop a model of its kinematics within
the time span of the experimental protocol. We therefore chose the two-
linkage object (Eq. 2, joint angle) because our previous work had shown
that it was a transformation that was learnable within 10 training blocks.

Subjects were divided into three experiments and two conditions
per experiment: subjects received either complete vision of the simu-
lated linkage (CV) or minimal vision of the linkage endpoint only
(MV). In Experiment I, the CV group (n = 16) had joint angle control
and saw a line rendering of the mechanism attached to the circular
controlled endpoint. The MV group (n = 16) had joint angle control
and saw only the controlled endpoint (a 17th MV subject was ex-
cluded from all analysis because no improvement was shown
throughout training). Both groups trained on four targets presented
at the vertices of a rectangle (see Fig. 1, panel 4).

Subjects in Experiment II were likewise divided into CV (n = 5) and
MV (n = 5) groups. They performed the same protocol as those in
Experiment I with the exception that the four targets on which they
trained were in different locations in the workspace (see Fig. 1, panel 5).
These targets were chosen so as to increase the separation between joint
angle geodesics (curved dashed lines) and straight paths joining the tar-
gets. The target layout was created via genetic algorithm whose fitness
function was the mean Hausdorff distance (see below, Geodesic similar-
ity measure) of the six path pairs joining all targets.

.
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In Experiment III, the MV group (n = 8) had direct control and saw
only the controlled endpoint. The CV group (n = 8) had direct control
and saw the same rendering as the CV groups from Experiments I and IT
that was determined through the inverse kinematics, { ~' (Eq. 4) (Spong
etal., 2006). Here, 0, and 6, are the “elbow” and “shoulder” joint angles
of the mechanism (which for the CV group in Experiments I and II were
simply u and w, respectively):
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The command plane for direct control groups allowed movement
over a (theoretically) infinite x—y space on the monitor, while the joint
angle control groups were limited to the range of motion of the sim-
ulated linkage. To enforce consistent visual feedback across experi-
ments, and to prevent imaginary solutions to the inverse kinematics
in Equation 4, boundaries were placed on the direct control groups. If
the controlled endpoint passed beyond the reach of the kinematics
(Eq. 3), its location would be projected back onto a circle defined by
the maximum reach of the linkage. The location of the projection on
the circle was calculated as the intersection of the circle with the line
connecting the linkage shoulder location, [x,,y,]”, and the location
[u,w]”. This looked like a hard boundary to MV groups across all
experiments at the limit of the reach of the mechanism, and ensured
that feedback remained parsimonious for the CV group in Experi-
ment III (see Fig. 1, panel 6).

The mapping matrix, A, was created by having the subject generate
four preset hand gestures. These were identical for all subjects and were a
flat spread open posture, a pistol-like posture, a slightly curled posture of
the fingers as though one were unscrewing a cap and a lightly clenched
fist with the thumb curled behind the middle phalanges (see Fig. 1, panel
3). The mapping matrix was then calculated as follows: A = 6-H™,
where 6 is a 2 X 4 matrix of either angle pairs at the extreama of the
linkage workspace or corners of the x, y workspace, depending on the
group. H ™ is the Moore—Penrose pseudoinverse of H, the 19 X 4 matrix
whose columns are signal vectors corresponding to the calibration pos-
tures. As a result of this redundant geometry, the controlled endpoint
could reach all points on the rectangular workspace with many anatom-
ically feasible gestures for both direct and joint angle control groups. The
initial calibration postures were chosen empirically such that all points in
a large convex workspace were reachable. During calibration, subjects
did not see the linkage or the endpoint and thus had no information
about the correspondence between hand postures and the endpoint po-
sitions (Danziger et al., 2009).

Protocol. Subjects moved the controlled endpoint to four different
targets (whose locations differed by experiment) that appeared on the
screen. Reaching error, the Euclidean distance from the moving endpoint
location to target center, was calculated 800 ms after movement onset, at
which point the target changed color. Subjects were instructed to mini-
mize this error by positioning the endpoint as close as possible to the
target before it changed color. The next trial was initiated only after the
subject acquired the target and remained inside for 2 s. Once a new target
appeared, the subject had unlimited time to plan the movement, and the
countdown to endpoint error initiated only after the subject left the
previous target.

For all six experimental groups, the four targets were presented in
pseudorandom order such that each of the six paths connecting the tar-
gets was traversed heading in each direction two times for a total of 24
movements per epoch. Subjects performed 12 epochs, after each of which
they were allowed to rest if they desired.



Danziger and Mussa-Ivaldi e The Influence of Visual Motion on Motor Learning

During the final two epochs, visual feedback of the linkage was sup-
pressed for all CV groups such that the CV and MV groups terminated
the experiment in the same feedback condition, that is, seeing only the
controlled endpoint. This change is marked by vertical dashed lines on
appropriate figures.

Statistics. Significance tests on populations were done using repeated-
measures ANOVA (NCSS and PASS 97 software) unless otherwise specified.
The points on line graphs were plotted as the mean values for each subject,
averaged across subjects. All statistical tests other than the ANOVA tests
were performed using the MATLAB statistics toolbox, version 7.8.0.347
(R2009a). Confidence intervals were calculated using Student’s ¢ statistic
over subject averages. Power analysis of the error metrics in Figures 2 and 10
was calculated post hoc by estimating the effect size, 0.66, from data collected
in the study by Danziger et al. (2009), a task very similar to Experiment I in
this paper, and only from the first 10 epochs of training to match the amount
of training subjects had in this experiment (GPower 3.1).

Rectilinearity was measured by the aspect ratio, the maximum lateral
deviation from a straight line joining the start and end of the movement
divided by the length of that line. Only a completely collinear set of points
has an aspect ratio of zero, and a perfect semicircle is one example of a set
of points having an aspect ratio of 0.5.

If a hand posture can be represented as a 19-dimensional vector (the
position along each dimension defined by a glove sensor value), then typi-
callya 19 X 19 covariance matrix would be required to present the variability
of hand postures in the 19-dimensional vector space. We distill this matrix
down to a scalar to show the data trends in a manageable way as follows:

1 4 1 N
ot = 2 2P ERO)!. (6)
4k=1Nk'=1

For each target, k (k = 1, ..., 4), there are N, movements, and each
movement, i, terminates with a 19-dimensinal hand configuration vector
h{P. From each configuration vector, we subtract the expected value at
target k, E(h (k)), calculated as the mean of all h-vectors at the moment
that the subjects hit target. The L,-norm of this difference is then taken
and summed over all such movements. This is done separately for each
target (because of their different expected values) and then averaged
across targets. Between-group and within-group differences were de-
tected using repeated-measures ANOVA.

The geodesic similarity measure was calculated as the proportion of a
subject’s distinguishable movements closer to the joint angle geodesic
than to the screen geodesic at the end of training (epochs 9 and 10; Eq.
10). The Lilliefors normality test fails to reject the null hypothesis for
both the CV and MV subject distributions in Experiment I at p = 0.22
and p = 0.32, respectively. Therefore, a two-sample ¢ test was used and
rejects the null hypothesis that the MV and CV subject data were drawn
from the same distribution at p < 0.005.

Likewise, in Experiment II, the Lilliefors test fails to reject the null for
CV and MV subject distributions at p > 0.5 for both. A two-sample ¢ test
rejects the null that MV and CV subject data were drawn from the same
distribution p = 0.046.

For Experiment I1I data, the Lilliefors test rejected that the MV group
was drawn from a normal distribution (p = 0.02). Therefore, the Mann—
Whitney—Wilcoxon test was used and rejected that MV and CV groups
had the same distribution (p = 0.049). One MV subject was >2 SDs
above the mean in geodesic similarity measure, errors, and times, and
was therefore excluded from the statistics.

Geodesic similarity measure. The similarity between two trajectories
was measured with the Hausdorff distance between the two sets of sam-
pled x—y endpoint pairs comprising the trajectories. The directed Haus-
dorff distance from set P to Q is defined as follows:

¢u(P,Q) = max min([p — g} - (7)
PEP L qEQ

The Hausdorff distance is then the following:

d)(P>Q) = max{‘Pd(P>Q))(Pd(Q)P)}~ (8)
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The Hausdorff distance is zero if and only if the two sets are identical and
generally becomes more positive as the sets become more different.

An actual trajectory ( T) was determined to be more similar to one of
two geodesics: either it was more similar to (1) the straight-line path on
the screen from the beginning and ending points of the movement (G,),
or (2) the trajectory of the controlled endpoint on the screen resulting in
ageodesic in the configuration space of the simulated linkage (G,). (Note
that the starting and ending points on the torus were taken to be simply
the initial and final values on the command plane, [u,w] T for the joint
angle control groups. However, the direct endpoint control groups did
not control joint angles, and so the position in the configuration space
was calculated via the angle pairs resulting from the inverse kinematics.)
A trajectory was determined to be more similar to G, than G, if
O(T,G,) < O(T,G,), and more similar to G, otherwise.

There are some cases in which deciding whether T'is more similar to one
geodesic than another would be either unsubstantiated or meaningless. Spe-
cifically, there are cases in which G, and G, are themselves so similar that
declaring that T'is closer to one than another is meaningless (see Fig. 8, top
right). In cases like these, G, is approximately equivalent to a straight-line
anyway; therefore, even if we were to force a similarity decision, it would not
enhance the ability of the geodesic similarity metric to discern which types of
trajectories a subject was making most frequently.

Another difficulty arises when, rather than T being too similar to G,
and G, it is too dissimilar. Due to the difficulty of this learning task,
many trajectories were spatially noisy and had such large errors that T'
resembled neither G, nor G, (see Fig. 8, bottom right). Deciding such a
movement was similar to either geodesic seemed to be not only arbitrary,
but to actually be wrong, a misclassification.

Therefore, we were left with three determinations or “classes”; either T
was more similar to the Euclidean straight-path geodesic, G,, more sim-
ilar to the joint angle configuration space geodesic, G, or of equivalent
similarity (or dissimilarity) to both, E (called indistinguishable in the
text). We assign a class, C, to each of the 7 trajectories from the set of our
three possible classes, C; € {G,,G,,E}. We designate C; as class E when

|®(T,G,) — O(T,G,)| < &+ P(G,,G,). (9)

If T'is similar to one geodesic and different from the other, the left-hand
side of Equation 9 will be large, and the likelihood of an E classification
being made will be smaller. However, if the geodesics are very similar to
each other, the left-hand side of Equation 9 will be small, even if T is
identical with G, or G,. To account for this, we include the Hausdorff
distance between the two geodesics on the right-hand side of Equation 9,
which will be smaller when the two geodesics are more similar, and thus
the likelihood of an E classification will decrease. € is a scalar that deter-
mines the burden of distinguishability between T and the geodesics; a
larger value of € implies that T must be decisively more similar to one
geodesic than the other. Considering our entire dataset of trajectories
from Experiment I, the number of G, or G, classifications is linear with
the magnitude of & (r* = 0.93), such that when & = 0, 100% of trajecto-
ries are thus classified, and when & = 1, 0.07% are.

To summarize the entire classification process, we have the following:

®(T,G,) < ®(T,G.) AND NOT
(|<I)(T)Ga) - q)(T>Gs)‘ <e: (I)(Gs)Ga))’ Gll

c,={ ®(T,G,) > ®(T,G,) AND NOT (10)
(‘(I)(T;Ga) - (I)(TaGs)| <e- (I)(Gs)Ga))) Gs
otherwise, E
Results
Experiment I

Proficiency with explicit task goals

Thirty-two healthy adult subjects without history of neural or
motor deficits participated in this learning task. Subjects wore an
instrumented glove that recorded 19 joint angles throughout
their hand. These signals were continuously mapped into two
command variables, which were used as the joint angles of a
remotely operated two-link planar kinematic chain—a simpli-
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Experiment | |

Experiment Il

Experiment Il

I joint angle control

cv MV O

1 direct endpoint control

Figure 1.

Experiment design. (1) Subjects wore an instrumented data glove that captured the angles of 19 joints on their hand and fingers. These joint angles were collected into a vector, h(t),

that varied through time as subjects moved their fingers. () was continuously multiplied by the linear operator, A, to produce the command vector [u,w] T The command vector was then treated
as the joint angles of a simulated planar two-link mechanism to determine the position of the linkage free moving endpoint (Experiments | and I1), or the command vector directly determined the
endpoint position (Experiment Ill). (2) The experimental setup—the subject’s hand was completely decoupled from the simulated object it controlled. (3) The four calibration postures for
participantsin all experiments. (4) In Experiment |, subjects controlled the joint angles of the simulated mechanism and were divided into two groups. One group had complete vision of the simulated
linkage (CV) and the other had only minimal vision of the linkage endpoint (MV). Both the CV and MV groups used finger manipulations to move the linkage endpoint into targets presented at
vertices of a rectangle. In panels 4 — 6, the command vector elements are shown in gray and what subjects actually saw is shown in black. (5) Experiment Il followed the protocol of Experiment |, but
used anirregular target set designed to increase the separation between straight-line paths joining targets over the screen and straight-line paths jointing the targets over the torus (for explanation,
see Fig. 4). (6) Experiment Il followed the protocol of Experiment I, but implemented direct endpoint control, bypassing the kinematics of the linkage. The linkage displayed to the CV group in
Experiment Il was determined via the inverse kinematics (Eq. 4) and had no contribution to the movement of the controlled endpoint.

fied arm model— displayed to them on a computer screen (Egs.
1-3; Fig. 1, panels 1, 2) (Danziger et al., 2009).

Subjects were asked to shape their fingers so as to position the
endpoint cursor into displayed targets within 800 ms and hold it
there for 2 s. The four targets were presented in pseudorandom
order such that each of the six paths connecting the targets was
traversed heading in each direction two times for a total of 24
movements per epoch (Fig. 1, panel 4, bottom). After each train-
ing epoch, subjects were allowed to rest if needed. To prevent
reaction time effects, subjects were allowed unlimited planning
time before moving. Finally, subjects were divided into two
groups, those with complete vision of the entire simulated kine-
maticlinkage (CV, n = 16) and those with minimum vision of the
linkage extremity only (MV, n = 16). But we stress that both CV
and MV groups controlled the identical system, and only differed
in the visual feedback presented of that system.

The subjects’ task was to minimize endpoint error, the
distance from the endpoint of the linkage to the center of the
target 800 ms after movement onset (Fig. 2, left). The time-to-
completion metric (Fig. 2, right) measures the entire movement

s
IS
3

©
w
]

®
w
S

~
N~
&

N
S

«
&

>

Average Movement Times (sec)
3

Average Endpoint Error (cm)
o

w
«

~

o
~

4 6 8 10 12 0 2 4 6 8 10 12
Epoch Number Epoch Number

Figure 2.  Performance evaluation metrics for Experiment I. Subjects were instructed to
move quickly and accurately to displayed targets. Average endpoint error (left) is the distance of
the endpoint to the target center after 800 ms (see Materials and Methods). Errors were mea-
sured as on-screen distances in centimeters, and targets had a 2 cm radius. Average movement
time (right) is the mean total time taken to reach a target in a given epoch. Results indicate
commensurate execution of the explicit task goals for the CV and MV groups. This result is
mirrored by the CV and MV groups from Experiments Il and IIl (Fig. 10). The vertical dashed line
denotes when the feedback of the simulated linkage was discontinued for the CV group, which
resulted in a significant increase in errors and movement times. All error bars are 95% confi-
dence intervals.
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time: the initial 800 ms phase plus any additional time taken
during the corrective movements needed to acquire the target.
Subjects were able to occasionally reach and hold position in the
target in 800 ms or less (this happened 4.8% of the time in epochs
1 and 2 and 27.4% of the time by the end of training in epochs 9
and 10), but all subjects were required to hold position in the
target for 2 s for a hit to register.

Neither endpoint errors nor the time taken to acquire the
targets indicates that being exposed to less visual information
about the underlying system has an effect on the rate at which
subjects improve performance. A repeated-measures ANOVA
finds the effect of feedback on error and times to be insignificant
(p = 0.88, F(; 351) = 0.02, and p = 0.73, F; 351, = 0.12, respec-
tively) with overall group means differing by very small margins,
4.69 — 4.64 cm = 0.05 cm in error and 10.68 — 10.27 s = 0.41 s
in movement times (for MV-CV). Post hoc power analysis based
on effect size from a similar study in which between-group dif-
ferences were observed estimates our power at 99% for N = 32
(Danziger et al., 2009). As expected, the ANOVA confirms that
the effect of training is significant for both measures (p < 10 >
F(1.11y > 50) and that the interaction effect between training and
feedback is not significant for errors (p = 0.35; F(; 34, = 1.1) and
times (p = 0.93; F(, 55,y = 0.45).

After 10 training epochs, visual feedback of the linkage was
suppressed for the CV group, and both the CV and MV groups
performed the experiment under identical conditions for epochs
11 and 12. Two-sample t tests show that the feedback change
between epochs 10 and 11 induced a significant adverse change in
endpoint error (p = 0.041) and in time to completion (p =
0.037) in the CV group, whereas no significant difference was
seen in the MV group between epochs 10 and 11 (p = 0.651,
error, and p = 0.277, time to completion). This suggests that CV
subjects integrated the supplemental visual feedback, the entire
graphical structure of the simulated linkage, into the develop-
ment of their learning strategy during training because its ab-
sence negatively affected performance.

As a consequence of engaging in a completely novel and very
unusual task, subjects struggled to make accurate movements
and acquire targets. This effect is particularly pronounced in the
early stages of training in which errors averaged 9 cmonan 11 cm
workspace and trial times could be over 1 min for a single target.
This result is not unexpected, and in fact, it is welcome because it
shows that this paradigm succeeds in implementing a system
whose geometry is initially foreign to subjects. Even at the end of
this learning task, subjects were not landing inside the targets on
every attempt, and large on-line corrections during these move-
ments made some of these trajectories nonsmooth.

Effects of visual feedback on endpoint trajectories

Evidence has been presented that reaching movements and other
similar motor tasks are planned in a visually perceived coordinate
system (Hogan, 1984; Flash and Hogan, 1985; Wolpert et al.,
1995) and that subjects attempt to execute straight trajectories in
that visual reference frame (Morasso, 1981; Flanagan and Rao,
1995; Mosier et al., 2005). Figure 3 shows the aspect ratio, a
measure of straightness, in both the CV and MV groups. We
found that, with practice, both groups executed increasingly
straighter movements of the cursor. A repeated-measures
ANOVA confirms that the decrease in aspect ratio over training is
significant for both groups (p < 10 % F(; ;;, = 6.14). The anal-
ysis also revealed a persistent and significant difference of aspect
ratio between CV and MV groups (p = 0.005; F; 35, = 9.11),
meaning that MV subjects executed straighter movement trajec-
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Figure3. Trajectory straightness for Experiment |. Endpoint trajectories in visually perceived
space were significantly more rectilinear for the MV group than for the CV group. The aspect
ratio is used to measure the Euclidean straightness of the endpoint trajectory and is the maxi-
mum lateral deviation divided by the straight line path length joining the start and end of the
movement. A zero aspect ratio is a perfectly straight line trajectory of the endpoint. The vertical
dashed line indicates where the feedback of the simulated arm was suppressed for the CV group.
Allerror bars are 95% confidence intervals.

tories than CV subjects. This finding presents the possibility that
either the MV group was able to learn the mapping more effec-
tively, and thus make straighter movements than the CV group,
or that the CV group developed a distinct strategy from the MV
group, one whose goal was not to produce straight-line trajecto-
ries of the endpoint. The strong initial decrease in the aspect ratio
in both groups reflects subjects’ learning; the task was initially
novel and difficult, and as both groups improved they produced
smoother trajectories, which are being picked up by this measure
as straighter movements. The convergence of the CV group to a
higher aspect ratio at the end of training and the consistently
higher aspect ratio throughout training suggest the possibility of
a meaningful difference in trajectory shape between groups.

We considered the possibility that CV subjects controlled the
motion of the simulated linkage so as to follow paths that were
consistent with the observed linkage geometry. The intrinsic ge-
ometry of a double pendulum has the structure of a two-
dimensional torus (Fig. 4). Paths of locally minimum length (i.e.,
arcs on a torus, circle segments on a sphere, or straight lines on a
plane) are termed “geodesics” of their respective surfaces. The
shortest line joining two points on the torus defined by the two-
joint linkage maps into a curved line on the plane in which the
linkage endpoint moves. Therefore, we considered the hypothesis
that by observing the motions of the simulated linkage while
practicing to make reaching movements, the subjects formed an
implicit representation of the geometric structure of the linkage.

To test this hypothesis, we compared the endpoint trajectories
during the initial 800 ms movement phase to both a straight line
and the endpoint trajectory that would have resulted if the move-
ment followed a geodesic path in the joint angle space of the
simulated kinematic linkage. Figure 5, top four rows, contains
selected examples from the CV and MV subject groups that illus-
trate the behavioral differences we want to highlight. CV subjects
followed paths of the endpoint that correspond to minimum
length excursions of the simulated linkage joint angles, namely
joint space geodesics, and MV subjects attempted to move the
controlled endpoint along straight lines on the screen more often
than CV subjects.

Two of these movements are shown over the joint angle torus
of the simulated kinematic linkage (Fig. 6) as illustrative exam-
ples. It is apparent that straight-line movements of the endpoint
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Figure 4.
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The endpoint of a two-joint planar linkage is completely represented by a point on the surface of a torus that spans the joint angle space of the linkage, embedded isometrically in a

three-dimensional Euclidean space. Artificial endpoint trajectories i-vi (right) are mapped onto the configuration space of the two-link revolute-joint kinematic chain (left). The light gray mesh
forms orthogonal geodesics (minimum pathlength excursions) spanning the torus. A shows a trajectory corresponding to a fixed “shoulder” angle and a linear excursion of the “elbow” angle (i), an
outstretched flexing movement, and a trajectory of fixed “elbow” angle with a linear excursion of the “shoulder” angle (ii). B shows iii and iv, two trajectories with the same start and end location,
iii with a zero curvature movement of the linkage endpoint and iv with a linear excursion of both shoulder and elbow angle. It is shown that linear joint angle excursions (i, ii, iv) follow geodesics on
the torus and curved endpoint trajectories, while straight endpoint trajectories (iii) do not generally follow geodesics on the torus. € shows a case in which a zero curvature movement of the endpoint
(v) corresponds to a geodesic on the torus (vi). This is true for all straight-line endpoint movements projecting radially outward from the fixed base of the linkage.

on the screen (Fig. 6C), executed by MV subjects more often than
CV subjects, result in large deviations from geodesics on the torus
(Fig. 6 D). It can also be seen that typical curved CV movements
(Fig. 6A) correspond well to geodesics over the torus (Fig. 6 B).

Figure 7, leftmost bars, confirms that, at the end of training,
CV and MV groups created categorically different types of end-
point trajectories. The geodesic similarity measure represents the
ratio of distinguishable trajectories made by subjects that are
“more similar” to geodesics over the torus than the straight-line
paths (Euclidean geodesics of the planar screen). A higher value
indicates more trajectories corresponding to the torus. CV sub-
jects executed significantly more endpoint trajectories that were
more similar to geodesics over the torus than to straight lines on
the monitor (p < 0.001).

Because of the difficulty of the task (Fig. 2), subjects in both
groups were often unable to precisely control the endpoint. This
resulted in movements that were noisy (or included large correc-
tions) and so dissimilar to either geodesic that it rendered a
choice between them arbitrary (Fig. 8, right bottom). Addition-
ally, the geodesic pairs corresponding to some movements made
by subjects were so close to one another that a distinction be-
tween the two was meaningless (Fig. 8, right top). Therefore,
trajectories that were equally similar or dissimilar to the geode-
sics, ~50% when using & = 0.5, did not impact the geodesic
similarity score (Egs. 9, 10; see Materials and Methods). These
trajectories are termed indistinguishable movements. It should
be noted that & was chosen heuristically by matching as closely as
possible the algorithm results to the similarity judgments made
by the authors (blinded to the feedback groups). However, be-
cause of the large sample size in Experiment I, statistical tests
retained significance at the o = 0.05 level for values of & as low as
0.02 (classifying only 2% of movements as indistinguishable).

Figure 8 demonstrates that the fraction of movements made
by subjects that were indistinguishable as either geodesic in-
creased with error. In other words, as subjects learned the task
and were able to more accurately move the endpoint to the loca-
tion they were aiming for, they more often moved along geodesic
trajectories. This suggests that the reason many trajectories are
not distinguishable as being similar to their corresponding geo-
desic is that subjects find the task difficult and produce errors, not
that subjects deliberately move along nongeodesic paths. Thus,
the fact that noisy movements do not impact the geodesic simi-
larity measure reflects the fact that they represent, in general,
either poor movement execution or simply geodesics that are

very similar to each other. The relationship between error and
geodesic distinguishability can be clearly seen in the bar plot as
the distinguishability decreases steadily from 0 to 3 cm of error.
There were too few movements made (dashed line shows the
number of samples in each bar; right axis) with >3 cm of error to
have a good approximation of the true fraction of distinguishable
movements, and the trend is lost in the noise. Unlike traditional
upper-arm reaching experiments that produce smooth and well
controlled movements, the deliberately unfamiliar and challeng-
ing control problem that subjects faced here caused these aber-
rant trajectories.

The difference in aspect ratio and the distribution of trajectory
shapes appears to reflect a relevant distinction in motor behavior
between CV and MV groups, one that became more pronounced
as training progressed. At the start of training, the geodesic sim-
ilarity scores were indistinguishable for CV and MV groups (p =
0.23), but by the final training epochs, the group behaviors were
distinct (p < 0.001); the trend is shown in Figure 7, right top
panel. A matched-pairs ¢ test comparing the difference between
initial and final epochs also finds differences in the group behav-
ior (p = 0.018). This suggests that the difference in behavior is a
function of motor learning. It is evidence against the hypothesis
that both groups were attempting to produce straight lines of the
endpoint and that the MV group was simply more adept at this.
Instead, it favors the hypothesis that the groups are implementing
distinct strategies.

Hand posture variability
The 19 dimensions of control available in the subjects’ hand op-
erated the endpoint on the screen, which was described com-
pletely with only two variables (x and y coordinates). This
dimensionality reduction defines a null space of 19 — 2 = 17
dimensions, where different hand postures correspond to the
same position of the controlled cursor. This gap of dimensional-
ity implies that there are potentially infinite hand postures that
map the endpoint directly onto each target. Since all signals are
digitally sampled, the number of equivalent postures is finite but
may be quite large. Yet, from this vast set of postures, limited only
by the physiology of the hand, subjects chose only a small subset.
Our results indicate that variability in subjects’ chosen pos-
tures (those used to reach targets) decreased as training pro-
ceeded (p < 10 ~?) for both experimental groups (Fig. 9). There is
a strong trend in the data that suggests that the MV group per-
formed this task with lower final posture variability than the CV



Danziger and Mussa-Ivaldi e The Influence of Visual Motion on Motor Learning J. Neurosci., July 18,2012 - 32(29):9859-9869 * 9865

= P = , *\‘ - - = gy x \\
’ - g N h N e 7 - VN
// 7 N N\ o= __ _ - _ a, 4 - s N
pa N \ - — e 7 - \ \
/ - N -
Ve N \ / - \ A
= I/ ’ ~ o) o v
O | )-"0.73 )-0.25 N G [)-o2e ) -0.37 ) - 0.20 )\
<= |I-1.90 | -1.09 Mo|l-o052 |- 157 | -0.45 2
2 [D-1.89 D-o0.87 D -0.43 D -1.40 D-0.34
S |# - sl7-el2 # - s15-e5 # - s19-el10 # - s8-e5 # - s29-e10 &
a 7! & == . A 3 - i
E / | A N N N 7 - —_ Py w,
o RS TR Mg, - | N\ & — < N
U g = ————— = / N ~
(| = b SS \\
AN
\ ~
— b1 > \ S
[ )-om ) - 0.16 ) - 0.48 N ) - 0.13 ) - 0.29 =
o 1 N )
= l-0.25 |- 053 T [-1.21 d|l-033 I-186
S D - 0.26 D - 0.43 D - 1.01 “|D-o0.36 D-173
o L |#-s23-e0 # - s2-e7 ® # - s6-e7 # - s31-e10 # - 529-10
(o)}
£ r » &~~~ _
g — - —cwe s N\ . L
£ - == _ s / e-==-__=-z 2N
- < = e - - - ! \ N b
7 . — am e I
8 "R 7z - | AN \
U N \
> |[)-084 ) - 0.58 ) -1.27 | )-2.84 S ) - 0.20
= \ \i
= [l-0.3 l-0.21 | -0.72 I [ -1.29 | -0.12
S |D-o.s57 D - 0.50 D - 0.55 ) D - 1.59 D-0.13
g’ # - s30-e10 # - s7-e3 # - s3-ell # - s9-e4 # - s24-e5
= s >3 N T~ o /i\ ., joint-angle or
= ' \ S Mg _ RN “0 = screen geodesic
= N \ ki N o\ _ _ T~ I \ - actual movement
\ \ > o e an \
\ ; - \ : @ - movement start
\ | L. \ \ ) - sim to joint-angle
|)— 1.86 \ I |)- 1.43 |)— 0.54 |)- 1.31 \\ X | - sim to screen
-0.42 A - 0.70 -0.21 - 0.47 < \ | D - sim of geodesics
D - 1.48 \ / |D-o0.89 D -0.34 D -1.34 ~ s bi ID and h
# - s5-e2 ® # - s5-e10 # - s24-€6 # - s20-e2 = BUBJIE-and epog
a &« — — _ == ~ /I g ~
= ~ ~ N ~
c ~ & ~ N N | | o — ey N &
o] ~ b N R 1 = N N ¥
2 ~) AN B SEEEETE . N
s & N\ N \ y | » N \
et N
5 2 |)-o03 ) - 0.55 Q| ) - 0.23 g )-0.43 ) - 117 NN
c o \ | N
S E |-0.64 | -0.98 N |- 052 : [-1.31 | -2.06 N
2 G [p-o04s D - 110 D-0.29 \ D-1.03 D -0.94
. # - 533-ell # - 539-€6 # - 540-e10 ® # - s37-e4 # - s34-e9
o
©
c o~ —_——
> - > N~ o< — — _ - =
9] g s e 4 - T T N N\ ~ o N ~ Ve N
g = 4 AT - ~ N ~ N b ’ S
8 8|7 _= A s e = \ \ \ ke VIS aan
2 (g~ N N \ N \
=
© \ N \ N « \
£ |)-o0098 ) - 0.94 ) - 1.05 N\ )1 V) -9
€ |l-021 | -0.29 |- 0.45 Ny |l-o0.48 N[l -0.25
= [D-o0.90 D-0.86 D - 1.45 \ - D -0.98 D - 1.24
# - s46-e7 # - s38-e9 # - s35-ell # - s42-e9 # - s41-e8

Figure5.  Endpoint trajectories taken from all subject groups over various epochs illustrate the different control strategies used by the CV and MV groups. Each panel contains a single solid gray
trajectory (7) beginning from the black circle (the previous target) and truncated after 800 ms. The curved dashed trace is the trajectory that sweeps out a geodesic in the configuration space of the
simulated kinematic linkage, or the joint angle geodesic (G,), associated with the starting and ending points of . The straight dashed trace is the geodesic of the screen (G,) associated with . The
“)"valueindicates the similarity between Tand G,.. The “|" value indicates similarity between Tand G,. The “D" value indicates the similarity between G, and G.. The similarity measure is the Hausdorff
distance, and smaller values correspond to more similar trajectories. The “#” gives the subject identifier followed by the epoch number the movement was taken from. Trials are segregated by rows
that correspond to specific experimental conditions, visual feedback, and control type. Trajectory sizes were scaled for clarity.
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group. In fact, the CV group had higher
average variability at every epoch and the
Wilcoxon signed-rank test rejects the null
at p = 0.007. This effect was, however, not
large enough to obtain significance in
ANOVA tests and did not appear to influ-
ence the overall proficiency that subjects
obtained during the task (Fig. 2).

The variability in the postures used to
acquire targets does not correspond to
task proficiency; it is only a measure of
consistency in the chosen solutions. How-
ever, the result of hand posture variability
corresponding to any given cursor loca-
tion is relevant to the construction of an
effective inverse model. From the sub-
ject’s point of view, developing a map of
the motor space corresponds to creating a
well defined function, which transforms
each position on the screen into a corre-
sponding configuration of the hand. In ef-
fect, this amounts to finding an inverse of
the hand-to-screen mapping by regulariz-
ing an ill posed problem. The data imply
that subjects that received the most parsi-
monious feedback were slightly better in
forming a function-like representation of
the task. The greater variability in CV subjects’ hand postures
associated with each 2D target suggests a less well formed inverse
map from target space to control space. This observation further
supports the hypothesis that the different types of visual feedback
between groups caused the development of distinct motor learn-
ing and control strategies.

Figure 6.

orradians where appropriate.

Experiment II

The results of Experiment I provided evidence for the hypothe-
sis that subjects learned to execute trajectories in accordance with
the geometrical properties of the controlled system shown to
them. CV subjects, viewing the entire linkage, demonstrated a
propensity to move along minimum-length paths in the linkage
joint angle space. MV subjects, viewing only a circular cursor,
moved along straight-line paths more often than CV subjects,
corresponding to geodesics on a Euclidean plane (Fig. 7).

If the hypothesis is true, then we would predict a larger differ-
ence in the geodesic similarity measure between CV and MV
groups if the difference between Euclidean and toroidal geodesics
connecting the targets were larger. Experiment II tested this by
replicating Experiment I with a new target set in which geodesics
joining targets had greater (Hausdorff) distances between them
(Fig. 1, panel 5). For reference, the Euclidean (straight solid lines)
and toroidal (dashed curves) geodesics joining targets are shown
in Figure 1. As measured by the Hausdorff distance, geodesics
joining targets from Experiment I had a mean distance of 0.69
and geodesics from Experiment IT had a mean distance of 1.37.

The results of Experiment II offered further support of the
hypothesis. Ten subjects participated in Experiment II, and Fig-
ure 7 displays the mean geodesic similarity measure for the CV
(n = 5) and MV (n = 5) groups. The Student t test shows a
significant difference between groups (p = 0.046). This differ-
ence (0.21) was greater than the difference between the CV and
MYV groups of Experiment I (0.15). Strikingly, every one of the
CV subjects in Experiment IT had a geodesic similarity measure of
>0.92. This across-subject consistency resulted in a very low SD
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Trajectory examples in the configuration space. The configuration space of a two-link revolute-joint kinematic chain forms a
torus (left), atwo-dimensional curved manifold embedded in the Fuclidean R>. The light gray mesh forms orthogonal geodesics (minimum
pathlength excursions) spanning the torus. The panels on the right contain trajectories of the endpoint of the kinematic chain, marked by
the thick black traces. The time course of the linkage is parameterized by shading, where lighter shading s earlier in the movement. The left
column contains trajectories taken from actual data (A from a CV subject and € from a MV subject), and the right column depicts the
corresponding linkage movement resulting from ideal geodesic trajectories in the simulated linkage configuration space (geodesic B
corresponds to movement A and geodesic D corresponds to movement C). The trajectories have been mapped onto the torus and labeled;
on the torus, actual trajectories are rendered in solid black, and geodesics joining the start and end of the actual trajectories are rendered in
dashedlines. Itis shown that the linear joint angle excursions executed by CV subjects followed geodesics on the torus and curved endpoint
trajectories, while the quasi-straight endpoint trajectories of MV subjects diverged considerably from geodesics on the torus. Movements A
and Care reproduced from Figure 5 and can be located by their identification number, marked with #. Units are in 2.82 cm per screen unit
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Figure 7.  Average subject geodesic similarity index for Experiments |, 11, and Il (left). The

geodesic similarity index is defined as the proportion of distinguishable endpoint trajectories
closer to geodesics in the simulated linkage configuration space than to straight lines on the
screen (the Euclidean geodesic). In Experiment |, subjects with feedback of the linkage execute
more trajectories along geodesics of the torus (. = 0.86 and s, = 0.08 for CV, and . = 0.70
ands, = 0.16 for MV). Experiment Il shows an increase in this effect size and a large reduction
in CV between-subject variability due to the specialized target set (. = 0.97 and s, = 0.03 for
(V,and . = 0.75and's, = 0.24 for MV). In Experiment I, the effect of the visual perception of
geometry persists even when the controlled system is operated directly as a point moving on a
Euclidean plane (w = 0.35and s, = 0.11for CV, and . = 0.24 and s, = 0.06 for MV). Data
shown are from the end of training (epochs 9 and 10), using & = 0.5, and similarity is deter-
mined by the Hausdorff distance (Eq. 10). The effects of visually perceived geometry on trajec-
tory formation persist across all three experiments. The pretraining (epochs 1 and 2) and
posttraining (epochs 9 and 10) trends for Experiments |, II, and Il (right) show the evolution of
the geodesic similarity measure through training; x-axis offsets are for clarity only. All error bars
are 95% confidence intervals, and asterisks indicate statistical comparisons with p << 0.05.

(0.03) and a very narrow confidence interval (Fig. 7), which is re-
markable for such a difficult learning task and relatively small sample
size compared with Experiment 1. Statistical tests retained signifi-
cance at the a = 0.05 level for values of € as low as 0.36, a narrower
range than Experiment I likely due to a smaller sample size.

An ANOVA of data collected in Experiment II confirmed the
performance trends seen in Experiment I. Differences in end-
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Figure 8.  The fraction of trajectories that conformed to a geodesic path (called “distinguishable” trajectories) increases asa  screen map. This created a dual situation to

function of decreasing endpoint error in Experiment | (left). The gray histogram illustrates a clear trend showing that, with
increasing accuracy, there is increased distinguishability (left axis). Each bar corresponds to the number of distinguishable move-
ments divided by the total number of movements that fell into that endpoint error bin. Therefore, the measure represents the
fraction of movements with a given endpoint error that were distinguishable. Beyond ~3 cm of endpoint error, noise in our
estimate of the true fraction of distinguishable movements dominates the trend, which can be seenin the error bars (1sample SD).
Estimates for these bins are noisy because subjects made few movements with very large errors. The number of movementsin each
error bin is overlaid as the dashed line (right axis) and drops off rapidly for large errors. Because the sample SD for proportions
shrinks with \]r;, many samples are needed for accurate estimates. Trajectories were not distinguishable for one of two reasons:
The toroidal geodesic corresponding to the observed trajectory was itself very close to a straight line, thereby making a judgment
on which geodesic the trajectory was most similar to uninformative (top right). If the trajectory was “noisy” (in the sense that it was
very nonsmooth), it would not correspond well to either geodesic, making a determination arbitrary (bottom right). Trajectories
that were not distinguishable did notimpact the geodesic similarity measure (Fig. 7). Formal classification is given in Equation 10.
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Figure 9.  Comparison of terminal hand posture variability. MV subjects exhibited slightly,
but significantly less hand posture variability when acquiring targets than CV subjects (Eq. 4).
The vertical dashed line indicates where the feedback of the simulated arm was suppressed for
the CV group. The (significant) increase in variability from the CV group after the feedback
switch occurred indicates that continuous visual feedback of the system kinematics had an
influence on control strategy.

point errors (p = 0.41; Fig. 10) and trial times (p = 0.10) were
not statistically significant for CV and MV groups, and the effects
of training on errors and times were significant (p < 10>).
Power estimates are 73% for N = 10.

Experiment III

All subjects in Experiments I and II controlled the simulated
linkage (Fig. 1) whether they were shown the full mechanism
(CV) or only the linkage endpoint (MV). The CV and MV groups
displayed differing control strategies that led to different trajec-
tory shapes. Interestingly, both groups executed a preponderance
of their trajectories along straight lines in the joint angle space of

Experiments I and II, in which visual feed-
back conditions across groups were pre-
served, but the control variables were
changed.

Perhaps the most notable effect in Fig-
ure 7 is the drop of geodesic similarity of
Experiment III subjects compared with
Experiments [ and II for both MV and CV
groups. Subjects exposed to the direct
map from hand to cursor were naturally
producing straighter trajectories from the
very beginning of the experiment, before
learning could take place. To understand
this effect, one should consider that subjects tended to produce
finger-joint motions in a synchronous manner. This is consistent
with the concept that, in the absence of other task constraints, the
motor control system follows simple patterns in joint coordi-
nates: when subjects were first exposed to the task of moving the
cursor from point A to point B, they tended to perform synchro-
nous transitions between a starting and an ending posture. These
transitions produced quasi-rectilinear motions in the space of
glove signals. In fact, the data glove signals represent a good linear
approximation of the finger joints angles (Kessler et al., 1995) and
the glove-to-cursor map in Experiment III was linear by con-
struction. Therefore, under constraints of linearity, synchronous
interpolated motions of the finger joints would map naturally
onto quasi-straight lines on the screen. By the same argument,
synchronous joint-interpolated motions in Experiments I and II
would have a tendency to match the geodesic motions in joint
space. We believe that this bias is primarily responsible for the gap
displayed in Figure 7 between Experiments III and Experiments I
and II. The purpose of Experiment III was to consider and pos-
sibly rule out the hypothesis that the trend toward joint-space
geodesics observed in Experiments I and II was not a conse-
quence of this bias.

We found that subjects in Experiment III tended to increase
their similarity to the geodesics of the respective visual geometries
(Fig. 7): subjects who saw the full two-joint linkage ended up
producing movements that were more similar to the joint angle
geodesics than subjects who saw only the moving endpoint. Im-
portantly, the learning trends for the two groups progressed in
opposite directions. With practice, MV movements became more
rectilinear (less similar to joint-geodesics) and CV movements
became more curvilinear (Fig. 7, bottom right panel). These re-
sults, illustrated also by trajectory examples (Fig. 5, bottom two
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Figure 10.  Endpoint errors throughout training for Experiments Il and IlI. Performance dif-
ferences between CV and MV groups for both experiments were not found to be statistically
significant. The slightly steeper learning rates seen in Experiment Ill may be attributed to con-
trolling a completely linear, and therefore less challenging, system. The vertical dashed line
denotes when the feedback of the simulated linkage was discontinued for the CV groups.

panels), confirmed and strengthened the conclusions drawn
from the joint angle control groups.

Both endpoint errors (Fig. 10) and movement times were statis-
tically indistinguishable between MV and CV groups in Experiment
III (p = 0.20 and p = 0.40, respectively). Training effects were sig-
nificant for both measures (p < 10 ™), and interaction effects be-
tween training and feedback were not significant for errors (p =
0.88) or times (p = 0.92). Power estimates are 93% for N = 16.

Discussion

In each experiment, subjects guided a controlled endpoint into
targets (Fig. 1) and were either given visual feedback of a two-
joint planar linkage (CV) or a free-moving cursor (MV), regard-
less of the object they actually controlled. This design was used to
tightly control the information subjects received about the con-
trolled objects and to eliminate preexisting influences of earlier
practice present in natural reaching tasks. Neither feedback con-
dition influenced learning rate, and both groups became com-
mensurately skilled in the performance of the task (Fig. 2). Yet in
all experiments and in all training epochs, the MV group learned
to move the controlled endpoint along more rectilinear paths
than the CV group. Illustrative examples are shown in Figure 5
and the pattern is grossly quantified by the aspect ratio (Fig. 3).
These data support the hypothesis that subjects in these groups
executed categorically different types of trajectories.

The observed differences in trajectory shapes can be explained by
the geometries presented to subjects during the task (cursor or link-
age), suggesting that the information was used in the development of
subjects’ control policies. Rectilinear endpoint movements are con-
sistent with the isotropy of space surrounding a circular point-like
cursor moving on a Euclidean plane. As pointed out by Flanagan and
Rao (1995), straight movements in joint angle space do not generally
correspond to straight lines over the monitor. However, while the
concept of a “straight line in joint space” appears occasionally in the
motor control literature, it is mathematically ambiguous. This con-
cept is based on drawing a Cartesian plane with the two axes repre-
senting the two joint angles. Angles, however, do not map to straight
lines but to circles, since angles differing by 27T are congruent. There-
fore, while it is possible to place pairs of real numbers over pairs of
Cartesian axes, this is not always geometrically meaningful. And it is
not meaningful, in particular, for the two joint angles of a double
pendulum, which are better represented over the topology of a torus
(Fig. 4). This work demonstrates that the nervous system, trough
practice, is capable to capture this geometrical structure based on the
information contained in the visual feedback.
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Three additional observations point to MV and CV subjects
using different control strategies. (1) Higher performance error
among CV subjects between epochs 10 and 11, when linkage
feedback was suppressed, indicates CV subjects incorporated that
information into their movement strategy. This did not have to
be the case because feedback of the simulated linkage is supple-
mentary in the sense that only feedback of the endpoint is strictly
required to complete the explicit task goals. (2) CV subjects
showed greater finger variability, suggesting a difference in their
representation of the map. We ruled out this additional variabil-
ity as a symptom of incomplete learning because all performance
metrics between groups were equivalent (Figs. 2, 10). (3) In Ex-
periment II, a target set was chosen that emphasized the trajec-
tory differences we would expect to see between straight paths in
screen space and straight paths in joint angle space if subjects
were incorporating the vision of geometry into their movement
strategies. The results confirmed that CV subjects in Experiment
I executed more straight trajectories over the torus than those
from Experiment I, and the between-subject variability for the
CV group dropped markedly.

The effects of visually perceived geometry on trajectory for-
mation persisted across all three variants of the experiment. This
result appears inconsistent with the hypothesis that coordinated
movements with multiple degrees of freedom tend always to oc-
cur in straight lines of the controlled endpoint (Morasso, 1981;
Flash and Hogan, 1985; Flanagan and Rao, 1995) and suggests
that the outcome of past experiments may have been influenced
by the particular form of visual feedback offered to the subjects.
Namely, when presented with a point on a Euclidean plane, sub-
jects move it in straight paths, but when presented with feedback
of more complex kinematics, subjects favor geodesic paths over
its configuration space.

How can we reconcile our results with the observation that
trajectories are straight during normal reaching movements of
the hand? First, one needs to stress that hand trajectories are, in
fact, not always straight. Furthermore, experiments that reported
curved trajectories during hand movements typically studied
large reaches without a fixed robot (Atkeson and Hollerbach,
1985; Boessenkool et al., 1998). The overwhelming majority of
reaching studies reporting straight reaches examined movement
in the proximal transverse plane toward and away from the
shoulder. In that workspace, regardless of feedback, straight
paths in joint angle space correspond to straight lines of the hand
(Fig. 4C), thereby masking differences between control strategies.
Finally, even when subjects are allowed vision of their arm during
reaching, the arm occupies only a small portion of their visual
field, and it has been shown that gaze leads the hand during
reaching (Johansson et al., 2001), further reducing attention to
the arm. In contrast, in our study, the small size of the monitor
allowed subjects with complete vision to maintain their attention
focused on the entire moving mechanism.

There may be a concern that subjects memorized hand pos-
tures rather than improving their control through understanding
the finger-to-endpoint map. Had subjects memorized postures
we would expect trajectory differences between experiments and
not between CV and MV groups within any one experiment (Fig.
7) because trajectories would be a by-product of the transition
from one hand posture to the next. Furthermore, in similar pro-
tocols, subjects were able to easily acquire unpracticed targets
(generalization), indicating the absence of memorization tactics.
For example, subjects training with a linkage, similar to the Ex-
periment I MV group, showed complete generalization (Dan-
ziger et al., 2009), subjects training with direct endpoint control,
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similar to the Experiment III MV group, showed generalization
in both extrapolations and interpolations (Mosier et al., 2005),
and subjects acquiring targets corresponding to sign language
characters showed clear generalization in continuous-feedback
conditions (Liu and Scheidt, 2008).

Our results suggest that theoretical frameworks that treat motor
behaviors as coordination patterns that emerge from minimizing the
final accuracy of movements is an incomplete view. For example, in
some formulations of optimal feedback control, in which cost func-
tions might be jerk minimization (Flash and Hogan, 1985), control
of variability (Todorov and Jordan, 2002), or minimization of effort
and variability combinations (O’Sullivan et al., 2009), the optimiza-
tions of these functions constrained by task error produce the re-
quired trajectory without having to specify it explicitly. In this study,
the possibility of explaining trajectory differences with error feed-
back is not possible because all groups have the same task-
relevant feedback and reach the same performance levels. Neither
is it possible to explain the difference by appealing to effort or
other dynamical costs because the controlled objects had no dy-
namics. The only dynamical component in our framework is the
musculoskeletal dynamics of the hand, which we assume that all
subjects were expert at controlling. The novel map from finger
kinematics to object kinematics— cursor or two-link system—is
strictly of the static/algebraic type. Appealing to the slight differ-
ences in variability between groups is also insufficient because
that variability did not impact task performance as we would
expect in some optimal control models. To fold these results into
an optimal control theory, it would require the assumption that
trajectories could be planned explicitly or that some additional
optimization criteria—such as smoothness—be considered.

Finally, our results extend the ongoing investigation into neu-
ral control of reaching. It is known that during both normal (Arce
etal.,2009) and novel (Mosier et al., 2005) reaching tasks without
continuous endpoint visual feedback trajectories are curved. The
curvature observed in these studies could have resulted from the
absence of an error feedback signal rather than from geometrical
information. We unambiguously show that perceived geometry
is a factor by maintaining continuous feedback throughout all
trials. Recently, a three-dimensional dynamic arm model has
been used to explain the curvatures noted in normal pointing
based on geodesics of kinetic energy (Biess et al., 2007). The
model of Biess and coworkers considers the metric structure of
kinetic energy as a basis to explain movement trajectories. The
concept is simple and elegant: Kinetic energy is a quadratic form
in the space of velocities, in which limb inertia plays a role anal-
ogous to a metric tensor. Following this approach, minimization
of kinetic energy is a way to derive optimal trajectories. In our
case, the controlled system—either the cursor or the simulated
linkage— has no inertia and there is no kinetic energy cost asso-
ciated with its motion. Nevertheless, the geometrical structure
associated with the simulated linkage (the torus) provides us with
a framework to compute kinetic energy. Therefore, we speculate
that the observed ability of the neural control system to extract
the geometry of a controlled object may be the basis for the opti-
mization of quantities such as kinetic energy, whenever the con-
trolled object has an effective mass. Yet it is no straightforward
task to equate the control of a moving endpoint with the control
processes in natural reaching in which dynamics certainly play a
role. Ultimately, the manifestation of the effects of geometry on
learning and adaptation will be different in cursor, hand gesticu-
lation, reaching, and multijoint movements (Liu et al., 2011). We
expect that many of the same high-level controllers that plan
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hand movements through space will also govern movements of
other controlled objects, such as the cursor in our task or the
devices operated by a brain—computer interface.
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