1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

o WATIG,

HE

M 'NS;))\

D)

NS

Abstract

Spontaneous symmetry breaking leading to polarization of the cell is a key step initiating many
morphogenetic processes. In addition to experimental studies model-based theoretical description
helps to understand the conditions and limitations of this process. Such description is limited
usually to linear stability analysis supplied by the numerical simulations to establish the
dependence of the polarization dynamics on the model parameters. Here we describe application
of a powerful weakly nonlinear analysis method to a minimalistic model characterized by the
conservation of mass of the protein governing the polarization dynamics.
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1 Introduction

Rho GTPases are conserved regulators of various cellular processes, such as polarization,
motility, and asymmetric cell division. In general, they exert their role in these processes by
controlling the timing and location of activation of cytoskeleton components. This includes
the control over actin polymerization, actomyosin contraction, cell adhesion, and
microtubule constancy [1]. Rho GTPases are active when bound to GTP, and inactive when
bound to GDP. The exchange of GDP for GTP is catalyzed by their respective guanine
nucleotide exchange factors (GEFs), while hydrolysis of GTP to GDP is accomplished
through activity of GTPase activating proteins (GAPs). The localization of Rho GTPases is
governed by membrane diffusion and various vesicular and cytosolic trafficking
mechanisms. Understanding the mechanisms that control the location and activity of Rho
GTPases is critical for our understanding of cellular processes that must be spatially
restricted to be effective.

There are numerous models for establishment of cell polarity. Some models are dominated
by a spatial landmark. For example, the orientation of the actin-dependent polarization
mechanism in yeast cells is shaped by bud scars present from previous divisions. Once actin-
cables are initially established in this region, positive feedback mechanisms strengthen
polarized distribution [2]. A second similar example involves microtubule based polarity in
neurons [3]. Another model involves a localized threshold that, when overcome, releases
tension that rapidly leads to assymetry. An example is a cortical actin network and forces
generated by myosin motors [4]. In the case of Turing type instability, no spatial landmark is
developed, while diffusion and positive and negative feedback ’search’ for a centralized
location for protein deposition. In this review, we choose to focus on this Turing type
reaction-diffusion mechanisms.
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The study of this process, starting from the symmetry breaking leading to polarization [5], is
far from complete due to large number of interacting components involved. Theoretical
analysis of cell polarization is mainly focused on simple models describing dynamics of a
selected few proteins [6, 7]. In the extreme case the corresponding models consider only a
single protein such as Cdc42 GTPase in both active and inactive form with the assumption
that the total amount of this protein is conserved. These minimalistic models [8]-[10] take
into account the simple kinetics of two protein forms together with their diffusion and thus
they belong to mass-conserved reaction-diffusion model. They are characterized by different
reaction terms but have one important common feature, namely, the diffusion coefficients
for two forms of the protein are at different scales, so their ratio strongly differs from unity.

Standard analysis of such models starts with linear stability analysis of the basic uniform
steady state. Linear stability analysis is based on an assumption of smallness of the
perturbation amplitude compared to that of the basic state [11, 12]. This step enables one to
find conditions for which the stability of the uniform state is compromised and the system
evolves to a new steady state corresponding to a polarized cell and also determines the
characteristic size (wavelength) of the fastest growing perturbation. If it is much larger in
comparison to the characteristic domain size one has a transition to a new spatially uniform
state. When the perturbation wavelength is comparable or smaller than the domain size, one
has Turing type instability leading to formation of spatially nonuniform structure.

By its nature the linear analysis makes no prediction about the transition process itself, as it
describes only the initial phase of small perturbation growth. This is the reason why the
transition to the new spatially nonuniform state is usually simulated numerically so that the
dependence of the emerging state characteristics on the model parameters can be obtained
by performing a large number of simulations. This approach was used in [7] where all the
mentioned models had been considered. It should be noted that the models in [8] and [9]
were shown to demonstrate Turing type instability that leads to emergence of periodic
structure with finite wavelength. On the other hand, the model considered in [10] is known
to have a different behavior called wave-pinning leading to establishment of sharp spatial
boundary between two stable states. In this case the activation wave initiated at the domain
edge starts to move towards the other edge, slows down and eventually stops inside the
domain. As a result, the detectable difference in protein activity level is created in two
compartments of the cell.

The numerical simulation approach is understandably limited in the ability to predict the
dynamics of a perturbed state as a function of the model parameter values. This method is
indispensable in the case when the perturbation grows infinitely, so that the assumption
about its smallness used in linear analysis is no longer valid. In other cases when the
perturbation amplitude eventually reaches some finite (saturation) value the amplitude
dynamics of this new stationary nonuniform state can be obtained by means of weakly
nonlinear analysis [11, 13]. This approach provides an approximate analytical description of
the perturbation dynamics based on the Galerkin method. The spatial profile is presented as
a superposition of several spatial modes with different wavelengths where each mode has its
own time dependent amplitude. The method’s main goal is to obtain a system of differential
equations describing the amplitudes dynamics. As a result the original spatio-temporal
model represented by partial differential equations reduces to a system of ordinary
differential equations (ODEs) that can be solved much faster with higher precision. In some
cases this system of ODEs can be reduced even further down to a single Landau equation
that represents the dynamics of amplitude of the fastest growing mode found at the linear
stability analysis step.
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The Landau equation implies that the perturbation amplitude change has both linear and
nonlinear (usually cubic) contributions. The linear term is always positive, and the
amplitude dynamics strongly depends on the sign of the nonlinear term. If this term is
positive too, the perturbation grows infinitely so that the assumption of amplitude smallness
breaks.

When the nonlinear term is negative its contribution would balance the linear term and the
perturbation amplitude reaches some constant safuration value that depends on both linear
and nonlinear term coefficient. In this case one can find a dependence of this saturation
amplitude on all model parameters. It is important to underline that analysis of the Landau
equation produces conditions on the parameters for which the saturation can happen.

In this review (which can also be viewed as a tutorial) we present a very detailed analysis for
a simple model proposed in [8] which is described in Section 2. The linear stability analysis
that includs the description of the fastest growing mode of perturbation is given in Section 3.
We show that the model dynamics in linear approximation depends on two dimensionless
parameters responsible for diffusive and reactive components of the system. In Section 4 we
present weakly nonlinear analysis of the model and derive the conditions for existence of the
nonuniform periodic steady state emerging due to symmetry breaking of Turing type. The
main result of this Section is a derivation and complete analysis of the Landau equation for
the perturbation amplitude. We show existence of four qualitatively different types of
evolution of small perturbation depending on the value of the bifurcation parameter. In
Section 5 we compare analytical predictions of both linear and weakly nonlinear analyses to
results of numerical simulations and show that all predicted regimes are actually observed in
numerical experiment.

2 Mass-conserved reaction-diffusion model

In the model of Otsuji et. al. [8], six equations describing the relationship of activation and
localization of Rac, Cdc42, and RhoA are used. These equations include Cdc42 activation of
Rac, RhoA inhibition of Rac, and co-inhibition of RhoA by both Cdc42 and Rac. This inter-
dependency is important for various processes such as migrating epithelial cells or
fibroblasts, where Rac and Cdc42 drive cytoskeleton extension at the cell front that drives
motility, and RhoA activation in the back of the cell drives membrane retraction and
loosening of cellular adhesions [1, 14]. The model also includes the activation of these by
their respective GEF’s and the inhibition by the respective GAP’s. Each GTPase is assumed
to be both cytosolic (GDP bound) and membrane (GTP bound) forms. Furthermore, the GTP
membrane form undergoes slower diffusion than the GDP bound form. Following
perturbation, the reaction-diffusion model was found to form a single polarized distribution
following perturbation. After an initial state with multiple polarized sites, a final solution is
acquired with distribution of active Rac overlapping with that of Cdc42, while Rho
accumulation was limited in the polarized area [8].

The authors simplified the system to describe a single protein with two equations, a mass
conserved reaction-diffusion system. The membrane bound form is assumed to be inactive,
and diffuse more slowly than the inactive, cytosolic form. In addition to diffusion, another
term, the reaction term A, V), was necessary to transform a uniform distribution to a system
with a singular polarized distribution following perturbation. The authors showed that the
numerical simulations of the simplified model produce solutions similar to that of the
original model. In [9] the authors presented as eight-variable model that they also reduced to
a mass-conserved reaction-diffusion system of two equations only.

With a simplified mathematical system, it is possible to ask additional questions about the
relationship between the size of the perturbation and the resulting polarized state. In
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previous models, linear analysis resulted in a perturbation that grew in time, always leading
to a single solution. However, we provide a tutorial to demonstrate that through non-linear
analysis, this system of two equations is able to predict oscillatory behaviors under some
conditions. In the context of biology, this result demonstrates how a reaction-diffusion
system may lead to a periodic polarized system.

The dynamics of two variables ¢zand v representing the active and inactive form of the
protein is described by the one-dimensional reaction-diffusion equations in a region 0 < x <
L

ou 8u
EzDu ﬁ"‘f(uy V), (@)
v v
_=D\'__ s V), 2
=Dy @

where it is assumed that the diffusion of the membrane-bound active form is much slower
than the inactive one: D, < D,. The function 7(, V) describes the reaction term depending
on concentration of both forms. A specific expression of the reaction term depends on the
model but the dynamics of at least the active form should be nonlinear to make symmetry
breaking possible. As an example we use the reaction model discussed in [8], which has a
form

u+v

, 3)

flu,v)=a [v—

(ar(u+v)+1)?

where vand vdenote active and inactive form of RhoGTPase protein. The first term in (3)
stands for the conversion of the inactive form into the active one with the rate a;, while the
second term is responsible for the reverse reaction described by a nonlinear function of total
protein concentration; & is the bifurcation parameter determining the stability of the basic
uniform steady state.

Assuming no-flux (or periodic) boundary conditions on both ends of the interval one can
sum the equations (1,2) and integrate over the spatial variable to obtain the protein mass
conservation condition

f é(u+v)dx=CL=c0nst, 4)

where the constant Cis the model parameter representing the mean protein concentration.

The basic stationary spatially uniform positive solution {uy, W} verifies the equation 7 (¢,
1) = 0. From (4) it follows that the basic solution satisfies the condition ¢ + 1 = C. Using
this condition we obtain for the basic solution

A>(A2+2)C c
Uy=————

, vo=——=, Ar=ar(up+voy)=a>C,
Aai 1) W 2=a(uo+vo)=az ®)

It appears that for some parameter values this basic state can be unstable to small spatially
periodic perturbations. Linear stability analysis determines the range of parameters values in
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which the basic state stability is lost; it also produces the wavelength of the most unstable
perturbation and predicts its growth rate valid at the initial stage of perturbation evolution
when its amplitude is small compared to the basic state value.

3 Linear stability analysis

3.1 Perturbation dynamics

Consider stability of the basic state with respect to small perturbations. Define a perturbed
state

u=ug+u(x,1), v=vo+vi(x, 1), (6)

where the perturbation amplitude of each component is much smaller than the corresponding
basic value: /iy /<K wy, i/ K . Substituting expressions (6) into equations (1,2), expanding
them in the Taylor series around the basic state and retaining the linear term in perturbations

we find
0 o?
%:DuaTM;+fuu]+ﬁv1, 0
0 8?
%zDuaTvzl_fuul_ﬁ'Vl, ®)
where
f_a_f_al(Az—l) f_a_f_alAz(A§+3A2+4)
“Tou (14427 7" ou (1+A,)

denote partial derivatives of the reaction term computed at the basic solution. As we are
interested in the description of the structure of the finite spatial size (i.e., finite wavelength
K) consider a spatially periodic perturbation of the form

ui=Uexp(ot+ikx), vi=Vexp(ot+ikx),

where U, Vdenote the perturbation amplitude and o is the growth rate.

3.2 Dispersion relation

Substitution of the above expressions into (7,8) transforms the partial differential equations
into a system of linear algebraic equations

ocU=—k*D,U+f,U+f,V, ©)

oV=—k*D,U~f,U~f,V. (10)

Introducing the perturbation amplitude vector {U, V} we rewrite them as a vector equation
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where J denotes the Jacobian matrix. The explicit form of this matrix reads:
1 a1(A2—1)—(1+A>)*D, k> a1Ay(A3+3A2+4)
T 1Ay —a1(Ay—1) —a1 Ay (A243A,+4)—(1+A4,)° D, 2 (12)

The values o satisfying this equation are called eigenvalues of the square Jacobian matrix J,
while the corresponding vectors { U, V} are called efigenvectors of the same matrix.

Equation (11) can be also written as

(J—crl)( g )=( 8 ) (13)

where | denotes the two-dimensional identity matrix. This equation has a nonzero solution
only if the determinant of the matrix in the l.h.s. of (13) equals zero:

det(J—oT)=0. (14)
The last condition rewrites into
a1(Ar=1)—(1+A2)> (D k2 +0) a1A2(A3+3A,+4) 0
—a1(Axr-1) —a1A2(A3+3A2+4)-(1+A2) (DK +0) |~

that relates the growth rate o to the wavenumber k; it is called the dispersion relation. The
explicit form of the dispersion relation is given by the quadratic equation for the growth rate:

o +0(fi— f k2 Dy +k2 D) +k* (D, f, =D, f, +k*D,.D,)=0. (15)
This equation has two roots

_—a1=kK*Dy+D,) + VD

0= > , (16)

Ar—1

2
D=[a,+k*(D,~D,)] +4a,k*(D,~D,)———.
[ 1 ( u)] 1 ( u)(1+A2)3

17

Direct computation shows that the determinant Din (17) is always positive so that both
eigenvalues representing the growth rate are real. It means that the perturbation has a
stationary spatially periodic profile and the oscillatory perturbations are not allowed.
Inspection of (16) shows that o- is always negative.

Substituting the eigenvalues o into (11) we find the corresponding eigenvectors { Uy, V4}.
Thus the perturbations ¢, ¥4 can be written as the linear superposition
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u1=A U exp(oit+ikx)+A_U_exp(o_t+ikx)+c.c., (18)

vi=AV,exp(ot+ikx)+A_V_exp(o_t+ikx)+c.c., (19)

where A, are the complex amplitudes, kis the perturbation profile wavenumber and c.c.
denotes complex conjugation. It should be underlined that in the linear stability analysis the
amplitude values are defined to the arbitrary nonzero factor.

The eigenvalue o- is always negative, so that the corresponding perturbation component
decreases with time and can be completely neglected at large times ¢>> 1//o—/. When the
other eigenvalue o is positive the corresponding component grows, the dynamics of its
amplitude A, is the subject of weakly nonlinear analysis presented below.

3.3 Fastest growing mode

As it seen from Figure 1(a) the dependence of the growth rate o on the wavenumber ks
non-monotonous and has a maximum o = o;;; Which corresponds to the fastest growing
mode.

It is instructive to find the value k&, of the wavenumber at which this maximum oy, is
reached. At this point the derivative vanishes o {k;;) = 0. Differentiating the dispersion
relation (15) with respect to square of wavenumber kand equating it to zero we find

o(Dy+D,)+D, f,—D, f,+2k*D,D,=0,

from which we arrive at the relation

_ D\ f,—Dyf,—2kz, DD,

= 20
m DD, (20)

Equating the expression for o given by (16) to the maximal value o, in (20) we find the
relation for &,

Dv+Dy) Vo fu=(fut fi) VDL Dy

2 _

kn= (D,—-D,) VD, D, 21
w (DD AT A )] (A + 1) 424~ )] VD, (1)
Ty (Dy—D)ND, D, :

As the denominator in (21) is positive due to difference of the diffusivities of the protein
forms D, K D,, we have to require positiveness of the numerator to obtain nonzero real
value for the fastest growing mode wavenumber. This condition can be written as

D.D, ~&< fofa _AZ(A§+3A2+4)(A2—1)

(DD Dv (fit £ [(Ag+1)+2(As—D)]

=g(A2), (22)

where we neglect D, compared to D, in the left fraction denominator. The function g(Ay)
shown in Figure 1(b) reaches its maximum g4, = 28/841 ~ 0.033 at A, = 2, so that this
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value determines the maximal value of the diffusivities ratio D,/D, for which one can
observe symmetry breaking.

It should be noted that the non-zero value of the wavenumber 4, leads to formation of a
periodic pattern of finite wavelength. On the contrary, the case of vanishing waveneumber
k;; = 0 corresponds to a long-scale instability when the emerging pattern is characterized by
the largest available wavelength that is determined by the cell size. It follows from (16) that
for k=0 the maximal growth rate is zero so that the long-scale instability cannot be
observed in this system.

Substitution of the expression (21) into the formula (20) gives a simple symmetric formula
for the maximal growth rate

2
o :( VD\'fu_ VDuﬁ) ] (23)

" D,-D,

The numerator in (20) should be positive that implies a condition

D, fu>Dy . (24)

Introduce two positive parameters e and ¢ given by the ratios

2

D " Ay(AZ+3A,+4
£ :F”, O<e < 1, ¢2=L=M>O.

25

fu A2_1 ( )
The value of ¢ depends on the only bifurcation parameter A, and it is real for A, >1, while
e is determined by the diffusivities of the protein forms, so that these parameters describe
two independent (reactive and diffusive) parts of the model system. The maximal growth
rate o, in (20) can be rewritten as

2
_Dvfu(d=+Dufi/Dyfi) (1-e¢)* N 5 aj(Ax—1) )
Tm= D,—D, ~hr S SllmeeP =T (e @

This result implies that one has linear instability of the basic solution at A, >1. The relation
(21) for the wavenumber &, reads in the same approximation

Ar—1
e=du U278 _Ju o _gp)= ai(Ax—1)

m ———— - gp(l-ep).
D. - D, Du(LtA) ¢(l-ep) @7)

The condition (24) reduces to ep <1, while from (22) we find

2

(4 14
= gp<
1+¢? ¢ 1+¢?

<1,

so that the condition (24) satisfied identically.
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Thus the symmetry breaking condition (22) for the Turing type bifurcation in the mass-
conserved reaction-diffusion system has form

[
1+¢2

&< (28)

It establishes the relation between the diffusion (&) and reaction () part of the model
required for the symmetry breaking. From the equation (11) at k= k; and o= o find the
eigenvectors

{U+’ V+}:{‘10/87_1}9 {U—9 V—}Z{g%_l} (29)

It can be checked by direct computation that the minimal value of ¢ is reached for A, =2

and it equals to ¢,,;,,=2 V7 ~ 5.29, so that the ratio of perturbation amplitudes for the active u
and inactive vforms equal to ¢/e which by (28) is larger than 1 + ¢? = 29.

4 Weakly nonlinear analysis

4.1 Galerkin expansion

To determine the approximate dynamics of the perturbation we use the Galerkin method
[15] and start with the extended expansions of the protein concentrations into superposition
of basic uniform profile, spatially periodic wave of the leading spatial wavenumber &,
corresponding to the fastest growing mode and an additional component:

u=up+A +()Uexp(ik,,x)+A_(t)U_exp(ik,,x)+uy (t)exp(2ik,,x)+c.c., (30)

v=vo+A+(O)Viexp(ik,x)+A_(t) V_exp(ik,x)+vo2 (H)exp(2ik,,x)+c.c., (31)
where (9 and v»(#) denote the contribution to the perturbation corresponding to double
harmonics. The expressions (30,31) are substituted into the original equations (1,2)
expanded into series up to the second order in perturbation amplitude. This expansion

contains second order partial derivatives of the reaction term computed at the basic solution.
Direct computation shows that all these derivatives are equal to each other and given by

2a1A2(A2-2)

F=fu=fw=fuw=fu=—
S ==l C(1+Ay)*

Collecting the coefficients of the leading harmonics exp(/k;;x) we obtain a set of ordinary
differential equations (ODEs) for the functions A.(9), A-(f) presented below

A U +A U_=0pA+0_A_+FM, 32)

AV +A V=0 A +0_A_—FM, (33)

where prime denotes time derivative and the parameter M is given by
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M=(ur+v)[ (U + V)AL +U_+VIA™]. (34)

Retaining the double harmonic terms proportional to exp(2/k,;X) we have the ODEs for
(D, v(H dynamics

Ur=(fu=4k2 D, Yuz+fyva+FN, (35)
Vy=—ftta+(~ f,—4k2D,)va—FN, (36)
N=[(U;+V)A,+(U_+V_)A_]*/2. @7

The system of four equations (32,33,35,36) with initial conditions A;(0) = Ay K 1, A-(0) =
A_g K1, th(0) = rn(0) =0, can be solved numerically to find the dynamics of the
perturbation amplitudes. This is great simplification as the numerical solution of ODEs is
much faster and more stable than the direct simulation of the original problem.

Nevertheless one can go even further along the road of perturbation dynamics analysis and
obtain a closed equation describing the evolution of the basic perturbation amplitude A.
only.

4.2 Derivation of Landau equation

Assuming that the dynamics of the second harmonics components reaches its steady state
much faster than the leading perturbation does, we set the derivatives of the amplitudes i,
1, equal to zero and find these amplitudes

F(U,+V,)?
2(4kr2nDuD\'+Duﬁf_D\ffu) '

u=D,KA2, vo=—D,KA%, K= (38)

where we neglected the vanishing terms proportional to A-.

Using methods of linear algebra from the equations (32,33) one can find the equation for the
amplitude A, of the fastest growing mode. In order to do it we first note that the I.h.s. of
equations (32,33) can be written in the matrix form

AUA+AU-\ (U, U\ (A, _p A,
Ave+A v )7\ vy v )la )T Al )

where the matrix P is made of the eigenvectors of the Jacobian matrix. The equations
(32,33) read

P( 2? ):0’,,,A+ ( l‘i: )+0'_A_ ( l‘i: )+F( _Aj/{/l ) (39)

Multiplying (39) from the left by the inverse matrix P! we find the solution
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AL\ 1 Us -1 [ U- af M
(A/_ )—o-mA+P (V+ )+0'_A_P PR (40)

Denote the elements of the matrix P2

P—1:( pu P2 )
P21 P2

From the definition of the inverse matrix it is easy to check by direct computation that f;1 U,
+ P Vi =1and g1 U- + P12 V- = 0. It leads to the explicit expressions

Vv U
pi= 7V+U4—U+VJ p12_7V+U,—U+VQ (41)
Then from (40) we find
’ - — U_+V_
A, =0,A — FM=0,A,———FM.
+=0 AL+ (P11-D12) OmAy ViU—U.V. (42)
Neglecting the amplitude A- we set it equal to zero to find
M=(u2+v2)(U++V+)A*+.
Using here the expressions (38) we obtain
M=(D,~D,)(Us+V)KIA, A, (43)
where
Ke F(U.+V,)*(D,=Dy)
2[4(D\+D,) \/DuD. f, fi=Di fo=D5 fu=3DuD(fu+ /)]
Substituting the relation (43) into (42) we obtain the amplitude Landau equation
A =oAL +KlAPA,, (44)

where the coefficient of the nonlinear term « is called the Landau coefficient. The explicit
expression of the coefficient reads

UYWAY F(D,-D,y
ViU —U V- 2[4(Dy+Du) NDuDv fufoD2 D2 fu—3Du D fut fi]
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The expressions (45) and (29) imply that the Landau coefficient is homogeneous function of
the diffusion coefficients D,, D,. It is instructive to represent it through the ratios e and .
The first factor in the expression (45) reads

(U—+V—)(U++V+)3__(<P—8)3(1—8<P) N _(90—8)3(1—890)
V.U_-U, V. —  (1-8)&2p &2

)

while the second one converts into

F2(1-2)’ o F?
2f,[4(1+&2)ep—e*p?—1-32(1+¢?)] T 2f,(1—ep)(1-3ep)”

The final expression for the Landau coefficient reads

2 (g
k== 2f,20(1-3ep) o

Recalling the expression (26) for the maximal growth rate we find the value of the Landau
coefficient

o 20a(a)? o) | P (g (-eg) )
T D(vAy Pe(-3ep) 20, Se(-3ep)

When A, = 2 the Landau coefficient vanishes and one has to use expansion to higher
harmonics to find the equation governing the perturbation dynamics; we do not consider this
degenerate case as it goes beyond the scope of this communication.

4.3 Amplitude equation analysis

As the Landau coefficient is a real number one can replace the complex perturbation
amplitude by its real part and the Landau equation reads

A =0 A +KAS, (48)

where both the linear growth rate o; and amplitude A, are positive. The sign of the Landau
coefficient x determines the perturbation amplitude dynamics. For the positive x the
amplitude undergoes infinite growth that eventually breaks the assumption about the
smallness of the perturbation. In this case actual emerging steady state (if it exists) can be
found by the direct numerical simulations of the original problem (1,2).

In addition to this qualitative statement one can sometimes make important quantitative
predictions. For example, in hydrodynamics of thin liquid films the uniform basic state
corresponds to the film of constant thickness. Such a film can lose stability to small periodic
perturbations with amplitude governed by the Landau equation with positive nonlinear term.
It means that the perturbation will grow and its amplitude eventually will reach the initial
film thickness at which moment the film ruptures. Using the Landau equation it is possible
to estimate rupture time and its dependence of the systems parameters [15].
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The negative Landau coefficient implies that the linear growth of the perturbation is
balanced by the nonlinear term and eventually the amplitude saturates at the value

Ag=—0m/k. (49)

Using formula (47) one obtains its explicit expression

Om 282p(1-3&¢p) (A%—l)C e(l-ep) [2¢(1-3&p)
Ag=—rv 3 5= . (50)
IFl \ (p—e)’(1-ep)* A2lA2-2| ¢-¢ p—¢e
which appears to scale with the linear growth rate oy, In this case the steady state is
established representing a periodic structure with the wavelength equal to L,, = 2t/ky,. As
the value A, corresponds to the steady state perturbation amplitude of the inactive form, the

corresponding value for the active form can be computed using (29) to give Agp/e. Thus the
steady state solution predicted by the weakly nonlinear analysis reads

A
u=uy+ ‘—socoskmx, (51)
£

v=vo—Acosk,,x. (52)

If the size of the cell L is much larger than L, one can expect to observe a multiple peak
periodic structure as the result of symmetry breaking. The decrease of the cell size to the
value lower than 2L, leads to survival of the unimodular profile.

It should be underscored that the existence of the stable periodic structure resulting in
symmetry breaking of Turing type is possible when a certain condition on the parameters is
met. This condition follows from the positiveness of the fraction under square root in (50).
Assuming ¢ > e we write the existence condition for the stable periodic profile as

sp<l1/3. (53)

The last relation determines the perturbation saturation condition and it can be expressed in
the original parameters as

D,Ax(A3+3A,+4) 1

<—. (54)
D,(A>-1) 9

Observation of the stable periodic profile also strongly depends on the initial and boundary
conditions as well as on the value of the bifurcation parameter A,. Analysis of (51) shows
that in order to observe a multipeak periodic solution one has to satisfy a condition g > Agp/
&, 5o that the value of the active form distribution never reaches zero.

Using (5) and (50) we obtain the condition of existence of the periodic steady state solution
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Ar(Art2)C (A3-1)C g(1-sp) [20(1-3ep)
(Ar+1)? — AjAr-2| ¢-& -

which leads to

A3JA3-4| _ eU-gp) [2(1-3z¢) 55
(Ar-D(Ar+1)* — p—¢ -
Neglecting e compared to ¢ we rewrite the condition (55) as

Al > (1—e9) 2(1-350)

—= — >(l-¢ —3gp). 56
A-Didarly 7 Y e
The ratio ¢ itself depends on A, as shown in (25) so that the last condition for given value of
e determines the range of ¢ values for which the periodic steady state solution exists as
depicted in Figure 2.

For up < Agp/e the multipeak periodic solution breaks as in such a case the value v of active
form can reach zero and the assumption (30) about periodic solution fails. When the
problem (1-4) is simulated numerically, strong nonlinearities of a transient solution arising
in computation lead to removal of majority of the peaks and the steady state solution has one
or two peaks (depending on the size of the cell). The single peak steady state solution was
reported in both [8] and [7] where the authors restrict consideration to the linear stability
analysis and numerical simulations only.

5 Numerical simulations

To confirm conclusions of weakly nonlinear analysis in this section we present results of
numerical simulations of the model (1-4) for different sets of problem parameters
corresponding to four types of qualitatively distict solutions. The whole range of the
bifurcation parameter A, value can be split into four respective regions. Below we discuss
these regions and their characteristic solutions.

1. 0 <A, <1 Inthis region the basic solution is linearly stable to small perturbations.
This behavior is shown in Figure 3(a).

2. A,>A;, where A} satisfies the relation 3ep(A5)=1. This range corresponds to linear
instability but the saturation condition (54) does not hold. It leads to growth of
small perturbation beyond the limitations of weakly nonlinear analysis, so the
steady state can be determined by numerical simulations only. An example is given
in Figure 3(b).

3. A5 <A,<A3, where A3 satisfy the equality in relation (56). In this case the saturation
condition (54) holds, but the saturated amplitude of the perturbation of active form
is larger than the basic value ¢. As the result a small initial amplitude of periodic
multipeak profile grows until the amplitude reaches zero at some location. At this
moment small nonlinearity is replaced by a larger one, the profile is no longer
harmonic. As the resluts of strong nonlinearities arising in numerical simulation
due to numerical errors nearly all peaks of the initial multipeak profile may

Phys Biol. Author manuscript; available in PMC 2013 August 07.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Rubinstein et al.

Page 15

disappear and only a single peak survives. This behavior was reported in numerical
simulations in [8, 7]. When the cell size L is much larger compared to the periodic
structure wavelength may also can observe more than one peak in the steady state
solution. The corresponding dynamics is presented in Figure 3(c).

4. 1<A;<A; and A3 <Ay<A3. This case is characterized by the establishment of the
steady state periodic multipeak profile with the amplitude predicted by weakly
nonlinear analysis formula (50). The amplitude of the active form profile is smaller
than the basic value ¢p. The growth of small initial amplitude saturates and the
multipeak profile survives. The corresponding dynamics is shown in Figure 3(d).

6 Discussion

The choice of the model describing cell polarization following symmetry breaking is
dictated by several principles among which are simplicity of the model and its ability to
predict the observed behavior of live cells. The first principle requires a selection of the
major players in a system of interacting proteins that determine the polarization process.
Usually the original model is based on several interacting elements of complex biochemical
nature that are determined by known physical interactions at a given physiological stage of
the cell. Most of these components are assumed to be driven by a few proteins governing the
system dynamics. The extreme version of this approach involves selection of a single
protein existing in two forms — active and inactive. For instance, the active form can be
associated with the cell membrane while the inactive one belongs to the cytosolic pool, so
the diffusivity of these two forms may differ by several orders of magnitude. The important
natural feature of these models is the mass conservation of the governing protein. It was
shown in previous publications that the mass-conserved reaction-diffusion models
demonstrate a rich spectrum of dynamics including the Turing type bifurcation and the
wave-pinning mechanism of symmetry breaking. It should be noted that these minimalistic
models, despite being an extreme simplification of the cell dynamics, still grasp some
important features of polarization process. However, it is important to find out boundaries of
applicability of such models for description of real biological cellular systems, as well as to
develop new realistic models of this type.

Dynamics stability analysis of theoretical models describing symmetry breaking leading to
cell polarization is important for verification of the model applicability. It consists of several
consecutive steps starting with determination of the basic uniform steady state and linear
analysis of stability of this basic state. The result of this step is a set of conditions imposed
on the model parameters required for symmetry breaking. The dynamics of the perturbation
to the basic state can be considered analytically using the weakly nonlinear analysis
approach. This step enables prediction of the parameter values for which the amplitude of
the perturbation saturates to some finite value leading to establishment of the new stationary
periodic structure. It can be done by analysis of the nonlinear term in the Landau equation
for the perturbation amplitude.

Application of the linear and weakly nonlinear analyses to the mass-conserved reaction-
diffusion model is possible due to the mathematical simplicity of this model. In this
communication using the model proposed in [8] as an example we derive the conditions
required for the Turing type symmetry breaking and determine the linear growth rate for a
finite wavelength periodic perturbation. We also determine the range of parameter values
defining the diffusive properties of both protein forms as well as the reaction part of the
model for which the saturation of the perturbation amplitude can be reached. We find the
explicit expression for the saturation amplitude and show that it is linearly proportional to
the linear growth rate determined at the linear stability analysis step.
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The weakly nonlinear analysis presented in this communication assumes that the
perturbation amplitude is spatially uniform and its spatial modulation can be neglected. This
assumption can be dropped and the resulting equation will have form of more general
Ginzburg-Landau equation having additional amplitude diffusion term. This equation is
widely used in systems analysis [16] including pattern formation so important in nonlinear
science. The Ginzburg-Landau equation admits the spatially uniform solution presented in
this communication, but now the stability of this solution can be broken due to presence of
the diffusive term. In order to figure out the conditions of this secondary instability one has
to perform the linear stability analysis on the Ginzburg-Landau equation itself.

The weakly nonlinear analysis for reaction-diffusion model with larger number of variables
or in higher spatial dimension is much more complicated compared to one presented here, as
it requires very cumbersome computations. One possible approach to resolve this
complexity issue is the usage of modern computer algebra software to perform this analysis
in general form [17] and then to apply the general formulas to a specific model.
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(a) The dispersion relation curve determines the dependence of the growth rate (k) on the
wavenumber for g, =1, A> =2, D,=0.1, D,,= 10. The dot shows the maximal growth rate
oy of the fastest growing mode. (b) The function g(A,) in (22) reaches maximum gy =

0.033 at A, = 2. The diffusion ratio D,/D,, cannot exceed this value in order to have

symmetry breaking possible.
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Figure 2.

Computation of the bifurcation parameter A, range where the periodic steady state solution
exists for £ = 0.01. A solid line represents the I.h.s. of the inequality (56); the r.h.s. of this
condition is shown by a dashed curve. The inset shows enlarged and rescaled left portion of
the main figure. There are two ranges of allowed values of the bifurcation parameter — a
very narrow one between the empty circles with A, ~ 1 (see inset) and a larger one between

the filled circles with Ay >> 1. The definition of the critical values A;=1.26 A7=13.86 and
A3=31.2 are given in the text.
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Figure 3.

Evolution of numerical solution for the active form amplitude v of the system (1-4) with
periodic boundary conditions and initial conditions (5) with the following parameter values
area=1,&=0.8,L=50=0.01, D,=1, D,= £. (a) The basic state is linearly stable
and small periodic perturbations decrease fast (C=1, A, = 0.8). (b) The perturbation
amplitude does not staturate that leads to emergence of nonlinear periodic profile (C = 45,
A, =36). (c) Small periodic perturbation grows until it reaches zero at some location leading
to strong nonlinearity followed by disappearance of some peaks (C= 2, A, = 1.6). (d) Small
periodic perturbation grows until it saturates at steady state multipeak periodic profile with
the amplitude predicted by weakly nonlinear theory (C= 35, A, = 28).
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