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Abstract
Rod and cone photoreceptors possess ribbon synapses that assist in the transmission of graded
light responses to second-order bipolar and horizontal cells of the vertebrate retina. Proper
functioning of the synapse requires the juxtaposition of presynaptic release sites immediately
adjacent to postsynaptic receptors. In this review, we focus on the synaptic, cytoskeletal, and
extracellular matrix proteins that help to organize photoreceptor ribbon synapses in the outer
plexiform layer. We examine the proteins that foster the clustering of release proteins, calcium
channels, and synaptic vesicles in the presynaptic terminals of photoreceptors adjacent to their
postsynaptic contacts. Although many proteins interact with one another in the presynaptic
terminal and synaptic cleft, these protein–protein interactions do not create a static and immutable
structure. Instead, photoreceptor ribbon synapses are remarkably dynamic, exhibiting structural
changes on both rapid and slow time scales.
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Introduction
Synapses are highly specialized contacts between neurons that have evolved to transmit
signals effficiently and reliably throughout the nervous system. At chemical synapses,
changes in the electrical potential of a cell are converted into a chemical signal. The
classical mechanism involves a depolarization-induced Ca2+ influx causing SNARE proteins
to intertwine and pull vesicles to the plasma membrane (Pang & Südhof, 2010). The
subsequent fusion event results in vesicles emptying their neurotransmitter contents into the
synaptic cleft to signal through receptors on postsynaptic neurons. Synapses require a highly
organized placement of pre-synaptic exocytotic proteins, endocytotic proteins, calcium
channels, postsynaptic receptors, and other associated proteins. In photoreceptor terminals,
synapses are organized around a large electron-dense structure known as the ribbon. In this
review, we examine the molecular architecture of ribbon synapses in photore-ceptor
terminals with a focus on interactions with the cytoskeleton and extracellular matrix (ECM).
We also summarize studies showing that photoreceptor ribbon synapses are not static
structures but can be altered dynamically on both fast and slow time scales.
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CaV channels cluster at the active zone
Physiological experiments have established that the voltage-gated calcium (CaV) channels in
rod and cone photoreceptors are high voltage-activated L-type channels (Bader et al., 1982;
Corey et al., 1984; Barnes & Hille, 1989; Lasater & Witkovsky, 1991; Wilkinson & Barnes,
1996). There is no evidence for non-L-type CaV channels in photoreceptors. Freeze-fracture
electron micrographs of photoreceptor terminals show a random array of hexagonal-shaped
particles at the apex of the synaptic ridge that are thought to be CaV channels (Raviola &
Gilula, 1975; Schaeffer et al., 1982). Terminals of rods and cones in the outer plexiform
layer (OPL) label with antibodies to poreforming CaV1.2 (α1C), CaV1.3 (α1D), and CaV1.4
(α1F) subunit isoforms (Nachman-Clewner et al., 1999; Firth et al., 2001; Henderson et al.,
2001; Morgans, 2001; Morgans et al., 2001, 2005; Wu et al., 2003; Mansergh et al., 2005;
tom Dieck et al., 2005; Xiao et al., 2007; Specht et al., 2009; Kersten et al., 2010; Mercer et
al., 2011a,b). High levels of CaV1.3 and CaV1.4 messenger RNA (mRNA) are present in
retina (Bech-Hansen et al., 1998; Strom et al., 1998; Xiao et al., 2007) but only low levels of
CaV1.2 mRNA (Kamphuis & Hendriksen, 1998), suggesting that the labeling of
photoreceptors by CaV1.2 antibodies may be nonspecific. Mutations in CaV1.4 greatly
diminish the electroretinogram (ERG) b-wave in knockout mice, produce malformed
ribbons, and cause congenital stationary night blindness (CSNB) in humans. Combined with
immunohistochemical evidence, these findings suggest that CaV1.4 is the principle CaV
channel subtype in rods (Bech-Hansen et al., 1998; Strom et al., 1998; Mansergh et al.,
2005; Chang et al., 2006; Striessnig et al., 2010).

The contribution of CaV1.3 at photoreceptor synapses is less clear. Immunoelectron
micrographs show labeling for antibodies to CaV1.3 at the base of ribbons in mouse retina
(Kersten et al., 2010). However, CaV1.3 mutations in mouse retina do not significantly
diminish the b-wave (Wu et al., 2007), and b-waves of CaV1.3/CaV1.4 double mutants do
not appear to differ from those of CaV1.4 single mutants (McCall & Gregg, 2008). It may be
that CaV1.3 channels are present only in a subpopulation of cones. For example, CaV1.3
antibodies label M cones but not S cones in the tree shrew retina (Morgans, 1999). Subtype
differences among cones also occur in salamander retina where protein kinase A (PKA)
inhibits Ca2+ currents in rods and short wavelength-sensitive small single cones but
enhances Ca2+ currents of long wavelength-sensitive large single cones (Stella & Thoreson,
2000). PKA activation also enhances currents from heterologously expressed CaV1.3
channels (Qu et al., 2005; Liang & Tavalin, 2007). The pharmacological properties of Ca2+

currents, including partial block by omega-conotoxin, are consistent with the presence of
CaV1.3 channels in salamander cones (Wilkinson & Barnes, 1996). Antibodies to α2δ4
subunits label photoreceptor terminals (Mercer et al., 2011a), and mutations in β2 or α2δ4
subunits cause diminished ERG b-waves and CSNB, suggesting that these are the principle
CaV channel accessory subunits in photoreceptors (Ball et al., 2002; Wycisk et al., 2006a,b).

Excision of the synaptic terminal diminishes rod calcium currents by 95%, indicating that
most of the CaV channels are located in the terminal (Xu & Slaughter, 2005). As illustrated
in Fig. 1, sites of intraterminal Ca2+ influx also colocalize with synaptic ribbons in rod
photoreceptor terminals. In this example, changes in intracellular Ca2+ levels were
visualized in a salamander rod using the Ca2+-sensitive dye, Oregon Green BAPTA-6F,
(Invitrogen, Carlsbad, CA) (KD = 3 μM Ca2+), and the ribbon was labeled with a
rhodamine-conjugated consensus peptide that binds selectively to the ribbon protein, ribeye
(Zenisek et al., 2004). Both dyes were introduced into the rod through a patch-clamp pipette.
Sites of Ca2 + influx and ribbons are also colocalized in cones (Choi et al., 2008). Consistent
with close proximity between CaV channels and the ribbon, immunohistochemical studies
provide evidence for clusters of CaV channels at the base of the ribbon (Nachman-Clewner
et al., 1999; Morgans, 2001; Morgans et al., 2005; Specht et al., 2009; Mercer et al., 2011b).
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Furthermore, individual CaV channels labeled with quantum dots conjugated to α2δ4
antibodies colocalize with fluorescently labeled ribeye consensus peptides (Mercer et al.,
2011a), and immunoelectron micrographs show CaV channels along the synaptic ridge at the
base of the ribbon (tom Dieck et al., 2005; Kersten et al., 2010).

Ca2+-dependent vesicle release and replenishment at photoreceptor
synapses

At most synapses, Ca2+ needs to attain high micromolar levels to stimulate release, and
therefore, exocytosis is typically restricted to release sites within nanodomains of high Ca2+

very close to CaV channels. A Ca2+ nanodomain is defined as the 10–100 nm range in the
immediate vicinity of a Ca2+ channel where Ca2+ is not in equilibrium with fast buffers
(Naraghi & Neher, 1997). Examples of synapses where release involves Ca2+ nanodomains
include the squid giant synapse (Adler et al., 1991), mammalian rod bipolar cell (Jarsky et
al., 2010), GABAergic basket cells in the hippocampus (Bucurenciu et al., 2008), and
mature calyx of Held (Fedchyshyn & Wang, 2005; Weber et al., 2010). The release
mechanism in rods and cones is much more sensitive to Ca2+ than at other synapses, and
exocytosis can thus be triggered by submicromolar Ca2+ levels (Rieke & Schwartz, 1996;
Thoreson et al., 2004; Sheng et al., 2007; Duncan et al., 2010). The high Ca2+ afffinity of
the release mechanism at photoreceptor synapses suggests that release might involve
spatially averaged Ca2+ levels in the terminal and not the high Ca2+ levels found in
nanodomains. However, experiments comparing effects of the diffusible synthetic Ca2+

chelators ethylene glycol tetraacetic acid (EGTA) and 1,2-bis (o-aminophenoxy) ethane,
N,N,N′,N′-tetraacetic acid (BAPTA) on release indicate that release sites are within 50–100
nm of Ca2+ channels in amphibian cones (Mercer et al., 2011b). This was shown by the
finding that when 0.5 mM EGTA, 5 mM EGTA, or 5 mM BAPTA were introduced into
cones, only 5 mM BAPTA reduced the amplitude of glutamatergic post-synaptic currents in
second-order neurons (Mercer et al., 2011b). Comparisons of the calcium current to the size
of the readily releasable pool of synaptic vesicles suggest that only a few Ca2+ channel
openings accompany fusion of each vesicle during the first few milliseconds of release from
cones (Bartoletti et al., 2010). Thus, when cones are depolarized by a light decrement, the
release of vesicles is triggered by the emergence of nanodomains of [Ca2+]i beneath open
CaV channels close to ribbon release sites, providing a tight coupling between channel
opening and vesicle fusion (Mercer et al., 2011b).

In darkness, cones appear to switch from a tight coupling between CaV channel opening and
vesicle fusion to a mode of release whereby the rate of sustained release is governed by the
rate of replenishment. At the dark potential, cones are depolarized to a membrane potential
of approximately −40 mV, allowing the continued influx of Ca2+, which in turn causes a
depletion of the readily releasable pool of vesicles at the base of the ribbon (Jackman et al.,
2009; Bartoletti et al., 2010). Under these conditions, the rate of synaptic release is limited
not by the rate of individual channel openings but by the rate at which release-ready vesicles
can be replenished (Jackman et al., 2009). The replenishment process is Ca2+ dependent
(Babai et al., 2010) and so, even when the releasable pool is depleted in darkness, release is
nonetheless regulated by Ca2+ influx through CaV channels. However, the Ca2+-dependent
sites involved in replenishment are >200 nm from CaV channels, further than the distance
between release sites and channels (Babai et al., 2010). Because these Ca2+-dependent sites
of replenishment are not located within Ca2+ nanodomains beneath individual channels,
replenishment is regulated by the spatially averaged levels of Ca2+ entering through multiple
channels. In bright light, random channel openings are rare, and individual channel openings
are closely synchronized with decrements in light intensity. Under these conditions, close
coupling between channel openings and release events can provide an accurate read out of
stimulus-dependent changes in membrane potential. When cones are depolarized in
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darkness, many Ca2+ channel openings occur at random intervals. Controlling release under
these conditions by regulating the rate of replenishment offers the benefit of reducing noise
that can be introduced by stochastic channel openings.

Evidence that the Ca2+-dependent replenishment mechanism involves sites >200 nm from
CaV channel suggests that proteins along the ribbon may participate in this process. At the
calyx of Held, calmodulin plays a key role in the Ca2+-dependent acceleration of
replenishment (Sakaba & Neher, 2001). One target of calmodulin is the GTP-binding
protein, Rab3a (Park et al., 2002), and Rab3a has been shown to play a role in replenishment
(Leenders et al., 2001). Rab3a interacts with RIM2 proteins along the ribbon and has been
proposed to tether vesicles to the ribbon (Fukuda, 2003; Dulubova et al., 2005; tom Dieck et
al., 2005; Deguchi-Tawarada et al., 2006; Uthaiah & Hudspeth, 2010). Along with
calmodulin, Rab3a is an appealing candidate for regulating replenishment at the cone
ribbon.

Synaptic Ca2+ buffering and extrusion
Ca2+ influx can induce vesicle release and regulate replenishment, but rising [Ca2+]i levels
are balanced by Ca2+ extrusion and buffering mechanisms. One of the first studies of
synaptic Ca2+ extrusion in photoreceptors was performed by Morgans et al. (1998) to
determine whether the Na+/Ca2+ exchanger or the plasma membrane Ca2+ ATPase (PMCA)
tempered increases in [Ca2+]i following a depolarizing stimulus. PMCA is considered
critical for Ca2+ handling at other synapses (Juhaszova et al., 2000; Wanaver-becq et al.,
2003; Gover et al., 2007), but the Na+/Ca2+ exchanger regulates Ca2+ levels in the outer
segments of rod photoreceptors (Thoreson et al., 1997; Lagnado et al., 1998; Krizaj &
Copenhagen, 2002). Morgans et al. (1998) demonstrated that the PMCA handled Ca2+

extrusion in terminals of cone photoreceptors from the tree shrew, and that photoreceptors in
the tree shrew, mouse, goldfish, and rat express a PMCA protein using a pan-PMCA channel
antibody. Labeling with PMCA antibodies is found just above antibodies to CaV1.3
channels, colocalized with presynaptic post-synaptic density-95 (PSD-95) complexes and
the Crumbs complex protein membrane palmitoylated protein 4 (MPP4) (Yang et al., 2007;
Aartsen et al., 2009). Therefore, it seems reasonable to suggest that PMCA transporters lie
some distance from synaptic release sites to avoid quenching brief Ca2+ signals in the active
zone during dim light conditions but capable of limiting global increases in [Ca2+]i
throughout the terminal. Similar PMCA expression patterns are found in the retinas of mice
(Krizaj et al., 2002; Cia et al., 2005; Johnson et al., 2007), tiger salamanders (Krizaj et al.,
2003, 2004), and chickens (Tolosa de Talamoni et al., 2002). However, using a C57Bl/6J
mouse model, Johnson et al. (2007) found that PMCA is critical for Ca2+ extrusion in rod
terminals, whereas the Na+/Ca2+ exchanger is more important for maintaining Ca2+

homeostasis in cone terminals. This corroborates the finding that PMCA2 knockout mice
exhibit deflcits only in rod-mediated ERG responses (Duncan et al., 2006) and calls into
question the idea that PMCAs are solely responsible for Ca2+ homeostasis in the synaptic
terminals of all photoreceptor cells.

Although Ca2+ extrusion can modulate Ca2+ homeostasis at photororeceptor synapses,
endogenous buffering systems are also important (Thoreson, 2007). Extrusion of Ca2+

through PMCA or the Na+/Ca2+ exchanger is slow compared to the kinetics of Ca2+

buffering (Klingauf & Neher, 1997; Thoreson et al., 1997; Krizaj et al., 2004; Mercer et al.,
2011b). Local calcium buffering shapes diffusion of Ca2+ influx at the active zone (Klingauf
& Neher, 1997) and thereby shapes the kinetics of neurotransmission. Endogenous neuronal
buffers include calbindin, calretinin, and parvalbumin (Bennis et al., 2005; Rusakov, 2006).
Although there is significant species-to-species variability, cone photoreceptors in most
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species contain calbindin, a fast low mobility buffer, while calretinin and parvalbumin are
only observed in the photoreceptors of a handful of species.

The calcium-binding proteins CaBP4 (Haeseleer et al., 2004; Lee et al., 2007) and
calmodulin (Miller, 1991; Griessmeier et al., 2009) are also present at photoreceptor
synapses and can buffer relatively high (>1 μM) increases in [Ca2+]i. CaBP4 shifts the
voltage activation range of CaV1.4 towards more negative potentials, allowing channels to
be effectively activated by physiological voltage levels below −40 mV (Haeseleer et al.,
2004). CaBP4 weakly inhibits calcium-dependent inactivation of CaV1.3 (Cui et al., 2007)
and is a phosphorylation target of intracellular kinase pathways (Lee et al., 2007).

The synaptic ribbon
A striking feature of many sensory synapses is the presence of a large electron-dense
structure known as the ribbon. Although its function in vesicle release is not yet fully
understood, it is believed that the ribbon assists sensory neurons in maintaining graded tonic
neurotransmission. Ribbons were initially proposed to function as conveyor belts that help
transport vesicles to the active zone for exocytosis (Bunt, 1971). However, cytosolic ATP is
not needed to release vesicles that have already been primed and attached to the ribbon,
indicating that vesicle movement along the ribbon does not involve a molecular motor
requiring ATP hydrolysis (Heidelberger, 1998). In fact, rather than accelerating vesicle
replenishment at the base of the ribbon, the observation that vesicles are depleted from the
base of the ribbon in darkness suggests that ribbons actually slow vesicle delivery (Jackman
et al., 2009). Other proposed functions include the possibility that ribbons may prime
vesicles for release, act like a flytrap to capture and deliver vesicles to the active zone, assist
with endocytosis of previously released vesicles, or coordinate multivesicular release
(Prescott & Zenisek, 2005).

Ribbons are found in bipolar and photoreceptor cells of the retina, pineal photoreceptors,
hair cells, and electroreceptors. Ultrastructural studies show differences in the shapes of
ribbons in different cell types. For example, ribbons of rod and cone photoreceptors and
bipolar cells are typically more plate-like, whereas ribbons in hair cells are often spherical in
shape (tom Dieck & Brandstätter, 2006). Synaptic ribbons in vertebrate photoreceptors are
first expressed as similar precursor spheres (Regus-Leidig et al., 2009). Spherical ribbons
are also found in photoreceptors from the hagfish retina suggesting that this may represent
the primordial shape of the ribbon (Holmberg & Ohman, 1976). The main protein in the
ribbon, ribeye, does not appear to be present in invertebrates, but photoreceptors from
Drosophila melanogaster have T-bar structures that are sometimes compared to ribbons
(Fouquet et al., 2009; Hamanaka & Meinertzhagen, 2010). Conventional vertebrate synapses
also sometimes exhibit structures that resemble ribbons, such as spherical structures at the
frog neuromuscular junction and punctate electron-dense projections at synapses between
human hippocampal neurons (Zhai & Bellen, 2004).

Ribbons at synapses of vertebrate rod and cone photoreceptors are typically 30–40 nm wide
and project 200–400 nm vertically into the cytoplasm (reviewed by Heidelberger et al.,
2005; Sterling & Matthews, 2005; Schmitz, 2009). Cone ribbons have a base extending
200–700 nm along the membrane, whereas rod ribbons are 800–1500 nm long. Bipolar cell
ribbons are normally smaller than photoreceptor ribbons (Sterling & Matthews, 2005).
Terminals of mammalian rods typically contain one ribbon, whereas amphibian rods have
multiple ribbons (Carter-Dawson & LaVail, 1979; Townes-Anderson et al., 1985; Migdale
et al., 2003; Zampighi et al., 2011), but both mammalian and nonmammalian cones have
larger terminals with a dozen or more ribbons. Vesicles tethered along the bottom one or
two rows of the ribbon contact the plasma membrane and appear to form a readily releasable
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pool of vesicles that can fuse rapidly following an increase in [Ca2+]i (Sterling & Matthews,
2005; Bartoletti et al., 2010). A single ribbon at a rod synapse tethers ~25 vesicles to the
plasma membrane at the base of the ribbon with a total tethered pool of ~700 vesicles
(Thoreson et al., 2004; Heidelberger et al., 2005), whereas cone ribbons have a readily
releasable pool of ~20 vesicles and a total tethered pool of ~110 vesicles (Innocenti &
Heidelberger, 2008; Bartoletti et al., 2010).

Ribeye
Technological advances over the past 20 years have allowed scientists to characterize many
of the key structural and functional domains of photoreceptor ribbons. The primary protein
constituent of the ribbon is ribeye, which was first identified, characterized, and cloned by
Schmitz et al. (2000). Ribeye is composed of a novel proline-rich A domain and a
carboxyterminal B domain that is almost identical in sequence to the nuclear repressor,
CtBP2. Both protein products are encoded by a single gene, but ribeye is expressed only at
ribbon synapses (Wan et al., 2005; Magupalli et al., 2008). Synaptic ribbons have been
visualized by fluorescent and electron microscopy using antibodies to ribeye (Schmitz et al.,
2000), antibodies to CtBP2 (tom Dieck et al., 2005; Uthaiah & Hudspeth, 2010), and
fluorescently labeled ribeye consensus peptides (Zenisek et al., 2004; Choi et al., 2008;
LoGiudice et al., 2008; Zenisek, 2008).

The A domain of ribeye constitutes most of the internal scaffold of the ribbon structure,
while the B domain faces into the cytoplasm where it can interact with other ribbon-related
proteins (Schmitz et al., 2000; Alpadi et al., 2008; Magupalli et al., 2008). The scaffold of
the ribbon is constructed from homotypic and heterotypic interactions between A and B
domains of adjacent ribeye molecules. Heterotypic interactions between A and B domains
are inhibited by nicotinamide adenine dinucleotide [NAD(H)] (Magupalli et al., 2008).

Ribbon-associated proteins
Although the backbone of a ribbon is constructed from interlinking ribeye peptides, a
number of accessory cytomatrix proteins at the synapse appear to help organize vesicle
trafficking near the ribbon (Zanazzi & Matthews, 2009). Directly beneath the ribbon in
photoreceptor cells, but not most other ribbon synapses, is a trough-like electron-dense
structure called the arciform density (Dowling & Boycott, 1966; Gray & Pease, 1971;
Lasansky, 1973; Raviola & Gilula, 1975; Raviola & Raviola, 1982). The arciform density
may help to anchor the ribbon to the plasma membrane and perhaps shape the diffusion of
Ca2+ entering through Ca2+ channels beneath it, but the molecular constituents of the
arciform density have not been identified.

The protein bassoon has received a great deal of attention as a ribbon coorganizer (Dick et
al., 2003; tom Dieck et al., 2005; Frank et al., 2010; Regus-Leidig et al., 2010), although it is
not localized exclusively to ribbon synapses (tom Dieck et al., 1998; Richter et al., 1999;
Altrock et al., 2003; Hallermann et al., 2010). Bassoon is a large 420 KD protein that
comigrates with ribeye in precursor spheres during development (Regus-Leidig et al., 2009)
and has been localized to the base of the synaptic ribbon (Brand-stätter et al., 1999; tom
Dieck et al., 2005). Bassoon may function as a ribbon-anchoring protein, but it is not clear if
it is directly associated with the arciform density (Zanazzi & Matthews, 2009). Bassoon
knockout animals have detached ribbons, deformed Ca2+ channel clusters, and impaired
vesicle attachment to the membrane in both the retina (Dick et al., 2003; tom Dieck et al.,
2005) and auditory hair cells (Khimich et al., 2005; Frank et al., 2010). In the retina,
bassoon knockout mice exhibit diminished ERG b-waves. In hair cells of bassoon knockout
mice, fast synchronous release is inhibited more strongly than slower sustained release
(Khimich et al., 2005), suggesting a role for nonribbon sites in maintaining tonic
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neurotransmission in these cells. At ribbon and nonribbon synapses, bassoon mutants also
show defects in vesicle replenishment, particularly for fast refilling (Frank et al., 2010;
Hallermann et al., 2010). Bassoon and ribeye often colocalize with the protein piccolo
(Cases-Langhoff et al., 1996), in both initial precursor spheres (Dresbach et al., 2006;
Regus-Leidig et al., 2010) and fully functional ribbon-associated active zones (Dick et al.,
2001; tom Dieck et al., 2005). Bassoon and piccolo share a similar structure and may share
similar functions (Takao-Rikitsu et al., 2004; Mukherjee et al., 2010).

Cytomatrix at the active zone-associated structural protein (CAST) helps to organize the
active zone at many synapses by interacting with bassoon, piccolo, RIM1, and RIM2, as
well as indirectly with Munc13 (Hida & Ohtsuka, 2010). CAST is concentrated at the base
of the ribbon along with RIM2, piccolo, and bassoon (Takao-Rikitsu et al., 2004; Deguchi-
Tawarada et al., 2006). RIM proteins interact with many of the key proteins in release
including synaptotagmin 1, SNAP-25, Rab3A, Munc13, and CaV channels (Matteoli et al.,
1991; Geppert et al., 1997; Wang et al., 1997; von Kriegstein et al., 1999; Coppola et al.,
2001; Schoch et al., 2002; Deguchi-Tawarada et al., 2006; Gracheva et al., 2008; Kaeser et
al., 2011).

RIM1 and RIM2 are differentially located with RIM1 found along the face of the ribbon and
RIM2 clustered at the base of the ribbon (tom Dieck et al., 2005). ELKS has a high degree
of homology to CAST and shares similar binding partners including bassoon and RIM1
(Inoue et al., 2006), but it is not concentrated as tightly at the ribbon base (Deguchi-
Tawarada et al., 2006). This suggests that RIM2 may interact with CAST near the base of
the ribbon, whereas interactions between RIM1 and ELKS may predominate further away
from the base. CAST, ELKS, bassoon, piccolo, and RIM all appear to interact with an N-
terminal region of Munc13. Interactions among these proteins may form an important node
for organizing the synaptic active zone (Wang et al., 2009; Hida & Ohtsuka, 2010).

Interactions between RIM proteins and the C-terminal region of CaV channel β subunits
promote the clustering CaV channels close to synaptic vesicles (Coppola et al., 2001;
Kiyonaka et al., 2007; Gebhart et al., 2010; Han et al., 2011; Kaeser et al., 2011).
Interactions between CaV channels and RIM proteins can also be promoted by intermediary
RIM-binding proteins (Hibino et al., 2002).

CaV β subunits possess SH3-HOOK-GK domains that can potentially mediate multiple
binding interactions with cytoskeletal elements, classifying them as membrane-associated
guanylate kinase (MAGUK) proteins (Chen et al., 2004; Takahashi et al., 2004; Buraei &
Yang, 2010). Although CaV channel β subunits are MAGUKs with homology to other
scaffolding proteins like PSD-95, their interactions with other cytoskeletal proteins are
limited because the guanylate kinase domain is normally shielded by interactions with the
α1 pore-forming subunit and the SH3 domain is shielded by other domains of the β subunit
(Buraei & Yang, 2010).

In addition to potential cytoskeletal interactions with CaV β subunits, the pore-forming α1
subunit of CaV1.3 channels has a carboxyterminal sequence that recognizes class I PDZ
domains (Zhang et al., 2005). CaV1.3 channels in photoreceptors can interact through this
sequence with PDZ domains on the Usher proteins whirlin (Kersten et al., 2010) and
harmonin (Gregory et al., 2011). This recognition sequence may also facilitate interactions
between Ca2+ channels and other PDZ domain proteins (Nourry et al., 2003; Feng & Zhang,
2009).

Unc119 is located near the base of the ribbon where it plays a role in endocytosis (Karim et
al., 2010) and interacts with both ribeye and the calcium-binding protein CaBP4 (Higashide
et al., 1998; Alpadi et al., 2008; Haeseleer, 2008). CaBP4 can in turn interact with CaV1.4 or
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CaV1.3 channels (Haeseleer et al., 2004; Maeda et al., 2005; Yang et al., 2006), and these
interactions may further help to localize CaV channels near the base of the ribbon.

Endocytic proteins like dynamin, amphiphysin, and clathrin are also expressed at ribbon
synapses (Ullrich & Südhof, 1994: Sherry & Heidelberger, 2005). An amphiphysin splice
variant has been identified in retinal ribbon synapses (Hosoya et al., 2004). Synaptojanin is a
polyphosphoinositide phosphatase that plays a role in clathrin-mediated endocytosis (Song
& Zinsmaier, 2003; Chang-Ileto et al., 2011). Synaptojanin antibodies label cone terminals
more prominently than rod terminals (Holzhausen et al., 2009), and loss of synaptojanin
produces floating ribbons in cone terminals (Van Epps et al., 2004). Unlike cone synapses,
rod synapses develop normally without synaptojanin suggesting different roles for this
protein and thus perhaps different endocytic pathways in the two cell types (Holzhausen et
al., 2009).

Exocytotic proteins
There is evidence that release from ribbon synapses of inner hair cells does not involve
neuronal SNARE proteins (Nouvian et al., 2011). However, photoreceptor ribbon synapses,
like those of most other neurons, appear to employ SNARE proteins during vesicle fusion:
synaptobrevin (VAMP1 and 2), SNAP-25, and syntaxin (Ullrich & Südhof, 1994;
Brandstätter et al., 1996a,b; Greenlee et al., 1996, 2001; von Kriegstein et al., 1999;
Bergmann et al., 2000; Morgans, 2000; Sherry et al., 2001, 2006; Heidelberger et al., 2003).
The v-SNARE, synaptobrevin, is located exclusively on synaptic vesicles. Immunoelectron
micrographs suggest that the t-SNARE, SNAP-25, may be present not only on the plasma
membrane but also on vesicles along the ribbon (Brändstatter et al., 1996b; Morgans et al.,
1996; Morgans & Brändstatter, 2000). It is possible that vesicular SNAP-25 may promote
vesicle priming or compound fusion prior to synaptic release. Ribbon synapses also possess
Munc18 proteins, which assist in assembling the SNARE complex and priming vesicles
(Ullrich & Südhof, 1994). One difference between photoreceptors and most other neurons is
the reliance on syntaxin 3 rather than the syntaxin 1 isoform used at many synapses
(Morgans et al., 1996; Curtis et al., 2008). Additionally, retinal ribbon synapses use
complexins 3 and 4 rather than complexins 1 and 2 used at most other terminals (Reim et al.,
2005; Zanazzi & Matthews, 2010). In complexin 3/4 knockout mice, ~25% of the synaptic
terminals exhibit free floating spherical ribbons perhaps as a result of altered synaptic
activity (Reim et al., 2005).

The identity of the calcium sensor molecules that regulate exocytosis from photoreceptors is
unclear. Experiments on non-mammalian rods and cones show that the sensor exhibits an
unusually high affinity for Ca2+ with a threshold of 400 nM and low cooperativity of
approximately two Ca2+ ions (Rieke & Schwartz, 1996; Thoreson et al., 2004; Sheng et al.,
2007; Duncan et al., 2010). This is quite different from release at synapses employing
synaptotagmin 1, which show a cooperativity of five Ca2+ ions and a requirement for much
higher Ca2+ levels (Heidelberger et al., 1994; Bollmann et al., 2000; Schneggenburger &
Neher, 2000; Beutner et al., 2001). Kreft et al. (2003) found that salamander rod terminals
could be labeled with an antibody to synaptotagmin 1, but other synaptotagmin 1 antibodies
do not label terminals of photoreceptors in salamander or goldfish (Berntson & Morgans,
2003; Heidelberger et al., 2003; Fox & Sanes, 2007). By contrast with these results in lower
vertebrates, antibodies to synaptotagmin 1 consistently label photoreceptor ribbon synapses
in the OPL of mammalian and chick retina (Greenlee et al., 1996; Bergmann et al., 2000;
Berntson & Morgans, 2003; Heidelberger et al., 2003; von Kriegstein & Schmitz, 2003;
Lazzell et al., 2004; Fox & Sanes, 2007; Wahlin et al., 2008). Antibodies for synaptotagmin
2 do not label photoreceptor terminals in chick, mouse, salamander, or goldfish, although
there is evidence for labeling of terminals in ray retina (Fox & Sanes, 2007). In hair cells, it
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has been proposed that otoferlin or synaptotagmin 4 might be the calcium sensor (Roux et
al., 2006; Johnson et al., 2010). Otoferlin is absent from photoreceptor ribbon synapses
(Uthaiah & Hudspeth, 2010); the distribution of synaptotagmin 4 in the retina has not been
examined.

Cytoskeletal components
Ribeye and ribbon-associated proteins interact extensively with the intracellular
cytoskeleton. Much of the early work elucidating cytoskeletal networks in photoreceptors
was performed using species whose rods and cones show photosensitive contractile motion
(Burnside, 1986; Nagle et al., 1986) or regenerative properties that require cytoskeletal-
dependent trafficking (Mandell et al., 1993; Vecino & Avila, 2001; Hasegawa et al., 2007).
These studies focused more on changes in cellular morphology than on specific molecular
interactions, but they offered insight into the subcellular organization of the cytoskeleton
and generally agreed that there are moderate levels of actin within the synaptic terminals of
both rod and cone photoreceptors (Nagle et al., 1986; Schmitz & Drenckhahn, 1993;
Schmitz et al., 1993; Katsumata et al., 2009). Actin and microtubule networks in
photoreceptors help to stabilize active zone components and to aid in cargo trafficking to
and from the synapse (Schmitz & Drenckhahn, 1997; Zanazzi & Matthews, 2009).

Interactions between actin and various binding partners help to sculpt pre- and postsynaptic
structure (Doussau & Augustine, 2000; Hotulainen & Hoogenraad, 2010). For example,
actin interacts with dystrophin and closely related spectrin proteins, all of which are found in
photoreceptor terminals (Lazarides et al., 1984; Isayama et al., 1991; Spencer et al., 1991;
Schmitz et al., 1993; Ueda et al., 1995, 1998; Drenckhahn et al., 1996; Blank et al., 1997,
1999; Morgans, 2000; Jastrow et al., 2006; Uthaiah and Hudspeth, 2010). One of the more
common binding partners for actin in most presynaptic terminals is synapsin, but synapsin is
absent from photoreceptor terminals (Mandell et al., 1990; Koontz & Hendrickson, 1993).
Its absence at ribbon synapses is thought to explain the high mobility of synaptic vesicles at
ribbon synapses (Holt et al., 2004; Rea et al., 2004). The network of actin fibers can exhibit
tremendous plasticity as shown in hair cells where the entire actin cytoskeleton turns over
every 48 h (Schneider et al., 2002). The regulation of actin varies among different retinal
cell types but often involves Ca2+-dependent and CaV-associated processes (Fukuda et al.,
1981; Johnson & Byerly, 1993; Job & Lagnado, 1998; Schubert & Akopian, 2004, 2006;
Oertner & Matus, 2005; Cristofanilli et al., 2007; Mizuno et al., 2010). At photoreceptor
synapses, single particle tracking studies show that individual CaV channels diffuse more
freely after the disruption of actin with cytochalasin, raising the possibility that an actin
network helps to maintain the spatial position of photoreceptor synaptic proteins (Mercer et
al., 2011a).

In addition to actin, the other two primary cytoskeletal proteins, intermediate filaments and
microtubules, are present in photoreceptors (Gray, 1976; Nagle et al., 1986). Intermediate
filaments are present in the axon and perinuclear region, whereas microtubules are found
throughout the cell (Nagle et al., 1986). At many synapses, microtubules play an important
role in vesicle delivery (Elluru et al., 1995; Lin-Jones et al., 2003; Gonzalez-Bellido et al.,
2009) and, consistent with such a possibility, they can sometimes be observed close to the
ribbon and ribbon-associated vesicles (Gray, 1976; Nagle et al., 1986; Zanazzi & Matthews,
2009).

Deficits in cytoskeletal and cytomatrix proteins can cause neurological defects including
Usher syndrome (Williams, 2008), which is the most common form of deaf-blindness.
Clinically, there are three subtypes of Usher syndrome, caused by at least 12 identified gene
loci (Kremer et al., 2006; Maerker et al., 2008; Friedman et al., 2011; Richardson et al.,
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2011). Seven USH1 loci have been identified to date and are responsible for the most severe
form of deaf-blindness syndrome (Ahmed et al., 2003; Yan & Liu, 2010). These gene
regions encode for various cytomatrix molecules including the scaffold proteins harmonin
(USH1C) and “scaffold protein containing ankyrin repeats/SAM domain” (USH1G), the
motor protein myosin VIIa (USH1B), and the cell–cell adhesion molecules cadherin 23
(USH1D) and protocadherin 15 (USH1F) (Reiners et al., 2003, 2005a, 2006; Adato et al.,
2005; El-Amraoui & Petit, 2005). Three USH2 loci encode for the scaffold proteins usherin
(USH2A) and whirlin (USH2D) as well as very large G-protein-coupled receptor 1b
(USH2C) (Reiners et al., 2005b; Yang et al., 2010). The downstream product of the lone
USH3 gene is the synaptic protein clarin-1 (Adato et al., 2002; Isosomppi et al., 2009).
Many of the Usher proteins interact with one another, as well as with the actin cytoskeleton
(Boëda et al., 2002; Inoue et al., 2006; Rzadzinska et al., 2004) and cell–cell adhesion
molecules (Küssel-Andermann et al., 2000; Reiners et al., 2006). In hair cell stereocilia and
the connecting cilium in photoreceptors, these protein networks appear to be important for
intracellular protein trafficking and structural organization. In addition to being found in
cilia, whirlin, myosin VIIa, harmonin, cadherin 23, protocadherin 15, and clarin-1 are also
present in photoreceptor terminals where they likely help organize the structure of the ribbon
synapse (El-Amraoui et al., 1996; Reiners et al., 2003, 2005a; Williams et al., 2009;
Zallocchi et al., 2009).

Lipid rafts
Along with cytoskeletal interactions, the distribution of lipids within the plasma membrane
is a major mechanism for segregating and compartmentalizing membrane proteins (Lenne et
al., 2006). Using electron microscopy and a cholesterol-binding antibiotic, filipin, Cooper
and McLaughlin (1984) found that photoreceptors display a high concentration of
cholesterol in lipid rafts at margins of the ribbon-style active zone. Consistent with the
presence of lipid rafts in photoreceptor terminals, Mercer et al. (2011a) found that labeling
of lipid raft ganglioside GM1 glycoproteins with fluorescein isothiocyanate-conjugated
toxin B stained the OPL. Cholesterol-containing lipid rafts were absent from nonribbon
locations in presynaptic terminals and were not observed in the post-synaptic dendrites of
horizontal and bipolar cells (Cooper & McLaughlin, 1984). P-/Q-type CaV channels and α2δ
CaV channel accessory subunits have been shown to localize preferentially to lipid rafts
(Taverna et al., 2004; Davies et al., 2006), suggesting that membrane cholesterol may assist
in clustering ion channels close to vesicle release machinery (Lang et al., 2001; Gil et al.,
2004; Salaün et al., 2005; Taverna et al., 2007; Linetti et al., 2010). Consistent with such a
possibility at photoreceptor synapses, depleting membrane cholesterol from photoreceptors
expanded the synaptic confinement area for CaV channels (Mercer et al., 2011a). These
results also support the hypothesis that lipid rafts act as diffusion barriers to limit the lateral
mobility of membrane proteins (Renner et al., 2009).

Summary of protein interactions within the photoreceptor ribbon synapse
Fig. 2 illustrates the coassembly of proteins at the photoreceptor ribbon synapse. Interactions
among ribeye A domains form the backbone of the ribbon (Schmitz et al., 2000; Magupalli
et al., 2008), whereas ribeye B domains on the outer face of the ribbon appear to link it to
scaffold proteins at the base such as bassoon, piccolo, and Unc119 (Alpadi et al., 2008).
Bassoon and piccolo also interact with CAST and the homologous protein ELKS (Takao-
Rikitsu et al., 2004; Tokoro et al., 2007). The protein “hub” formed by CAST, bassoon,
piccolo, RIM, and Munc13 proteins helps to cluster a number of proteins near the ribbon
(Ohara-Imaizumi et al., 2005; Inoue et al., 2006; Wang et al., 2009; Hida & Ohtsuka, 2010).
Contacts between SNARE proteins and Munc13 may help to localize SNARE complexes
beneath the ribbon (Betz et al., 1997; Guan et al., 2008; Deng et al., 2011), while
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interactions between RIM and Munc13 with Raba may link this ribbon complex directly to
vesicles (Dulubova et al., 2005). CaV channels can associate with the ribbon by virtue of
interactions with RIM proteins, CaBP4, and Unc119 (Hibino et al., 2002; Kiyonaka et al.,
2007; Han et al., 2011; Kaeser et al., 2011). Many other proteins are found at photoreceptor
ribbon synapses (Uthaiah and Hudspeth, 2010), and thus, interactions with other synaptic,
scaffolding, and motor proteins (Muresan et al., 1999; tom Dieck et al., 2005; Katsumata et
al., 2009) are also likely to help organize CaV channels, synaptic vesicles, and fusion
machinery at the ribbon synapse.

The ECM
In addition to interactions with intracellular proteins and intra-membrane proteins, active
zone-associated proteins can interact with the ECM in the synaptic cleft. A number of
different synaptic cleft proteins are important for positioning presynaptic release sites across
from postsynaptic receptors (Specht & Triller, 2008; Feng & Zhang, 2009; Lajoie et al.,
2009). We review ECM proteins, both retina specific (e.g., pikachurin, retinoschisin, and
nyctalopin) and otherwise, that have been shown to help organize photoreceptor synapses
and their postsynaptic contacts in the OPL.

Alterations in the proteins dystrophin and dystroglycan cause muscular dystrophy and can
produce visual deficits (Straub & Campbell, 1997; Waite et al., 2009). Both dystrophin and
dystroglycan are expressed at the synapses of rod and cone photoreceptors (Schmitz et al.,
1993; Ueda et al., 1995; Drenckhahn et al., 1996; Blank et al., 1997, 1999; Ueda et al., 1998;
Morgans, 2000; Jastrow et al., 2006). Futhermore, mutations in dystrophin and dystroglycan
can cause reductions in the ERG b-wave (Cibis et al., 1993; Fitzgerald et al., 1994; Pillers et
al., 1999). A retina-specific form of dystrophin, Dp260, is localized to photoreceptor
synapses (D’Souza et al., 1995), and reductions in this protein cause a selective loss of
dystroglycan from the OPL (Kameya et al., 1997). Dystroglycan precursor proteins are
cleaved into two subunits: β-dystroglycan and α-dystroglycan. α-dystroglycan is a heavily
glycosylated extracellular protein that interacts with multiple ECM partners including β-
dystroglycan, pikachurin, fibulin, and laminin (Ibraghimov-Beskrovnaya et al., 1992; Talts
et al., 1999; Sato et al., 2008). In addition to binding to α-dystroglycan outside the cell, β-
dystroglycan spans the plasma membrane and binds to dystrophin inside the cell. Dystrophin
in turn interacts with the actin cytoskeleton. Disruption of β-dystroglycan causes changes in
K+ channel clustering in Müller cells but does not appear to alter dystrophin localization in
the outer retina or cause changes in retinal lamination patterns (Satz et al., 2009). By
contrast, as discussed below, impaired interactions between α-dystroglycan and pikachurin
produce significant outer retinal defects.

The ECM protein pikachurin interacts with glycosylated α-dystroglycan at photoreceptor
terminals (Sato et al., 2008; Kanagawa et al., 2010; Hu et al., 2011). The presence of
pikachurin is critical for establishing contacts between rods and bipolar cells (Sato et al.,
2008). Pikachurin knockout mice yield viable offspring but show morphological defects in
OPL organization (Kanagawa et al., 2010) and blunted ERG responses (Sato et al., 2008).
Hypoglycosylation of α-dystroglycan can impede dystroglycan–pikachurin interactions,
causing defects in the OPL similar to those observed in pikachurin knockout mice
(Kanagawa et al., 2010; Hu et al., 2011). Although a postsynaptic protein partner for
pikachurin has not been identified, these data suggest that pikachurin provides an
intermediary tether between the terminal of a photoreceptor and dendrite of a bipolar cell.

Laminin isoforms have been implicated in the functional organization of the OPL and
photoreceptor outer segment layer (Libby et al., 1999; Biehlmaier et al., 2007). Laminin
interacts with multiple ECM proteins including α-dystroglycan and retinoschisin
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(Claudepierre et al., 2005; Steiner-Champliaud et al., 2006). Seven laminin subtypes have
been described in the retina (Libby et al., 2000), and mutations of at least two laminin
subtypes result in floating ribbons (Biehlmaier et al., 2007).

Retinoschisin is a secreted retina-specific OPL matrix protein, and mutations cause the
retinopathy X-linked retinoschisis (Grayson et al., 2000; Tantri et al., 2004; Vijayasarathy et
al., 2008). This protein is a large disulfide-linked ECM organizing protein, with a critical
adhesion site called the discoidin domain. Defects in the discoidin domain of retinoschisin
disrupt trafficking and secretion (Wu & Molday, 2003) and are thought to contribute to
developmentally dependent changes in retina morphology and subsequent retinal
dysfunction (Weber et al., 2002; Takada et al., 2004, 2008). The discoidin domain of
retinoschisin can interact with a number of binding partners: anionic phospholipids
(Vijayasarathy et al., 2007; Kotova et al., 2010), galactose (Dyka et al., 2008), Na+/K+-
ATPase (Molday et al., 2007; Shi et al., 2009; Friedrich et al., 2011), photoreceptor CaV
channels (Shi et al., 2009), laminin, alpha crystallin, and the binding partner for peanut
agglutinin (Steiner-Champliaud et al., 2006). Like pikachurin, a postsynaptic binding partner
for retinoschisin has not been identified, but retinoschisin is nevertheless essential for proper
development and function of the retina (Park et al., 2009; Sergeev et al., 2010).

The retina-specific ECM protein nyctalopin, derived from the NYX gene, has been
implicated in a form of CSNB (Bech-Hansen et al., 2000; Pusch et al., 2000) and the mouse
“no b-wave” (NYXnob) mutant (Gregg et al., 2003, 2007). Analysis of ERGs in CSNB
patients and NYXnob mutant mice indicates a failure of transmission from photoreceptors to
ON bipolar cells (Khan et al., 2005; Bahadori et al., 2006; Leroy et al., 2009). This is similar
to effects of postsynaptic mutations in the glutamate receptor, mGluR6, or the transduction
channel, TRPM1, at the ON bipolar synapse (McCall & Gregg, 2008; Shen et al., 2009; van
Genderen et al., 2009; Koike et al., 2010; Morgans et al., 2010). Nyctalopin appears to target
TRPM1 to the tips of ON bipolar cell dendrites, which may explain the similarity in ERG
phenotypes when nyctalopin or TRPM1 are mutated (Cao et al., 2011; Pearring et al., 2011).
Like mGluR6 and TRPM1 knockout animals, nyctalopin knockout animals show normal
morphology in the OPL (Ball et al., 2003). This contrasts with mutations of presynaptic
proteins (e.g., CaV channels, bassoon, or ribeye) that lead to disorganization of the OPL,
including the sprouting of ectopic synapses (McCall & Gregg, 2008). The relatively normal
OPL structure of NYX mutants is consistent with the hypothesis that nyctalopin is more
important for maintaining the dendritic organization of ON bipolar cells, whereas the
disorganization of the OPL that accompanies mutations in pikachurin or retinoschisin
suggests that these proteins are more important for presynaptic organization.

Crumbs (Crb), a transmembrane ECM protein, acts as a scaffold and is a critical element in
the apical–basal development of photoreceptors (reviewed in Gosens et al., 2008). Three
CRB proteins have been identified in humans and mice. Deletion or missense mutations of
Crumbs genes can lead to Leber’s congenital amaurosis and retinitis pigmentosa type 12
(den Hollander et al., 1999; Lotery et al., 2001; Meuleman et al., 2004; van den Hurk et al.,
2005) indicating a pivotal role in the normal assembly and function of the retina. Gain-of-
function mutations also suggest that proper expression of CRB during development is
required to produce the normal laminar structure of the outer retina (Fan et al., 2003). The
CRB protein assembly links photoreceptors to surrounding Müller glia at the outer limiting
membrane, just beyond the outer nuclear layer (Mehalow et al., 2003; Van de Pavert et al.,
2004). CRB1, CRB2, and CRB3 bind directly to protein 4.1 (EBP41)-L5 and MPP5 family
to maintain neural–glial connectivity at adherens junctions in the outer limiting membrane
(Knust & Bossinger, 2002; Meuleman et al., 2004; van de Pavert et al., 2004). At
photoreceptor synapses, there is evidence for CRB2, CRB3, MPP4, MPP5, and Veli3
expression but not CRB1 expression (van de Pavert et al., 2004; Kantardzhieva et al., 2005,
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2006; Stöhr et al., 2005; Aartsen et al., 2006). Among other functions, these proteins are
thought to regulate the synaptic localization of PMCA proteins in rods (Yang et al., 2007).

Despite its name, PSD-95 is not limited to postsynaptic locations but can also be found
presynaptically in terminals of photoreceptors (Koulen et al., 1998). PSD-95 contains PDZ
domains that can interact with interact with a number of proteins (Nourry et al., 2003; Feng
and Zhang, 2009). In photoreceptor terminals, PSD-95 has been shown to interact with
Crumbs-related proteins (Aartsen et al., 2006), PMCA (Aartsen et al., 2009), and the
putative calcium-activated chloride channel, TMEM16B (Stöhr et al., 2009). PMCA and
calcium-activated chloride channels are not clustered tightly near the synaptic ribbon but
distributed more diffusely throughout photoreceptor terminals (Morgans et al., 1998; Mercer
et al., 2011b). PSD-95 may thus be more important for organizing proteins in surrounding
parts of the synaptic terminal, whereas other proteins discussed earlier (e.g., RIM and
Munc13) may be more important for organizing proteins near the ribbon.

Yamagata and Sanes (2010) showed evidence for a transsynaptic scaffold in photoreceptors
involving MAGI proteins. Like PSD-95, MAGI proteins contain multiple PDZ domains
(Nourry et al., 2003). MAGI proteins in the presynaptic terminals of photoreceptors appear
to be linked across the synaptic cleft by extracellular Sidekick-2 proteins and cadherins to
MAGI proteins in postsynaptic dendrites (Yamagata et al., 2002; Yamagata & Sanes, 2010).
Sidekick-2 may be retina specific since homologous transsynaptic scaffold proteins have not
yet been described at other synapses.

Summary of protein interactions with the ECM at the photoreceptor ribbon
synapse

Fig. 3 summarizes various extracellular protein–protein interactions across the OPL. As
described above, PSD-95 in photoreceptor terminals can link to PMCA (Aartsen et al.,
2009), TMEM16B calcium-activated chloride channels (Stöhr et al., 2009), and the Crumbs
complex (Yang et al., 2007). Whereas RIM and Munc13 proteins appear to be particularly
important for organizing active zone proteins close to the ribbon (Fig. 2), PSD-95 may be
more important for organizing proteins in neighboring nonribbon regions of the terminal. By
virtue of its interactions with laminin, CaV channels, and Na+/K+ ATPases, retinoschisin
may be an important node for organizing ECM proteins (Molday et al., 2007; Shi et al.,
2009; Friedrich et al., 2011). Laminin and pikachurin can also interact with the
dystroglycan/dystrophin complex (Claudepierre et al., 2005; Kanagawa et al., 2010). Other
links among ECM proteins remain to be discovered, such as binding partners for nyctalopin
and Crumbs complex proteins.

Dynamic changes in ribbon proteins
The need to maintain efficient and reliable neuron-to-neuron communication would appear
to dictate a relatively fixed arrangement of calcium channels, vesicle release sites, and
postsynaptic receptors at many synapses, including photoreceptor synapses. The many
interactions among cytoskeletal, intramembrane, ribbon-associated, and ECM proteins
described above also suggest a static and heavily reinforced structure. However, despite
these expectations, there is evidence for a surprising degree of structural plasticity at
photoreceptor ribbon synapses, some of which operates on a very rapid time scale.

As mentioned above, mutations in a number of different presynaptic proteins can cause
neurodegenerative changes that are accompanied by changes in ribbon structure. For
example, mutations in CaV1.4, bassoon, complexin, synaptojanin, and laminin can produce
floating ribbons (Dick et al., 2003; Reim et al., 2005; tom Dieck et al., 2005; Chang et al.,

MERCER and THORESON Page 13

Vis Neurosci. Author manuscript; available in PMC 2012 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2006; Biehlmaier et al., 2007). Mutations in tubby-like protein 1 (TULP1), which underlies
a form of autosomal recessive retinitis pigmentosa, also causes changes in the structure of
photoreceptor ribbons (Grossman et al., 2009). TULP1 appears to play a role in intracellular
membrane trafficking but its role in synaptic function is unclear. Additionally, mutations in
cysteine string protein alpha, a chaperone protein that prevents SNAP-25 degradation and
SNARE complex formation (Sharma et al., 2011), cause photoreceptor degeneration
accompanied by floating ribbons and the appearance of electron-dense aggregates (Schmitz
et al., 2006). In addition to changes in ribbon structure, mutations in presynaptic CaV
channel subunits (α1F, β2α, α2δ4), and the calcium channel-associated protein CaBP4 can
also promote the extension of dendritic processes from bipolar and horizontal cells into the
outer nuclear layer and formation of ectopic synapses (Haeseleer et al., 2004; McCall &
Gregg, 2008).

More surprising than the ability of mutations and neurodegenerative changes to induce long-
term structural changes, ribbons in rods and cones can alter their structure reversibly on a
diurnal basis (Abe & Yamamoto, 1984; Vollrath & Spiwoks-Becker, 1996; Adly et al.,
1999; Balkema et al., 2001; Spiwoks-Becker et al., 2004). At night, rod ribbons form plate-
like structures, but in daytime, ribbons become much shorter and are associated with
adjacent electron-dense spherical bodies. In the transition between these two forms during
crepuscular conditions, the ribbons often assume a club-like appearance (Abe & Yamamoto,
1984; Vollrath & Spiwoks-Becker, 1996; Adly et al., 1999). It has recently been reported
that these differences are much more pronounced in C57Bl/6J mice than Balb/cJ mice
(Fuchs et al., 2011). Diurnal changes in ribbon shape appear to be driven by light, not
circadian rhythms (Spiwoks-Becker et al., 2004). Diurnal structural changes have also been
observed in ribbons from pineal photoreceptors (Kurumado & Mori, 1977; Kikuchi et al.,
2000) and retinal bipolar cells (Hull et al., 2006). The finding that heterotypic interactions
between A and B domains of ribeye are inhibited by NAD(H) has led to the proposal that
metabolically driven changes in NAD(H) levels might regulate diurnal changes in ribbon
structure (Magupalli et al., 2008).

Ribbons are also capable of dynamic movements on very short time scales. Bipolar cell
ribbons labeled with fluorescently conjugated ribeye-binding peptide can exhibit both small
(Zenisek et al., 2004; Mercer et al., 2011a) and occasional large rapid excursions through the
cell (Zenisek et al., 2004).

Diurnal changes in postsynaptic processes have been described. However, these appear to
occur only in fish retina where exposure to light stimulates the tips of horizontal cell
dendrites (known as spinules) to extend into the cone pedicle and darkness causes them to
retract (reviewed by Wagner & Djamgoz, 1993).

The possibility of rapid changes in the arrangement of pre-synaptic proteins has been
investigated by visualizing the movements of individual CaV channels labeled with brightly
fluorescent quantum dots (Mercer et al., 2011a). Streptavidin-coated quantum dots, bound
through a biotinylated secondary antibody, were attached to the extracellular domain of the
α2δ4 accessory subunit of L-type CaV channels in photoreceptors. Even though CaV
channels interact with multiple proteins, single particle tracking experiments show that
individual CaV channels are continuously in motion within the plasma membrane of
photoreceptors (Mercer et al., 2011a). Movements of CaV channels are confined to a small
region near the ribbon that roughly matches the size of the active zone, consistent with
evidence that CaV channels cluster beneath the ribbon in photoreceptors and hair cells
(Raviola & Gilula, 1975; tom Dieck et al., 2005; Frank et al., 2010). Some of the CaV
channel movement may reflect movement of the overlying ribbon but ribbon movements are
much smaller than CaV channel movements (Mercer et al., 2011a).
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Depolarization-evoked fusion of vesicles at the base of the ribbon can abruptly increase CaV
channel movements, propelling them away from the center of the confinement domain
(Mercer et al., 2011a). The lipid constituents of vesicle membranes do not appear to differ
from plasma membrane lipids (Takamori et al., 2006), suggesting that this increased channel
movement is probably not due to changes in local lipid composition but more likely due to a
brief expansion of the active zone membrane. Channels rebound towards the center of the
confinement domain soon after the termination of exocytosis with a time course similar to
that of endocytotic membrane retrieval. Thus, changes in the rate of vesicle fusion may
cause the synaptic membrane to inflate and deflate like a balloon. These results are
consistent with the suggestion that the fusion of synaptic vesicles may disorganize the
arrangement of nearby exocytotic proteins and thereby contribute to postsynaptic depression
(Neher & Sakaba, 2008; Hosoi et al., 2009; Kim & von Gersdorff, 2009). Disorganization of
the synapse by altered membrane fusion and retrieval may also explain the presence of
malformed ribbons produced by mutations of proteins involved in exocytosis and
endocytosis.

Disruption of the actin cytoskeleton or depletion of cholesterol from cholesterol-rich lipid
rafts at the base of the ribbon expand the size of the CaV channel confinement domain,
allowing channels to move further away from the ribbon (Mercer et al., 2011a). Ca2+

channels are normally confined to a region within 50–100 nm of release sites (Mercer et al.,
2011b). Increasing that distance would be expected to reduce the probability that an
individual channel opening could induce vesicle fusion and thereby diminish the coupling
efficiency between channel opening and vesicle fusion. Changes in postsynaptic receptor
mobility can produce changes in synaptic strength (Heine et al., 2008; Petrini et al., 2009;
Rust et al., 2010). For example, increasing the lateral mobility of AMPA receptors in the
hippocampus promotes recovery from desensitization by speeding the return of
undesensitized receptors to the synapse (Heine et al., 2008). Turnover of actin promoted by
n-cofilin enhances AMPA receptor mobility and impairs both long-term potentiation and
long-term depression (Rust et al., 2010). By analogy, we hypothesize that changes in CaV
channel mobility caused by changes in endocytotic activity, actin, cholesterol-rich lipid
rafts, or other partner proteins might also be a mechanism for regulating release
presynaptically.

Conclusion
This review summarizes many of the different cytoskeletal, cytosolic, membrane, and ECM
proteins that participate in assembling the synapse during development and maintaining the
position of proteins in locations needed for efficient and reliable transmission.
Photoreceptors share many intracellular and ECM proteins with other central nervous
system synapses, but there are also a number of unique architectural elements (e.g., synaptic
ribbon). A handful of proteins appear to form particularly important nodes for organizing
proteins both in and around the active zone (e.g., RIM, Munc13, and PSD-95). Despite the
many interactions among many different proteins, the synaptic terminals of photoreceptors
are surprisingly dynamic. For example, ribbons can reversibly assemble and disassemble on
a diurnal basis. On shorter time scales, CaV channels move continuously within the
membrane and the ability of vesicle fusion to perturb these movements suggests that fusion
can alter the arrangements of these and perhaps other presynaptic proteins.

In recent years, investigators have made great progress in identifying many of the key
synaptic, cytoskeletal, and ECM proteins that regulate the anatomy and physiology of
conventional and ribbon synapses. The more difficult task of understanding the complex
functional and structural interrelationships linking these many proteins has only begun, and
future studies are likely to reveal an even more complex and dynamic web of interactions.
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Fig. 1.
Colocalization of Ca2+ channels to ribbon release sites. A voltage-clamped rod from a
salamander retinal slice preparation was loaded with Oregon Green BAPTA-6F (OGB-6F)
(200 μM) to visualize intracellular Ca2+ changes and a rhodamine-conjugated ribeye-
binding peptide (50 μM; Zenisek et al., 2004) to visualize the ribbon. Both were introduced
into the rod through a patch pipette. To activate L-type Ca2+ channels, the voltage-clamped
rod was depolarized from −70 to −10 mV for 100 ms. Panel (A) shows a single confocal
section (55 ms exposure) illustrating OGB-6F fluorescence in the rod prior to the test step.
Panel (B) shows OGB-6F fluorescence in the same confocal section during the depolarizing
test step. The difference image (test step minus control) in panel (C) shows localized hot
spots of Ca2+ increase at the base of the synaptic terminal (arrows). Panel (D) shows
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synaptic ribbons labeled with rhodamine-conjugated ribeye-binding peptide in the same rod.
Note that locations of the ribbons match the sites of Ca2+ influx in the two terminals of the
rod. OGB-6F was imaged with 488 nm excitation and 525 nm emission filters, and
rhodamine was visualized using 568 nm excitation and 607 nm emission filters. Scale bar =
10 μm.
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Fig. 2.
Protein–protein interactions at the photoreceptor ribbon synapse. The synaptic ribbon
anchors to bassoon and piccolo at the terminals of rods and cones. The vertical ribbon is
complexed at the base through CAST to a hub including RIM2, Rab3a, and Munc13. This
synaptic node may help to position primed vesicles close to CaV channels and the fusion
machinery (e.g., syntaxin, SNAP-25). CaV channels also appear to interact with the actin
cytoskeleton and, by virtue of interactions with CaBP4, RIM, and Unc119, may couple
directly to the ribbon itself. Kif3a and a complex of ELKS and RIM1 appear to be located at
more distant sites up the vertical face of the ribbon. In Figs. 2 and 3, solid lines show direct
interactions and dashed lines show putative interactions, for which direct interactions have
not yet been definitively established.
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Fig. 3.
Structural organization and protein interactions across the OPL. There appear to be at least
two major nodes of protein–protein interactions in the ECM within the OPL. The Sidekick-2
transsynaptic scaffold attaches MAGI proteins in apposed cells, with putative lateral
presynaptic interactions to PSD-95. PSD-95 also appears to anchor the Cl(Ca) channel
TMEM16B and PMCA extrusion pump at nonribbon sites in the terminal. The second hub
of scaffolding interactions occurs between a transmembrane dystroglycan complex and the
retina-specific ECM proteins pikachurin and retinoschisin. These complexes are linked
through synaptic laminin and cytoplasmic actin, while also attaching to the extracellular face
of transmembrane CaV channels and the Na+/K+-ATPase.
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