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Abstract
Problem—The fetal inflammatory response syndrome (FIRS) is considered the counterpart of the
systemic inflammatory response syndrome (SIRS), but similarities in their regulatory mechanisms
are unclear. This study characterizes the fetal mRNA transcriptome of peripheral leukocytes to
identify key biological processes and pathways involved in FIRS.

Method of Study—Umbilical cord blood from preterm neonates with FIRS (funisitis, plasma
IL-6>11 pg/ml; n=10) and neonates with no evidence of inflammation (n=10) was collected at
birth.

Results—Microarray analysis of leukocyte RNA revealed differential expression of 541 unique
genes, changes confirmed by qRT-PCR for 41 or of 44 genes tested. Similar to SIRS and sepsis,
ontological and pathway analyses yielded significant enrichment of biological processes including
antigen processing and presentation, immune response, and processes critical to cellular
metabolism. Results are comparable with microarray studies of endotoxin challenge models and
pediatric sepsis, identifying 25 genes across all studies.

Conclusions—This study is the first to profile genome-wide expression in FIRS, which
demonstrates a substantial degree of similarity with SIRS despite differences in fetal and adult
immune systems.
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INTRODUCTION
The fetal inflammatory response syndrome (FIRS), considered to be the fetal counterpart of
systemic inflammatory response syndrome (SIRS), is frequently present in neonates
delivered as a result of spontaneous preterm labor.1;2 Intrauterine infection is one of the
most important mechanisms of disease in preterm birth for which a causal association with
prematurity has been recognized.3–8 Intra-amniotic infection and/or inflammation is present
in approximately one third of the patients with spontaneous preterm labor9–11 and it is
associated with FIRS and fetal injury.12–21 Indeed, FIRS is an independent risk factor for
perinatal morbidity/mortality2;22 and has also been associated with infection-related
neonatal complications,23 bronchopulmonary dysplasia,2;12;24–26 and impaired neurological
outcomes27 including cerebral palsy.13;28–35 Moreover, fetal microbial invasion or other
insults may result in a systemic fetal inflammatory response36 that can progress toward
multiple organ dysfunction, including the hematopoietic system,37–39 the adrenals,40

heart,41;42 kidneys,43 thymus44;45 and skin.46

Currently, FIRS is defined by an elevated umbilical cord plasma interleukin (IL)-6
concentration2 and/or the presence of funisitis.23;47;48 Another approach to diagnose FIRS is
to measure C-reactive protein concentration in umbilical cord blood, which has been shown
to be elevated in patients with funisitis and congenital neonatal sepsis.49 Alterations in the
abundance of IL-6 as well as additional serum cytokines have better characterized SIRS and
sepsis50–52 but leukocyte biology in both FIRS and SIRS is not completely understood.

The fetal immune system develops and matures over the course of gestation. Fetal white
blood cell counts change with gestational age with lymphocytes being the most prevalent
leukocyte through approximately 37 weeks.53 Whereas lymphocytes and monocytes
increase linearly with gestational age, neutrophils increase exponentially after 31 weeks of
gestation to become the predominant leukocyte at term. In addition, the majority of cord
blood lymphocytes are CD45RA+ (naive T lymphocytes) whereas adult lymphocytes are
primarily CD45RO+.54;55 These variations may be just one factor contributing to the altered
immune status of neonates versus adults.

Differences beyond white blood cell counts and cellular subsets have also been described for
fetal, neonatal, and adult immune systems. Functional differences in migration,
phagocytosis, oxidative burst, and cytokine production have been identified using ex vivo
assays of leukocyte function. For example, migration of un-stimulated neonatal granulocytes
is higher than that of adults but leukotriene B4 stimulation leads to greater migration by
adult neutrophils.56 Phagocytosis of opsonized Escherichia coli was lower in fetal
granulocytes and monocytes relative to neonatal granulocytes; cells from both populations
demonstrated less activity than those from adults.57 This is in contrast to the increased
intracellular oxidative burst observed in unstimulated as well as N-formyl methionyl-leucyl-
phenylalanine (fMLF) or Escherichia coli stimulated fetal granulocytes. Cytokine responses
to ex vivo stimuli are also altered in neonatal leukocytes with some studies finding
similarities in the abundance of cytokine mRNA (IL-1β, IL-6, and IL-8) in stimulated
umbilical cord blood mononuclear cells (CBMC) and adult peripheral blood mononuclear
cells (PBMC).58 Decreased concentrations of other cytokines (IL-12, IL-15, GM-CSF, and
M-CSF) have also been observed in CBMC and found to result from decreased mRNA
stability.55 A direct comparison of unstimulated adult and cord blood monocyte gene
expression by microarray has demonstrated that at least 20 genes are increased in abundance
in adult monocytes whereas 3 are decreased relative to cord blood monocytes.59 Additional
differences were observed upon stimulation with LPS. Thus, fetal and neonatal leukocytes
are responsive to their environment but that response is sometimes altered, and perhaps
immature, relative to what is found in an adult immune system.
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With the wealth of knowledge available regarding a “normal” immune response in both
neonatal and adult leukocytes, there is a paucity of information regarding the understanding
of leukocyte biology in both SIRS and FIRS. Delineation of stereotypic changes in
leukocyte gene expression may provide more objective tools for the identification and
treatment of these inflammatory response syndromes. This has been the focus of genome-
wide expression profiling studies in an effort to characterize leukocyte changes both in
patients with SIRS/sepsis51;60–62 and by studying the effects of in vivo endotoxin challenge
in adult human volunteers.52;63 However, the degree of similarity of molecular mechanisms
contributing to FIRS and SIRS is unknown. Thus, we pursued mRNA profiling in umbilical
cord blood from neonates with documented FIRS to begin addressing this question.

MATERIALS AND METHODS
Sample Collection and Study Subjects

This retrospective study included preterm neonates with (n=10) and without (n=10) FIRS.
Blood collection for RNA, plasma, and serum isolation was obtained from the umbilical
vein prior to placenta detachment. Mothers of neonates provided written informed consent
for the collection of biological materials and clinical data under protocols approved by the
institutional review boards of Wayne State University (Detroit, MI), Sotero del Rio Hospital
(Santiago, Chile), and the National Institute of Child Health and Human Development of the
National Institutes of Health (NIH/DHHS; Bethesda, MD). All neonates were born to
mothers experiencing spontaneous preterm labor with intact membranes at the time of
enrollment. The presence or absence of FIRS was determined by pathologic analysis of the
umbilical cord for the presence of neutrophils in the wall of the umbilical cord vessels and/
or Wharton’s jelly48 and measurement of IL-6 in cord plasma by high sensitivity ELISA
(R&D Systems; Minneapolis, MN). Neonates were included in the FIRS group if the
umbilical cord plasma IL-6 concentrations were ≥11pg/ml2 and funisitis was observed in the
umbilical cord.48

Multiplex Analysis of Cord Serum Cytokines
Blood collected into evacuated tubes (BD Vacutainer; BD Diagnostics; Franklin Lakes, NJ)
was allowed to clot for 30 minutes at room temperature. Tubes were centrifuged at 1300×g
for 10 minutes and serum transferred to cryovials for storage at −70°C until the time of
assay. Cord serum levels of IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70,
IL-13, interferon (IFN)-γ, granulocyte-macrophage colony stimulating factor (GM-CSF),
and TNF-α were assessed with a high sensitivity human cytokine kit (LINCO Research; St.
Charles, MO). The assay was performed in duplicate with 50μl of serum. Additional
cytokines were measured using the Beadlyte Human Multi-Cytokine Detection System 7
(CCL22, sFasL, G-CSF, GROα, IFNα2a, IL-16, IL-1Ra, sIL-2Rα, IL-9, MCP-3, MIP-1β,
TNFβ) and multiplex beads for eotaxin, IP-10, MCP-1, MIP-1α; all were purchased from
Upstate USA (Charlottesville, VA). Prior to assay, serum samples were diluted 1:2 with
serum diluent (Upstate USA; Charlottesville, VA). All assays were performed according to
manufacturer’s recommendations. Briefly, 50 μl of prepared standards, whole serum, or
diluted serum were incubated with antibody-coated beads in a 96-well filter plate at 4°C on a
plate shaker overnight. Wells were vacuum-washed with wash buffer followed by
incubation with biotinylated detection antibody at room temperature with agitation for 1
hour (Linco kit) or 1.5 hour (Upstate kit). This was followed by 30 minute incubation with
phycoerythrin-conjugated streptavidin at room temperature with agitation. Finally, samples
were resuspended in sheath fluid (Luminex Corporation, Austin, TX) containing 0.5%
phosphate buffered formalin (Fisher Scientific, Pittsburg, PA) prior to data acquisition with
a Luminex 100 analyzer (Luminex Corporation, Austin, TX).
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Statistical analysis was performed when cytokine levels were above the limit of detection in
at least 16 of 20 samples. Serum cytokine data were analyzed using a Wilcoxon test.
Spearman correlations were calculated for umbilical cord blood IL-6 concentrations
obtained using the conventional plate ELISA and data obtained from microparticle multiplex
assays utilizing the statistical program SPSS version 14.0 (SPSS Inc., Chicago, IL).
Differences were considered significant at P<0.05.

RNA Preparation
Umbilical vein cord blood was collected prior to placenta detachment into PAXgene blood
RNA tubes (PreAnalytiX GmbH, distributed by Becton and Dickinson Company; Franklin
Lakes, NJ) from all preterm neonates. Blood tubes were maintained at room temperature for
24 hours and then frozen at −70°C until further processing. RNA was isolated using the
PAXgene Blood RNA kit (Qiagen; Valencia, CA) which includes an on-column DNase I
treatment for digestion of contaminating genomic DNA. Quantity and quality of isolated
RNA was assessed by UV spectrophotometry (NanoDrop Technologies; Wilmington, DE)
and Agilent Bioanalyzer RNA Nano-Chip (Agilent Technologies, Inc.; Santa Clara, CA),
respectively.

Microarray Analysis
Whole genome expression analysis was performed on leukocyte RNA from 10 neonates
with FIRS and 7 neonates without systemic inflammation. Limited RNA was available for 3
additional neonates without systemic inflammation. These samples were preserved for
inclusion in subsequent confirmation experiments. Prior to microarray analysis, 3μg total
RNA was globin reduced using GLOBINclear Whole Blood Globin Reduction Kit (Ambion;
Austin, TX) according to manufacturer’s instructions. In addition to capture oligos targeting
alpha and beta globin, a gamma (fetal) globin oligo was generated by Ambion (Austin, TX)
and included in the capture oligo mix. Confirmation of globin reduction was performed in
triplicate on select samples using TaqMan inventoried gene expression assays (Applied
Biosystems; Foster City, CA) for alpha, beta, and gamma globin.

Complementary RNA (cRNA) synthesis, microarray hybridization, and chip imaging were
performed at the Applied Genomics Technology Center of Wayne State University
(www.agtc.wayne.edu; Detroit, MI). Globin reduced RNA (500ng) was amplified and
biotin-labeled with the Illumina TotalPrep RNA Amplification kit (Ambion; Austin, TX).
Labeled cRNA were hybridized to Sentrix-Human 6 Expression BeadChips (Illumina, Inc.;
San Diego, CA). BeadChips were imaged using a BeadArray Reader (Illumina, Inc.; San
Diego, CA). Initial array data processing, including background correction and intensity
averaging across multiple beads for each gene, was performed using BeadStudio Software
(Illumina, Inc.; San Diego, CA). Average intensity values underwent a log-transformation
followed by quantile normalization. Differential expression was inferred using a moderated
two-sample t-test64 with false discovery rate (FDR) adjustment of P-values.65 Differences
were considered significant at P<0.05. All microarray data preprocessing and analysis was
performed using the correspondent R (www.r-project.org) and Bioconductor
(www.bioconductor.org) software packages.

The list of differentially expressed genes was further analyzed for enrichment of ontological
clusters using Onto-Express,66 available within the Onto-Tools software suite.67 Enriched
biological processes, molecular functions, and cellular components were identified using an
over-representation analysis, which tests if the number of genes directly associated to a
particular gene ontology term was significantly higher than the number expected by random
chance. Pathway analysis was performed using a similar over-representation analysis on the
metabolic and signaling pathway collection from MetaCore database (GeneGo Inc.; St.
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Joseph, MI). Another, conceptually different, pathway analysis method, the impact analysis,
was performed on the signaling pathways from KEGG (http://www.genome.jp/kegg/). In
addition to counting how many differentially expressed genes are involved in a particular
pathway, this analysis also takes into account the position of the genes in the pathways, their
measured fold changes, as well as the interactions among genes as described by the topology
of each pathway. This “impact analysis” was performed using Pathway Express68 available
within the OntoTools software collection at (http://vortex.cs.wayne.edu/projects.htm).

Quantitative Real Time RT-PCR (qRT-PCR)
Differences in mRNA abundance were verified using total leukocyte RNA from the same
neonates studied by microarray analysis with 3 additional neonates in the no inflammation
group (n=10 for each group). cDNA was created using TaqMan Reverse Transcription
Reagents and mRNA abundance was assayed in triplicate with TaqMan inventoried gene
expression assays (both from Applied Biosystems; Foster City, CA) (supplemental Table I).
Two different approaches were utilized to test differential expression between groups. In the
first approach, the three technical replicates for each individual were averaged and
differences were assessed using a t-test. Data (Cttarget–Ctref) were also modeled using
Generalized Estimating Equations (GEE)69 taking into account that the repeated
observations from each individual are clustered (i.e. correlated) and not independent
measurements.

Comparative analysis with published microarray studies
Microarray data from two publications were obtained through supplementary information
available online (https://www.gluegrant.org/pubsupport/Nature_1/ and
http://physiolgenomics.physiology.org/).52;63 Data from a third study was kindly provided
by Dr. H.R. Wong.62 For all three studies, differentially expressed probe sets were converted
to gene symbols and intersected with the list of differentially expressed genes from the
current study. The directions of gene expression changes provided by the authors52;62;63

were also compared for consistency with the results from the current study.

RESULTS
Characteristics of study population

All neonates included were delivered preterm as a result of spontaneous labor. The median
gestational age of neonates with FIRS (funisitis positive and plasma IL-6≥11pg/ml) was
30.3 weeks whereas neonates with no evidence of inflammation (funisitis negative and
plasma IL-6<11pg/ml) were delivered at the median gestational age of 31.2 weeks (Table I).
In both groups, 80% of the mothers received antibiotics prior to delivery whereas 50%
received tocolysis in an effort to suppress preterm labor. All mothers received
glucocorticoids prior to delivery to aid in fetal lung maturation. Five of the 10 mothers
delivering neonates with FIRS underwent amniocentesis; all were diagnosed with intra-
amniotic infection. In contrast, negative amniotic fluid culture results were obtained from
amniocentesis performed on 7 of 10 mothers delivering preterm neonates with no evidence
of fetal systemic inflammation. Among neonates with FIRS, sepsis was diagnosed in 7 cases
within 28 days of delivery; one additional case was diagnosed at 42 days of birth. All but
two of the neonates survived. Three of the neonates without FIRS developed sepsis within
28 days of delivery; all survived.

Increased pro- and anti-inflammatory cytokines in neonates with FIRS
To evaluate whether increases in both pro- and anti-inflammatory cytokines occur in the
immature fetal immune system, multiplex immunoassays were utilized to measure various
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cytokines (Table II). Serum concentrations of a number of pro-inflammatory cytokines were
significantly (P<0.05) increased in cord blood from FIRS neonates in comparison to those
without FIRS, including IL-6, IL-8, TNF-α, IP-10 (CXCL10), and MCP-1 (CCL2). Plasma
IL-6 concentrations as measured by high sensitivity ELISA were utilized for the initial
categorization of samples into FIRS and no FIRS groups. Slightly higher concentrations
were observed in serum using the multiplex assay but a significant positive correlation
between the results of the two assays was observed (r2=0.798; P<0.001). Anti-inflammatory
cytokines such as IL-10, IL-13, and IL-1Ra were all increased in neonates with FIRS, with
IL-10 increases observed as significant. Statistical analysis was not performed on IL-13 and
IL-1Ra as detectable concentrations of these cytokines were only present in a subset of
samples. Several pro-inflammatory factors, including G-CSF, GM-CSF, and IL-1β were
also elevated in FIRS but did not meet the criteria for statistical analysis.

Differential gene expression in FIRS
Previous studies have demonstrated the importance of globin reduction when using RNA
collected with the PAXgene system.70;71 In our samples, alpha, beta, and gamma globin
RNAs were reduced by greater than 90% using a modified GLOBINclear procedure
(supplemental Figure 1). Others have observed that changes in leukocyte abundance
contribute to changes in mRNA abundance.72 Thus, we evaluated total white blood cell
counts, percent lymphocytes, percent monocytes, and percent neutrophils in all samples
where differentials were available. The overall white blood cell count was higher in
neonates with FIRS but the difference was not significant (supplemental Table II);
percentages of lymphocytes, monocytes, and neutrophils were similar between the two
groups. Thus, leukocyte differential was not utilized as a covariate for analysis of microarray
data.

Differential abundance of total leukocyte RNA in preterm neonates with and without FIRS
was assessed using the Illumina microarray platform. Of the greater than 26,000 well
annotated probes representing genes on the array, 296 demonstrated increases and 252 were
decreased for a total of 548 significantly differentially expressed probes (P<0.05, Figure 1).
These corresponded to 541 unique leukocyte genes differentially expressed in FIRS relative
to no inflammation. Principal component analysis performed using expression data from all
annotated probes (~26,000) showed a clear distinction between the cluster of no
inflammation (No FIRS) samples and the cluster of FIRS samples (Figure 2). Ontological
analysis of the 541 differentially expressed genes with Onto-Express/Onto-Tools
demonstrated significant enrichment of 27 biological processes (Table III) and 23 molecular
functions (Table IV). Key enriched biological processes included antigen processing and
presentation, anti-apoptosis, immune and inflammatory responses as well as processes
critical to cellular metabolism. A number of enriched molecular functions were related to
signal transduction and transferase activity. Metabolic and signaling pathways significantly
associated with gene expression data were also identified. Out of the nearly 50 signaling
pathways annotated by KEGG, the “impact analysis” identified 5 pathways as significant.
These included pathways for antigen processing and presentation (P≤0.0001),
phosphatidylinositol signaling system (P≤0.0001), type I diabetes mellitus (P=0.0014), cell
adhesion molecules (P=0.0014), and B cell receptor signaling (P=0.0017). Similar pathways
were included in the more than one hundred of the in-house annotated pathways from the
MetaCore database that were significantly enriched in the set of differentially expressed
FIRS genes. Additional pathways such as transcription regulation of granulocyte
development, glycolysis and gluconeogenesis, as well as those important to apoptosis (anti-
apoptotic TNFs/NF-κB/IAP, apoptotic TNF-family, p53 independent apoptotic signaling,
and anti-apoptotic TNFs/NF-κB/Bcl-2 pathways) were identified using MetaCore.
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Validation of differential expression by quantitative real time RT-PCR
Forty-four genes were chosen for validation by qRT-PCR. Gene selection was based on rank
within the list of significantly differentially expressed genes (1=most significant) and
inclusion in at least one of the significantly enriched ontological clusters. Forty-one of the
44 genes tested by qRT-PCR were significantly different in neonates with FIRS relative to
those without systemic inflammation by both statistical analysis methods (GEE and t-test;
P<0.05) (Figure 3 and Table V). The correlation between log-fold changes obtained with
microarray and qRT-PCR was high (92.5%) while the regression slope was 0.52 indicating
the expected compression of the expression range with microarray technology.73 Validation
of inflammation and immune response genes in umbilical cord blood leukocytes exhibited
changes often seen in the presence of systemic and chronic inflammation (Figure 3A).
Calgranulins B and C (S100A9 and S100A12) were both significantly up-regulated in
neonates with FIRS. Increases in arachidonate 5-lipoxygenase-activating protein
(ALOX5AP) and leukotriene B4 receptor (LTB4R) were also found. Similar to previous
observations in endotoxin challenge models of sepsis,51;52 mRNA abundance for IL-1
receptor antagonist (IL1RN, also known as IL-1Ra) was significantly higher in FIRS and
coincides with increases in serum IL-1Ra (Table II). The observed decrease in IL-16 was the
only gene that demonstrated significant differences by GEE analysis alone (GEE P=0.0448;
t-test P=0.0806) and these changes were not confirmed at the serum protein concentration.

A number of genes important to the MHC type II processing pathway were also significantly
decreased in preterm neonates with FIRS (Figure 3B). Critical components of MHC antigen
presentation were found at lower levels in neonates with FIRS (HLA-DPB1, HLA-DQB1,
and HLA-DRA). In addition, antigen processing was putatively altered as indicated by a
decrease in HLA-DMB, an important component of MHC peptide loading. Interestingly, an
inhibitor of HLA-DM activity (HLA-DOB) was also lower in neonates with FIRS. The
down-regulation of various HLA genes could directly result from decreases in MHC2TA
(CIITA), a positive regulator of MHC II gene transcription.

Genes important to carbohydrate metabolism including glucose transporter 3 (SLC2A3),
protein phosphatase 1 regulatory subunit 3D (PPP1R3D), hexokinase (HK3),
phosphoglycerate mutase 1 (PGAM1), and fructose bisphosphate-aldolase (ALDOA) were
also significantly up-regulated in umbilical cord blood leukocytes from neonates with FIRS
(Figure 3C). In contrast, genes mediating signal transduction and intracellular transferase
activity were decreased in FIRS (Figure 3D). Decreases in CCR6, TRAF5, and B lymphoid
tyrosine kinase (BLK) may play a role in suppressing a lymphocyte response in conjunction
with the observed decreases in antigen processing and presentation as well as IL-16 (see
Figure 3A). Two additional genes with “protein tyr/ser/thr phosphatase activity” (DUSP14
and STYX) were also down-regulated during FIRS suggesting an overall decrease in de-
phosphorylation activity in cord blood leukocytes. Decreased intracellular phosphatase
activity may be one mechanism by which cells regulate potential increases in signal
transduction elicited by greater MYD88 and g-protein receptor signaling molecule (GNA15)
levels observed in this study.

Similarities and differences between FIRS and sepsis or endotoxin challenge
Several studies have focused on genome-wide expression profiling in an effort to
characterize leukocyte changes both in patients with SIRS/sepsis62 and by studying the
effects of in vivo endotoxin challenge in human volunteers52;63 To evaluate similarities and
differences between the data of the current study and that of recently published works, a
comparative analysis was performed. The 3776 differentially expressed probe sets detected
by Calvano and colleagues63 using the Affymetrix HG-U133 PLUS 2.0 array were
converted to gene symbols. An overall direction of change was inferred by the direction of
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change observed across most of the time point post endotoxin challenge. One hundred
ninety-three differentially expressed genes were in common between this endotoxin
challenge study and the FIRS results of the current study; 74.1% of the genes were
differentially expressed in the same direction (e.g. increased due to endotoxin challenge or
FIRS). A second endotoxin challenge model of sepsis identified 201 differentially expressed
probe sets observed using the Affymetrix HG-U 95Av2 array at the 6 hour time point post
challenge.52 Only 35 genes were in common between the two studies but all gene expression
changes were in the same direction. The third comparison examined the similarities and
differences between the current FIRS study and that of pediatric septic shock.62 All patients
included in the study were less than 10 years of age with a median age of 2.4 in the control
group, 2.7 in the survivor group, and 1.6 in the non-survivor group.62 A total of 1710
differentially expressed probe sets were observed using the Affymetrix HG-U133 PLUS 2.0
array. Similar to the study by Calvano et al.,63 approximately 35% of the genes changed in
FIRS were also changed in pediatric septic shock. All 195 genes were observed to be
changed in the same direction in both studies. In total, 25 common genes were observed
across all studies (Table VI) with a high degree of consistency in the direction of change
observed.

DISCUSSION
Complexity of systemic inflammatory response syndromes – either in the fetus, neonate,
child, or adult – has challenged researchers and clinicians alike. The results of this study are
the first to describe global gene expression differences in preterm neonates with FIRS
relative to those without a systemic inflammatory response at the time of birth. In addition, a
number of the differentially expressed genes in FIRS coincide with those previously
described in studies conducted in adults using endotoxin challenge models52;63 as well as in
pediatric sepsis.62 Observed increases in umbilical cord serum concentrations of pro- and
anti-inflammatory cytokines also echoed changes observed in adult sepsis/SIRS.50–52

Inflammation-associated increases in pro-inflammatory cytokines are a hallmark of adult
SIRS and sepsis.74 This pro-inflammatory aspect of sepsis has been the target of a number
of potential treatments with little success.75 Potent inflammatory mediators such as TNF-α,
IL-6,28 IL-8, and MCP-1 were all increased in neonates with FIRS. These cytokines and
others are also increased in amniotic fluid76–92 as well as in adults with SIRS/sepsis50;74 or
endotoxin challenge models52 but to a much greater extent. In vitro LPS stimulation studies
of monocytes have demonstrated that less TNF-α and IL-6 are produced from umbilical
cord blood leukocytes versus adult blood cells.57;93 Therefore, it is not surprising that serum
cytokine concentrations in FIRS, although increased, are not as high as found in adults with
sepsis/SIRS.

Blood leukocytes both respond and contribute to inflammatory response syndromes.
Changes were readily detectable at the gene expression level in neonates with FIRS with a
number of genes indicative of innate immune activation. Several factors important to
leukocyte adhesion and chemotaxis (LTB4R, ALOX5AP, CD11b, S100A9, S100A12) were
up-regulated during FIRS. The leukotriene B4 receptor (LTB4R, also called BLT1) is a high
affinity receptor found on neutrophils, monocytes, and some lymphocyte subsets.94 Binding
of the receptor with leukotriene B4 or other agonistic ligands results in increased leukocyte
chemotaxis, calcium flux, and adhesion.95 The increase observed in FIRS is interesting in
light of evidence demonstrating decreased expression of LTB4R in neutrophils and
monocytes stimulated with inflammatory mediators such as LPS and TNF-α.94;96 Pettersson
and colleagues hypothesized this down regulation to be a mechanism of limiting excessive
inflammatory cell accumulation at sites of infection.96 Leukotrienes are further implicated in
FIRS, SIRS, and sepsis via modulation of ALOX5AP (also called FLAP), a molecule
intimately involved in leukotriene synthesis.97 Not only was ALOX5AP increased in
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leukocytes from the neonates with FIRS but increases have also been observed in endotoxin
challenged adults52;63 and in pediatric sepsis.62 Chemical inhibitors of ALOX5AP result in
improved survival in mice subjected to a cecal ligation and puncture model of peritonitis and
severe sepsis.98 Thus, aberrant control of leukotriene mediated adhesion and chemotaxis
may play a critical role in exacerbating the inflammation of FIRS and SIRS.

Leukocyte contributions and responses are not limited to leukotriene-induced cell adhesion
and migration during systemic inflammatory response. Neutrophils contain several
antimicrobial peptides, which are small molecular weight proteins with broad spectrum
antimicrobial activity against bacteria, viruses, and fungi.99–101 Calgranulins are phagocyte-
specific proteins with a variety of functions including antimicrobial activity, enhancement of
migration and chemotaxis, as well as up-regulation of adhesion molecules.102 Up-regulation
of calgranulin C (S100A12) is consistent across studies of endotoxin challenged adults,52;63

pediatric sepsis,62 and the current study (Figure 3 and Table VI). Protein concentrations of
S100A12 are also increased in the amniotic fluid of neonates with funisitis,103 indicating
that the fetal inflammatory response is limited to the fetal blood compartment. Increases in
calprotectin, a heterodimer of calgranulins A (S100A8, also called MRP8) and B (S100A9,
also called MRP14), is also associated with intra-amniotic infection in preterm labor and
preterm premature rupture of membranes.99 Thus, the FIRS-associated increases in cord
blood leukocyte mRNA for S100A9 and S100A12 are consistent both with adult SIRS/
sepsis and inflammation in the amniotic cavity. As a pro-inflammatory mediator, S100A9
has been implicated in induction of CD11b expression and has a role in increased neutrophil
adherence.104 Surface CD11b is increased on neutrophils from patients with sepsis and
associates with decreased chemotaxis relative to healthy adults.105 In preterm infants,
neutrophil surface CD11b is lower than in their term counterparts as well as adults and it
does not increase with in vitro stimulation.106 Leukocytes from the preterm neonates of the
current study indicate that the level of CD11b is altered in response to environmental
changes, possibly including increased S100A9, which is in contrast to the study of
leukocytes from preterm versus term infants and adults. These conflicting results may be
due to evaluating cells exposed to multiple stimuli in vivo versus individual in vitro
treatment. Despite aspects of immaturity and limited in vitro responsiveness of fetal
leukocytes, the fetal systemic inflammatory response has many characteristics of that found
in adult inflammation.

Fetal systemic inflammation is associated with phenotypic and metabolic changes consistent
with activation in fetal immune cells. In a recent study,107 funisitis was associated with a
significant increase in the median mean channel brightness (MCB) of CD14, CD64, and
CD66b on granulocytes and the MCB of CD64 on monocytes collected from umbilical cord
blood. The basal intracellular reactive oxygen species production and oxidative burst were
higher in the umbilical cord monocytes of neonates with funisitis than in those without
funisitis.107

Systemic inflammatory response syndromes are also characterized by the dysregulation of
pro- and anti-inflammatory responses.108 As gauged by the anti-inflammatory associated
changes in FIRS, the fetal inflammatory response syndrome exhibits gene expression
changes similar to those found in SIRS. One predominant theme identified through
ontological and pathway analyses was that antigen processing and presentation by the MHC
II pathway was clearly affected in FIRS. Changes in gene expression were observed at all
major steps of the pathway. Gamma interferon-inducible lysosomal thiol reductase (GILT/
IFI30) was increased in FIRS. This enzyme plays a vital role in reducing disulfide bonds to
unfold and degrade proteins in antigen presenting cells (APC).109 While breakdown of
endocytosed antigens is potentially increased in APC’s during FIRS, the subsequent steps of
antigen processing and presentation appear to be down-regulated. Antigen presentation

Madsen-Bouterse et al. Page 9

Am J Reprod Immunol. Author manuscript; available in PMC 2012 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



molecules HLA-DPB1, HLA-DQB1, and HLA-DRA, as well as molecules important to
MHC peptide loading such as HLA-DR and CD74 (also called the invariant chain)110 were
lower at the mRNA level in cord blood leukocytes when systemic inflammation was present.
Observed decreases in the transcriptional regulator of MHC II gene expression MHC2TA
may play a key role in HLA mRNA abundance changes. Similar changes have been
observed previously at the mRNA and surface protein levels in adult SIRS/sepsis. Changes
in HLA also appear to associate with patient survival with substantially lower levels found
in non-surviving patients versus those that survive.111;112 A third study demonstrated that
differences in HLA were not observed upon initial diagnosis, but levels three to four days
post diagnosis demonstrated a correlation with survivors versus non-survivors.113 HLA
levels may remain low for several weeks past the initial sepsis diagnosis.114 Interestingly,
total HLA was not significantly different in patients with sepsis versus healthy adults but the
cellular distribution was drastically altered. A punctate intracellular distribution was
observed during sepsis compared to the normal periphery location. IL-10, a cytokine that
was increased in the current study, was identified as a contributing factor in HLA-DR
redistribution.114 Thus, patients who survive the initial hyper-inflammatory response of
SIRS may continue to experience problems due to the compensatory anti-inflammatory
response that follows. If it is indeed the case that the compensatory anti-inflammatory
response is already present in preterm neonates with FIRS, the vulnerability of newborns to
infection or insults may contribute to increased incidence of sepsis within the first 28 days of
life such as was observed in neonates of the current study.

The anti-inflammatory limb of the immune response is crucial for dampening intra-amniotic
inflammation.115–119 Additional alterations indicate the presence of a compensatory anti-
inflammatory response in neonates with FIRS. Fundamental B cell receptor signaling
pathway genes were also decreased in umbilical cord blood leukocytes from FIRS neonates.
Initiation of this pathway by antigen is potentially altered due to decreases in CD79A and
CD79B (Igα and Igβ). These two molecules have a role in B cell activation and are at higher
levels in cord blood B cells from healthy term neonates relative to the levels found on adult
B cells.120 CD19, a positive B cell receptor regulator involved in signaling for proliferation,
was also decreased in leukocytes during FIRS. This is in contrast to increased CD19 surface
levels observed by Weinschenk and colleagues in preterm neonates with confirmed
sepsis.121 Time and type of sampling (cord blood at delivery versus neonatal blood) may
contribute to the appeared difference of the current and previous observations. To further
support the hypothesis that B cell receptor signaling is diminished in FIRS neonates,
important NF-κB activation molecules were also decreased. These included CARD11
(CARMA1), a mediator of antigen receptor-induced NF-κB activation,122 and IκB kinase
(IKBKB) which is also involved in NF-κB activation.123 Decreases in CD22 and CD72 in
leukocytes from FIRS neonates may be one mechanism to combat this putative decrease in
B cell receptor signaling. CD22 is an inhibitor of B cell receptor signaling124 while CD72
prevents differentiation of naive B cells into plasma cells.125 Thus, although receptor
signaling is lowered, there is also less inhibition of any signals that may be initiated. Finally,
the anti-inflammatory aspect of FIRS was not limited to changes in mRNA abundance.
Increases in serum IL-10 as well as serum and mRNA IL-1Ra observed in this study were
also found within the first 10 hours post endotoxin challenge of healthy adults.51 In addition,
higher concentrations of IL-10 and IL-1Ra associate with adverse outcomes for adults with
sepsis.50;74 High concentrations of cord plasma IL-1Ra in preterm neonates is a risk factor
for adverse outcomes and neonatal morbidity.126 Thus, an anti-inflammatory response has a
profound impact on neonatal health and appears to be an important component of FIRS.

Genome-wide expression profiling in patients with SIRS/sepsis51;60–62 or in endotoxin
challenge models of sepsis52;63 have begun to provide a better understanding of the
molecular mechanisms associated with disease. With the many similarities in alterations of
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both pro- and anti-inflammatory leukocyte genes found in FIRS and studies with adult
leukocytes during inflammation, the list of genes found across several reports and those
reported herein is 25 genes. A key factor contributing to this disparity may be differences
between the fetal and adult immune systems. Other important factors could include the RNA
isolation methods and/or the microarray platforms and analysis methods used. For this
reason, it would be difficult to say that the 275 genes found specific to this study, when
compared to those of Calvano et al.,63 Talwar et al.,52 and Wong et al.,62 are truly specific to
fetal inflammatory response syndrome. The high success rate of confirmation lends
confidence in the differentially expressed genes of the current study. These results also
indicate that the modified globin reduction procedure did not have any deleterious effects on
the sample preparation as globin reduced samples were utilized for the microarray
experiment only. With a list of targets in hand, confirmation of mRNA changes in
independent groups of neonates with FIRS by qRT-PCR will only further substantiate the
current observations. In closing, the similarities in the transcriptomes of FIRS and SIRS/
sepsis may provide new targets for strategies designed to modulate inflammation despite
differences in the maturity and cellular composition of fetal and adult immune systems.

Conclusions
This is the first study to profile genome-wide expression in FIRS, which demonstrates a
substantial degree of similarity with SIRS despite differences in fetal and adult immune
systems.
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Figure 1. Genes differentially expressed in FIRS
Cord blood RNA from preterm neonates with (n=10) and without (n=7) FIRS was analyzed
using the Illumina microarray platform. The color scale represents normalized log2 gene
expression levels; data are 0 centered by rows (genes) and sorted as a function of the t-
scores between the two groups. Displayed are the 296 genes that were significantly
increased in leukocytes from neonates with FIRS and the 252 that were decreased (False
discovery rate <0.05).
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Figure 2. Principal Component Analysis of gene expression data
The intensity of 26,000 well annotated probes on the Illumina arrays were used to compute
the main directions of variability within the data (principal components). This unsupervised
analysis demonstrates that gene expression values can be used to delineate the two groups of
samples. More details on this representation can be found elsewhere (Machine Learning and
Its Applications to Biology, Tarca AL, Carey VJ, Chen Xw, Romero R, Draghici S, PLoS
Comput Biol, 3(6): e116 doi:10.1371/journal.pcbi.0030116.)
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Figure 3. Confirmation of differential gene expression by qRT-PCR
mRNA abundance was assessed in cord blood RNA from neonates with and without FIRS
(n=10/group). Altered abundance of genes within ontological categories of immune response
and inflammation (A), MHC II receptor activity (B), carbohydrate metabolism (C) and
signal transduction (D) was confirmed using qRT-PCR. Box-plots include 50% of the data
with the middle line showing the median value; P<0.05 for all genes shown when modeled
using GEE. Depending on the statistical method used, 93% to 95% of the genes tested
confirmed the change observed by microarray analysis.
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