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Abstract

Data-intensive research depends on tools that manage multi-dimensional, heterogeneous data sets.
We have built OME Remote Objects (OMERO), a software platform that enables access to and
use of a wide range of biological data. OMERO uses a server-based middleware application to
provide a unified interface for images, matrices, and tables. OMERO’s design and flexibility have
enabled its use for light microscopy, high content screening, electron microscopy, and even non-
image genotype data. OMERO is open source software and available at http://
openmicroscopy.org.

Introduction

Modern biology depends on the collection, management, and analysis of comprehensive
datasets. Unlike the concerted efforts that drove the completion of the first genome projects,
most current datasets derive from specific experiments designed to reveal molecular
mechanisms, networks, interactions or phenotypes during a biological transition or after
some perturbation. Although these experiments are diverse, they all require facilities for
managing and analysing data. In many cases, the available data management resources are
limiting, and thus ultimately define what is discovered.

Imaging in biology is a classic example of this. Years of development have delivered
automated digital imaging systems that rapidly acquire time-lapse, multispectral and
spatially resolved image data to reveal the structure, molecular composition and dynamics of
biological cells, tissues, and organisms. The resulting datasets are often written in closed
proprietary file formats, and viewed using specific hardware and software solutions, usually
on a closed commercial platform?. The metadata that defines the experiment, the structure of
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the image dataset, the acquisition system settings, and results from analysis of the acquired
data are usually stored in distinct, unlinked, heterogeneous data formats. Visualization and
analysis tools can be built to use these data, but ‘hard linking’ these tools to a specific data
format results in a susceptibility to change in the original format, which limits portability to
other formats and data types. While there have been many calls for a single, standardized
biological image file format, the heterogeneity of image data and the science it supports
make this very difficult. Moreover, the rapid development of imaging methods means that
new data types are constantly appearing, and these cannot be hindered by limitations of a
standardized file format or access mechanism®2. Thus the fundamental challenge is not one
of standardization of data, but the absence of principles and methods that standardise data
access, so that a scientist can choose the tools she or he wishes for data visualization and
analysis. Standardising access also helps enable “interoperability’, the ability of software
tools to interact with data and other software, even though they are not explicitly designed to
do so.

Since 2000, the Open Microscopy Environment (OME) has been building open source data
access and interoperability tools for biological image data. OME is an international
collaborative effort across academic laboratories and commercial entities that produces open
specifications and software tools that enable access to data, regardless of file format,
programming environment, or geographical location. The OME Data Model is an open and
maintained specification that defines the relationship between different data elements that
describe the process of image acquisition in a microscope3. Bio-Formats is an image
translation library that reads >100 PFFs and translates them into this common data model
that can then be accessed by other software tools. With the OME Data Model and Bio-
Formats as a foundation, it is possible to build a system that can manage comprehensive and
heterogeneous imaging datasets. Such a system would provide access for any visualization
or analysis tool regardless of programming environment, linkage of heterogeneous data
types that include metadata and analytic results, data search and query, and an interface to
large, distributed computational resources when necessary for analysis and processing. If at
all possible, this solution should be adaptable to other kinds of data, even non-image data
and provide secure, remote access and mechanisms for sharing with other scientists. Finally,
the solution must be maintainable and scalable. Maintenance refers to the need to keep
datasets and software current, aware of updates to the data itself, but also filesystem and
operating system versions. Scalability strictly refers to an increase in size (i.e., more data
records, more users, etc.). However, in scientific settings, a more expansive definition of
scalability is required where analysis tools useful for one type of data can easily adapt to
significantly larger or more complex datasets. The addition of new searches and queries that
express unanticipated scientific questions, new analysis tools, and linkage with new data
types must also be considered, and designed into any solution.

To provide a single unified data management platform for image data generators and users
we created OME Remote Objects (OMEROQ), a software platform that includes a number of
storage mechanisms, remoting middleware to facilitate access to stored data through a single
application programming interface (API), and client applications for biological image data
management?. We demonstrate the use of OMERO in the analysis and processing of
complex multidimensional image data, scientific image repositories, and extension to
imputing of human SNP data.

Architecture and Design

OME Remote Objects (OMERO) is a multi-component data management platform
comprised of servers and clients written in Python, Java, and C++. Briefly, OMERO is built
as a tiered application of databases, middleware, and remote client applications. The core
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middleware component, OMERO.server, is a Java application that connects a number of
databases that store and manage different data types and uses a single, cross-platform
application programming interface (API) to allow access to stored data (Fig. 1A). Client
applications connect to OMERO.server’s API through standard internet connections for data
access and processing. A schematic outlining the architecture of OMERO is provided in
Figure 1A and the technical description can be found in Box 1. Descriptions of some
technical terms used in this article are provided in Box 2.

Data Flow in OMERO

Data is imported into OMERO using Bio-Formats!. All metadata are read, and where
possible, mapped to the OME Data Model3. Metadata is stored in the OMERO relational
database, and binary pixel data is converted to an efficient binary-only file and stored within
a file repository owned by the OMERO installation. To ensure data integrity Bio-Formats
also converts all proprietary file format metadata into a table of key-value pairs that is then
stored as an annotation on the imported image in OMERO. OMERO supports import using a
desktop application (OMERO.importer), a command line interface, or a filesystem
monitoring tool (OMERO.Dropbox). Alternatively, third parties can write their own,
specialized importers. Any data written to an OMERO database is accompanied by an entry
in an “Event” table, which can be used for auditing changes to an OMERO system.

Data Rendering and Display

As most modern biological images consist of multiple image frames recorded at different
channels, focal positions, or timepoints, a fast, scalable image rendering tool is needed to
display modern image data sets. OMERO.server contains a multi-threaded image-rendering
engine that can rapidly render planes for display. These can be transferred, via the API to
clients. Clients can choose different levels of on-the-fly JPEG compression to reduce image
data size, apply overlays to an image before compression, or specify projection parameters
such as maximum or mean intensity to provide a summary view of the image. Users can thus
produce multiple views of the data without modifying the acquired data; the default and any
user-defined values are stored in OMERQ’s database. The rendering settings for other users
are also stored, so that the owner of an image can see how co-workers have visualized the
same data.

The Importance of a Common API

A standard desktop image processing application like ImageJ normally accesses individual
image datasets on a filesystem and provides none of the data management facilities
described above. Most commercial desktop imaging applications also access files on a
filesystem, and some enable a single user to search for his or her images based on filename,
acquisition date, tagging, etc. This level of data management is sufficient for a small
research team who work with a limited range of data types. As the complexity and size of
data grows, the software that accesses the data becomes more heterogeneous, the
requirements for controlling access grows, and the complexity of derived and associated
data increases. Building and maintaining the custom linkages between the various
applications that directly access files and the results they generate becomes ever more
difficult. The computational cost of search grows as well: scanning many data files for
metadata values is inefficient because of the overhead of opening and closing each file.
While sophisticated file storage and access mechanisms like HDF5 and netCDF?, so called
‘nascent databases’®, are now available, access to individual files by multiple clients is
limited, and conflicts between simultaneous reading and writing will inevitably arise. These
are problems that databases have been designed to solve, so it makes sense to use them when
datasets grow and become more complex. Moreover, middleware applications that add value
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to data— access control, organization, annotation, indexing, rendering, and processing—will
always be necessary.

In OMERQO, our general strategy is to use whatever storage mechanism is appropriate and to
record its location in the OMERO relational database for easy access and query. OMERO
uses the advantages of HDFS5 files, relational databases, and filesystems for different data
types and exposes them all through a single, defined interface—the OMERO API. For large,
complex datasets, this single interface provides a coherent point of access for client
applications, regardless of their structure or design. As long as applications use the OMERO
API, they can access and operate on the same data, whether or not they are explicitly
designed to do so.

Supporting New Data Types in OMERO

In science, rapid developments in technology mean that the types and complexity of data are
constantly evolving. Updating the whole OMERO application by hand each time a new
mode of imaging appeared would be difficult and error-prone. We therefore constructed
code generators, software tools that read the XML version of the OME Data Model (‘OME-
XML’) and convert it into scripts that generate the OMERO database, the linkages between
the OMERO database and the OMERO.server application (object-relational mapping, see
Box 1) and the specifications for the OMERO API used by remote Python, Java, or C++
applications (Fig. 1B). The generated code is then compiled and used to store metadata in
the OMERQO relational database and to transmit the metadata to remote clients.

This approach is important as the core OME-XML model can be frequently updated to
support new and more complex imaging modalities. Moreover, developers of OMERO
client applications can easily identify changes and adapt to them—OME-XML specifies the
data supported by an OMERO application. This approach balances a commitment to using
commonly agreed and defined data types found in a community-based data specification and
the need to adapt to newly emerging data types? in the rapidly developing field of biological
imaging.

We recently took advantage of this flexibility to add support for high-content screening
(HCS) experiments to OMERO. These experiments, involving treatment of cells with small
molecule or genome-wide RNA. libraries and measuring the effects by high-throughput
imaging, generate hundreds or thousands of images, each with their own metadata. After
consultation with many HCS labs, we revised OME-XML to include a specification for HCS
data and used the new version of OME-XML to build a new version of OMERO. Additional
development was still necessary to properly display the new data types in OMERO clients
(e.g., displays of thumbnails as HCS plates), but manual changes to the underlying server
application were minimised. As an example, support for HCS data was recently added to the
OMERO-based Dataviewer application that the Journal of Cell Biology uses to provide
readers access to raw image data associated with published papers (see below). With the rate
that new imaging modes are developed and used, model-based code generation helps keep
OMEROQ’s capabilities aligned with technical advances in the community and ensures that
the community can easily determine the data types OMERO supports.

OMERO Clients—Data Access and Interoperability

OMERO.server’s architecture delivers two capabilities that are critical for modern science,
but rarely available for complex, multi-dimensional image data—remote access and
interoperability. Harnessing this functionality requires client applications that run on a
desktop computer, a laptop, or even a mobile device and communicate with an installation
of OMERO.server. We have built a number of OMERO clients that enable the functionality
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we require for our research and have included them in the open source, released OMERO
software. OMERO.importer and OMERO.insight are two Java-based desktop applications
that enable image data import using Bio-Formats and data management, annotation,
visualization and analysis (Fig. 2A). OMERO.web, a Django-based web application uses the
OMERO Python API and provides access to OMERO’s data hierarchies, and enables
annotation and visualization of data. OMERO.web exposes the annotation-based data
sharing mechanism where user-defined sets of data can be shared and discussed with other
users on the OMERO system (Fig. 2B). A full list of the functionality in these clients is
available at the OME web site. OMERO clients can be used as they are, customised using
the available source code, or used as examples to guide development of new OMERO client
applications developed by others.

We have also demonstrated integration and re-use of other, third party software tools with
specific bridges between OMERO and ImageJ and CellProfiler 1.07, two popular open
source image processing tools, thereby making these tools clients of OMERO. Moreover, we
have used an existing Java gateway in Matlab to read and write data through the OMERO
API (see Supplemental Note). As an example, Figure 3A shows a series of image
segmentation and analysis tools implemented in Matlab, analysing data in OMERO. We
have also integrated VolViewer, an open source GPU-based 3D volume rendering tool® with
OMERO (Fig. 3B), enabling a powerful image rendering facility to access any data stored in
OMERQO (see Supplemental Note). All of these facilities are available within the released,
open source version of OMERO.

Supporting Analytic Data

Analysis of large primary datasets inevitably generates new sets of data. Acquired images
may be processed to improve contrast and generate a second set of derived images, or
analysed to generate calculated features derived from objects in the image—segmented
objects, fitted functions, etc. In OMERO, generated images can be annotated and stored
together with the original image. However, many analyses generate derived measurements
that are separate from the images. In OMERO, these files (.xml, .xIs, etc.) can be stored as
*StructuredAnnotations’ in an OMERO file repository, which is linked from the OMERO
relational database. The OMERO API exposes this linkage, allowing any OMERO client to
access the original data and any derived measurements.

One use of OMERO?’s StructuredAnnotations involves annotating data with specific
ontological terms. Biological image data is still heterogeneous, and there are not yet defined
specifications for annotating microscope image data. To help begin this process, we have
implemented support for defined terms of the Open Biological and Biomedical Ontologies
(0OBO)? within OMERO.server, and accessed them through the OMERO API as
StructuredAnnotations. This implementation was used for the ASCB CELL Image Library
(see below). We expect that as the use of these ontologies develops and software tools for
image annotation improve, the specific ontologies used can be harmonised to start to enforce
common annotations across all images in different domains. An approach similar to
OMEROQO’s StructuredAnnotations is followed in Bisque, an alternative open source image
management applicationl9. In the future, it may be possible to standardise the annotations
used in these and other image management applications to allow seamless communication
between them.

In contrast to individual terms, many derived measurements are of the form of large tabular
arrays and are often stored as “comma-separated value” (CSV) or spreadsheet files. In
principle these data would be well-suited for inclusion in OMERQ’s database, but since
each lab or institute may use its own algorithms and structures for data storage, derived
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measurements often vary in structure and form. They are also often quite large-- a standard
HCS use-case is the calculation of >1M measurements per plate (384 wells x 10 images/well
x 25 cells/image x 20 calculated features/image). Importing many millions of calculated
values into a relational database, in the absence of any specialised hardware or database
configuration, imposes an unacceptable performance burden. In addition, dynamic updates
to the database are possiblell, but risk database corruption by anyone not fully adept at data
modelling. For these reasons, we developed a simple flexible framework for storing tabular
data and derived measurements known as OMERO.tables (see Supplemental Note). This
facility uses an HDF5-based data store accessed through the OMERO API to provide a
flexible structure for naming, storing and accessing data stored in tables within an
OMERO.server installation (see Supplemental Note).

In some cases, it may be appropriate to store data in completely defined, relational models.
One example is regions-of-interest (ROIs) that describe the boundaries of objects defined by
manual or automatic object definition or segmentation methods. As ROIs are used in many
imaging applications, OMERO includes support for 5D ROIs (space, time, and channel) in
its core model, and thus within the OMERO database. Using this facility, any tools that
define objects can save them to the OMERO database, making them available to any other
tool that can analyse or process these objects.

An example of a combined use of the OMERO database, StructuredAnnotations, and
OMERQO.tables occurs in support for HCS data. Figure 4 shows a view of a plate from a
targeted siRNA screen focusing on modifiers of SUMOylation. The acquired image data
was analysed using custom third-party software that generated tabular output in separate
CSV files, which are stored in OMERO as StructuredAnnotations on the Screen. In addition,
the data identifying gene name, treatment, etc. for each well are stored in OMERO.tables,
and viewable by mousing over each individual well (Fig. 4A).

Foundation for Flexible Large-scale Processing

A useful data management system must provide a mechanism to initiate, run, and monitor
analyses of the data it holds. OMERO provides this facility through its Scripting Service.
Python scripts are loaded on the server, registered in the OMERO relational database, and
then exposed to the clients through the OMERO API. Scripts can be called from a client and
run either within the server or distributed to external compute resources. Scripts can run
functions themselves, or wrap libraries written in other environments (e.g., C++ and Java).
The current OMERO distribution ships with demonstrator scripts for image export,
projection, and stitching.

As the size and complexity of analysis applications grows, the efficient identification and
recall of metadata becomes limiting in large-scale calculations. The case of HCS provides
one example of this problem. One HCS plate commonly consists of 3840 images, each 2
MB in size (1024 x 1024 pixels x 2bytes/pixel). Distributing the segmentation and feature
calculations for all the images in one plate across a similar number of cores is possible, but
the simultaneous 1/0 calls for thousands of image files can cause performance issues. Some
throttling of job distribution is thus necessary, and this requires access to metadata since
throttling strategies will depend on image size and calculation type. Meta-calculations are
therefore required to define the structure and the performance of the main calculation. This
can only be achieved if metadata are linked to the original data and are easily retrievable, as
in OMERO.
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Supporting Non-Image Data

Thus far, we have focussed on solutions for image data and the range of data types
associated with image analysis. However, the data management and remoting facilities in
OMERQO are required across life sciences research for other data types. As an example,
OMERO has been customised to support large scale, high-resolution Genome Wide
Association Studies (GWAS) of human autoimmune diseases!? simply by adding
specialized model types pertaining to genotyping and clinical health records (Fig. 5A; see
Supplemental Note). We chose this implementation to solve a critical data processing
bottleneck that occurs when extrapolating experimentally obtained genotyping datal? to
combine and impute missing genotypes for a set of individuals by using information
available on their relatives®. The duration of a single imputation run depends strongly —
from minutes to weeks on a standard computing node -- on the complexity of the family tree
structure. In a large-scale population study it is common to have batches of hundred of
thousands of runs for an imputation calculation. As most compute resources are shared, the
efficient distribution and monitoring of compute jobs are crucial. Without accurate planning
of compute resource allocation, large numbers of jobs can be started on a compute cluster
with no improvement in the total run time. Figure 5B shows how the expected time needed
for an imputation computation for 6,863 genotypes depends on the number of computational
nodes N used and the maximal family “bit complexity” (BC, a measure of family pedigree
complexity). The boundary between blue and red data points represents the set of optimal
pairs of BC and N. For a given BC, increasing the cluster size beyond the relative optimal N
value does not improve overall run time. Using the pedigree metadata is absolutely critical
for efficient use of computational resources. Processing metadata and setting up a
calculation within OMERO takes minutes at most, whereas directly reading metadata from
the raw data files (ped files, ~20 GB each) takes many hours.

OMERO-based Image Repositories

OMERO was originally built to support management of image data at individual sites—
laboratory or department imaging facilities that required a data management facility.
However, the same architecture can provide the foundation for public image data
repositories. OMERO has been used as the foundation for two public repositories, the JCB
DataViewerl® and the ASCB’s CELL Image Library. Both applications use a customised
import strategy based on Bio-Formats, and use OMERO to store, manage, and provide
access to image data. The ASCB CELL Image Library collects images via public
submission, and following on well-established methods in the genomics community, uses a
team of human annotators to apply terms from a series of defined ontologies to the
submitted images. In this case, the ontological terms are represented in XML, stored within
OMERO.server, and then exposed within a custom web browser-based user interface.

To demonstrate the flexibility of OMERO and the OME Data Model, we imported data from
the Electron Microscopy Data Bank16 into OMERO and extended OMERO.web’s data
viewing capabilities to include display of fitted models from single particle reconstructions
from electron microscopy (EM) data (see Supplemental Note). A modified version of
OpenAstexViewer is used for 3D map viewing, and facilities for search and display of EM
metadata in customized frames were also added. No changes were needed to the underlying
OMERQO relational database or API for this conversion, demonstrating that OMERQO’s
underlying model is generic enough to handle most types of biological imaging. As we
continue to develop the underlying OME Data Model, EM-specific metadata can be directly
added to and accessed within the OMERO database.

Nat Methods. Author manuscript; available in PMC 2012 September 10.



syduiosnuel Joyiny sispun4 JINd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Allan et al. Page 8

Discussion

OMERQO is a flexible, scalable image data management system that provides storage, access,
processing, and visualization of a diverse set of data types. We used model-based code
generation techniques to ensure that extension beyond OMERQO’s original intended use in
light microscopy is straightforward and we adapted it for use in HCS, EM, scientific image
repositories and GWAS studies. While this involved changes to the client user interfaces,
addition of many new metadata types was enabled with little change to the components of
OMERO.server. This flexibility simplifies software maintenance and allows OMERO to
serve as the foundation for a range of image management and analysis applications (Figs. 2,
3 and 4), public image repositories, and analysis of genomic data from large populations

(Fig. 5).

The goal of OMERO is not to provide a full toolkit of data analysis tools, as there are
already many examples of these-- ImageJ’, ITK/VTK18, R, and Matlab are just a few.
Instead, OMERO provides common interfaces for these and any other application to access
all types of data supported by OMERO and Bio-Formats, independent of the specific
programming environment used. OMERO clients enable remote access to large, complex
datasets so that data can be viewed and analysed in remote locations, through secure,
authenticated connections and allow collaborators with appropriate access privileges to
view, annotate, and analyse data as well. We intend the released OMERO clients to serve as
a starting point for other clients and utilities developed by others, to suit their own needs.

Using OMERO

OMERQO is an open source software application, and available for download at http://
openmicroscopy.org. Extensive documentation is available, and support for installation,
configuration, implementation and usage is also available using mailing lists and public
forums. As of this writing (January 2012), OMERQO is installed at 3160 sites worldwide, and
in regular use at ~500 sites. The software is available under the GPL license, which allows
any customization for local needs.

In many laboratories, the scale of data collected and analysed is small, or the need to share
data between users, sites, or even different analysis tools is limited. For these cases,
powerful, well-developed commercial and open source desktop processing tools for imaging
are available (ImageJ'’, Osirix!9, etc.) are certainly the preferred solutions—the simple data
management capabilities available in desktop applications are sufficient and the burden of
running a full enterprise-level data management application is not justified. Enterprise-level
data management applications are complex and an experienced informatics staff person and
significant computational and data storage capacity are required for production use.
However, the level of automation and thus the scale and complexity of data routinely
collected in laboratories are rapidly increasing (e.g., machine learning tools to automatically
record datasets according to specific criteria?®), making the use of appropriate data
management applications imperative.

OMERO and other applications that follow similar design principles provide open, flexible
solutions for these challenges. Open source data management applications for specific
domains have been developed, e.g., HCDC for HCS (http://hcdc.ethz.ch) and a number of
picture archive systems (“PACS”) for medical imaging (http://www.osirix-viewer.com;
http://www.dcm4che.org/). In general, these are technically simpler systems—they use
standard web services techniques for remote access to data and store files and metadata on a
filesystem. Like OMERO, Bisque uses Bio-Formats to read image data, a relational database
for data storage, a tiered architecture like OMERO for its server application, a flexible
annotation structure to adapt to complex heterogeneous data, and a web interface for remote
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client access'0. By contrast, OMERQ’s ICE-based framework remoting interface is many
times faster than web services and avoids scaling problems associated with filesystem-based
applications. OMERO is demonstrated to scale to very large multi-terabyte datasets across a
wide range of biological applications and is used in a variety of publicly available
applications. By combining facilities for large-scale data management and a flexible, model-
based architecture, OMERO provides a foundation for many different data management
challenges, especially where large, heterogeneous data sets must be accessed, viewed,
analysed and shared.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1
OMERO architecture
Databases

OMERO uses a series of databases to efficiently store and retrieve different data types.
The Binary Repository is a simple flat file store that holds the binary data, thumbnails,
archived images, and any files used for data annotation. For convenience, any other
submitted data, including scripts or other uploaded data are stored there as well. The
Search Index stores the indices used by Lucene (http://lucene.apache.org) for text
indexing. The OMERQO relational database, normally run by PostgreSQL (http://
www.postgresgl.org/), holds all metadata associated with the binary images, all user info,
most simple annotations, and records all write transactions within the OMERO
installation. The OMERO relational database is constructed using code generation (Fig.
1B). The OMERO tables store is an array of HDF5 files (http://www.hdf5group.org) that
contain any tabular data stored within the OMERO installation.

Middleware

The OMERO.server application provides access to the underlying storage facilities and
processes data for delivery to client applications. The Rendering Engine reads binary
image data, scales it according to parameters stored within the OMERO relational
database or instructions from OMERO clients. This can include projections, overlays,
and/or compression. Lucene is used for text indexing and running and returning search
queries on these indices. Hibernate is used for object-relational mapping between
OMERO.server and the OMERO relational database and filters all results according to
permissions stored on each object. OMERO.scripts is a scripting service for any process
in Python. Scripts are run within a service in OMERO, and passed to a grid of processors
( “OMERO.grid”, based on ZeroC’s IceGrid) where they are executed, and any results
returned to the calling script. OMERO.grid processors can exist within OMERO.server or
on remote systems. Access to remote clients is through ZeroC’s Internet Communications
Engine (ICE; http://www.zeroc.com) framework, allowing communication with a wide
variety of client environments using a single API. Hibernate objects and ICE definitions
in Python, Java, and C++ are created through code generation (Fig. 1B).

Clients

OMERO provides a Java-based data upload (OMERO.importer) and a Java-based and
web browser-based data visualization and analysis clients (OMERO.insight and
OMERO.web, respectively). OMERO.importer uses Bio-Formats to read image data and
metadata from all formats it supports. OMERO.insight and OMERO.web support
visualization, annotation, analysis, and sharing of data in an OMERQO installation.
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Box 2
Computer and OME terminology
Application Programming I nterface (API)

A software function that provides access to functionality and processing without
exposing the underlying complexity in the function. An API abstracts’ the technical
details of a function but still allows access to it. API’s are usually accompanied by
extensive documentation to define how to call a function, what parameters to use, etc.
Documentation for the OMERO API is at http://trac.openmicroscopy.org.uk/ome/wiki/
OmeroApi.

Client-server application

A two-part application, where one application (the server) stores data and delivers an
easy-to-view version of the data to a separate, usually less powerful, application (the
client). Data also flows from the client to the server. In most cases, data transfer occurs
through an internet connection. A web server and web browser are one example.

Code generators

Software applications that read a specification or model and generate computer code that
uses the specification.

Command lineinterface

A simple, non-graphical tool that allows access to an application (often through an API)
by typed commands.

HDF5

A data storage mechanism that allows many different data types to be stored in a single
file. Often described as a “whole filesystem in a single file”.

GNU General Public License (GPL)

One of a series of standard open source licenses. Allows users to make any changes to
software, but requires any distribution of any derived work to be licensed under the GPL.

I nter oper ability

The ability of a software tool to interact with data and other software, even though it was
not explicitly designed to do so.

Key-value pairs

A simple storage mechanism for data in a computer, where an attribute’s name and value
are stored as a pair. A number of mechanisms exist to store key-value pairs. A key-value
store is easy to extend—new values are just added to the bottom on the list.

M etadata

Often referred to as “data about the data”, this refers to additional information that, while
not strictly part of the recorded data defines, how the data were recorded. In some cases,
metadata are absolutely necessary to work with the associated data, e.g., the height and
width dimensions of an image.

Middleware

Software that mediates communication between many data sources (sometimes referred
to as the “front-end”) and one or more databases (the “back-end”).
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OME Data Model & OME-XML

An open specification for microscope image data that defines the elements and
relationships for microscope image metadata®. The OME Data Model is expressed in
Extensible Markup Language (XML), to generate OME-XML, which can be used by
software tools as a data specification to generate databases and other applications. OME-
XML can be easily stored in file headers to include a metadata specification in image
files, e.g., OME-TIFF. Use of the OME Data Model and OME-XML is described at
http://www.openmicroscopy.org/site/support/file-formats

OMERO.server, .tables, .importer, .dropbox, .insight, .web

These are components of the OMERO platform. OMERO.server is a middleware server
application that provides access to image data and metadata stored in a series of
databases. OMERO.tables is one of the databases used by OMERQO.server and is an
HDF5-based facility for storing large tabular arrays. OMERO.dropbox is a filesystem
monitoring application that automatically recognises new files in a specific folder and
then imports them into OMERO. OMERO.insight and OMERO.web are Java and web
browser-based clients of OMERO.server, respectively, that provide access to data stored
inside an OMERO installation.

OME-TIFF

An open scientific image file format that stories binary pixel data in the well-known TIFF
format and stores OME-XML describing the image metadata in the TIFF header.

netCDF (network Common Data Form)

A series of open software libraries and protocols for storing scientific data in a
programming language and operating system independent format.

Proprietary file formats

Closed, usually commercial data formats that contain recorded image data and instrument
configuration metadata.

Relational database

A computer application that stores data in a series of tables, and uses declared
relationships between those tables to calculate relationships in the data. A standard
language used to query relational databases is Structured Query Language, or SQL.
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Figure 1. Architecture and Data Modelingin OMERO
(A) OMERO Architecture. OMERO is built from a series of database, middleware and client
applications. A number of open source libraries provide critical functionality: Hibernate is
used for object-relational mapping, Lucene for indexing, Pytables for linking to HDF5 files,

and ICE for remoting.
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(B) Use of OME Data Model for Code Generation. OME-XML is used by OMERO code
generators to generate the OMERO relational database, the object-relational mapping model

and the ICE-based remoting system.
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(A) Different views of OMERO.insight showing the tree-based data browser, image
thumbnails, and a view of a single image (top) and image metadata and annotations and

access to server-side analysis scripts (bottom).
(B) OMERO.web client viewing same data as in (A).
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Figure 3. External applicationsas OMERO Clients

(A) Screenshots of custom applications written in Matlab that define and measure features of
ROIs based on Otsu thresholding or calculate kymographs based on a user-defined region.
Any processing or analysis facility within Matlab can be used for data stored within
OMERO.

(B) VolViewer, a 3D GPU-based multi-channel volume rendering engine® viewing image
data obtained from an OMERO installation. VolViewer requires a GPU for processing, but
implementations using VolViewer as a client of OMERO, or running as an OMERO service
on a server with a GPU are available.
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Figure 4. Experimental, heter ogeneous data stored and viewed in OMERO

(A) Screenshot of OMERO.insight showing data from a targeted siRNA screen recorded on
an InCell 1000 platform. Images are stored in OMERQO’s file store and acquisition metadata
are stored in the OMERO relational database. Experimental metadata defining gene name,
siRNA and other experimental parameters were originally stored in CSV files and imported
into OMERO using the Annotation service, and stored in the OMERO.tables HDF5-based
store.

(B) Screenshot of OMERO.insight showing view of data of single field from single well
from dataset in (A). Choosing any well thumbnail opens an image view window (Fig. 4B),
and viewing the measurements in that image reveals ROIs calculated by proprietary
software on the InCell platform, stored in the OMERO DB and visualised as overlays on the
displayed image. Calculated features from each ROI are stored in the OMERO.tables HDF5-
based store, and displayed alongside the ROls.
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Figure 5. Non-Image Data and the Use of M etadata for L arge-Scale Computations

(A) Alternative use of OMERO for storing and tracking clinical laboratory specimens and
genotype data. Sample type, creation date, processing, assay results, genotyping results, and
any familial relationships are all recorded. The modelling for this system is based on
OpenEHR archetypes. See Supplemental Note for more details.

(B) Performance of a SNP imputing calculation as a function of pedigree complexity (an
index of the number of members of a genetically related family) and compute nodes used to
perform the calculation. Low complexity imputation benefits from increasing the number of
compute nodes, and only occupies nodes for relatively short periods. High complexity
calculations take orders of magnitude longer, and do not benefit from adding more nodes.
The point where adding number of nodes provides no improvement in performance is shown
by the interface between the blue and red domains. Time and cost-efficient use of compute
resources therefore depends on access to metadata, determination of complexity, and
planning of processing strategy before initiating the imputing calculation.
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