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We provide evidence that recognition memory is mediated by
a detect-or-guess mental-state model without recourse to concepts
of latent-strength or multiple-memory systems. We assess perfor-
mance in a two-alternative forced-choice recognition memory task
with confidence ratings. The key manipulation is that sometimes
participants are asked which of two new items is old, and the
resulting confidence distribution is unambiguously interpreted
as arising from a guessing state. The confidence ratings for other
conditions are seemingly the resultant ofmixing this stable guessing
state with an additional stable detect state. Formal model compar-
ison supports this observation, and an analysis of associated re-
sponse times reveals a mixture signature as well.

discrete-state models | memory models | receiver operator characteristic
analysis | signal-detection | dual-process models

Recognition memory refers to the ability to differentiate pre-
viously encountered stimuli from novel ones. Understanding

this ability remains timely and topical, and underlies more complex
theories of humanmemory and associated pathology. One popular
conceptualization, called dual-process accounts, is that memo-
randa are mediated by two distinct processes: an unconscious
process based on familiarity, and an effortful, conscious one based
on recollection (1). An alternative conceptualization is that mem-
oranda aremediated by a single latent-strength process. Items have
a baseline strength before study, and studying items increases
this strength. Latent-strength theories are at the core of a large
set of computational memory models, including trace-based
memory models (2–5) and neural network models (6, 7). In this
paper, we propose an account that is simpler than either the
dual-process recognition memory or latent-strength accounts. In
our alternative, items are either remembered or not, and there
are no intermediate states. We posit that stimulus factors, such
as the number of times an item is studied, only affects the
probability of entering the remember state. Once a participant
enters this state, however, the performance is the same regard-
less of stimulus factors. This property forms a key signature or
invariance of discrete-state models. We propose a experiment
for testing this invariance, and find that it holds to reasonable
precision.

Discrete-State Models
Discrete-state models remain unpopular because some authors
mistakenly consider them to be incompatible with extant receiver
operator characteristic (ROC) data (8–10). The points in Fig. 1 A
and B are ROC functions from previous recognition memory
experiments, and these are constructed by having participants
rate their confidence and choice on a unidimensional scale (11).
As can be seen, the points are best fit with a curved function.
Fig. 1C shows the conventional high-threshold discrete-state model
for a four-choice confidence scale (the generalization to any
number of choices is straightforward). When a tested item was
previously studied (Fig. 1C, Left), the participant enters either
a detect state with probability ds or a guessing state with proba-
bility 1 − ds. When in the detect state, the participant responds
with highest confidence that the item was old. When entering the
guessing state, the participant distributes her or his responses with

a fixed distribution (denoted γ1 . . . γK, where K is the number of
response options). Likewise, when the tested item is new, the
participant enters a detect state with probability dn or a guessing
state with probability 1 − dn. When in this detect state, the par-
ticipant responds with the highest confidence response that the
item is new. A critical assumption in this model is that partic-
ipants use highest confidence responses when in detect states.
This assumption is termed the certainty assumption. The discrete-
state model with the certainty assumption yields straight-line
ROC predictions that are incompatible with the plotted data in
Fig. 1 A and B (dashed lines represent predictions).
Luce (12) argued that the certainty assumption may be un-

realistic. Participants may enter states without any control or
volition, and occasionally enter them in error. To meet response-
demand characteristics, participants may shape how they re-
spond when in a state. To compensate for the possibility of en-
tering a state incorrectly, participants may occasionally produce
low-confidence responses even in detect states. The plausibility
of low-confidence responses in detect states is enhanced when
considering that participants are often asked to distribute their
responses. Even if this instruction is withheld, there may be an
implicit demand to distribute responses from the presentation of
several response options. Hence, the certainty assumption is
tenuous and, as shown next, greatly affects model predictions.
Fig. 1D shows how the assumption may be relaxed, and in

this case, participants may produce even low-confidence re-
sponses from the detect state. ROC predictions from discrete-
state models without the certainty assumption are more flexible
than those with it. The constraint is that points must be con-
nected by line segments, but the slopes of these segments may
vary (12–15). The predicted ROCs for the data examples in Fig.
1 A and B are shown as solid lines. These predictions account
for the shown data perfectly. Contrary to popular assertions,
the extant ROC plots do not rule out discrete-state models per
se; they rule out only discrete-state models with the certainty
assumption.

Predictions of Discrete-State and Latent-Strength Models
It may appear that discrete-state models are too unconstrained
to be useful. Indeed, as might be surmised from Fig. 1 A and B,
the general discrete-state model does account for a single ROC
curve from any single experimental condition. Fortunately, most
experiments involve several conditions; for example, items may
be studied one time or several times before test. In this case,
there are separate ROC curves for those items studied once and
those items studied several times. As shown next, the discrete-
state model is highly constrained when accounting for data from
multiple conditions.
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The key property of these models is that the distribution of
responses from a mental state is not dependent on the experi-
mental condition. For instance, participants may enter the detect
state for either the several-repetition or the single-repetition con-
dition, and they are more likely to do so for the former than latter.
Nonetheless, once a participant enters this detect state, the distri-
bution of responses is the same. Restated, conditional on a de-
tection state, the distribution across responses is invariant across
conditions.We term this property “conditional independence.”The
conditional independence property represents the core of discrete-
state models and it may be tested without recourse to the certainty
assumption.
Conditional independence is most easily seen by plotting dis-

tributions of confidence ratings themselves rather than ROCs.
Fig. 2 shows an example from a two-alternative forced-choice
(2AFC) paradigm where the word “frog” was studied. At test,
the participant is shown the target “frog” and distracter, in this
case “table.” The participant then rates his or her confidence on
a scale from “sure table” to “sure frog.” Fig. 2A shows the dis-
tribution of confidence for the guess state (green) and the detect
state (orange). We have drawn the ratings for guessing as cen-
tered, indicating no particular bias. Detection, in contrast, yields
responses for the frog end of the scale, because frog was indeed
studied. The predictions for the observed confidence ratings are
shown in Fig. 2B, and these are a mixture of the confidence
ratings in the two states. In the reported experiments, partic-
ipants may study frog once or four times. Fig. 2B shows the case
for once, and there is an equal amount of detection and guessing.
Fig. 2C shows the case that frog was studied four times, and here
it is far more likely that the participant enters the detect state.
Note that when the participants guess, they follow the same
distribution as in Fig. 2B, the difference is simply that they enter

the guessing state less often. The same is true for the detect
state: repetition affects the probability of entering states, not the
distribution of responses within a state. We also include a con-
dition in which neither frog nor table was studied; because nei-
ther alternative was studied, the participant must guess, as shown
in Fig. 2C. We refer to this condition as the zero-repetition
condition because frog the target, was studied no times. The
utility of this condition is that it allows for direct assessment of
the distribution during guessing, should discrete states exist.
In this report, we present data from all conditions in one panel

as shown in Fig. 2E rather than in separate panels, as in Fig. 2
B–D. In Fig. 2E, the color of the histogram indicates the condi-
tion (blue for no repetitions, purple for one or two repetitions,
and red for four repetitions). For the no-repetition and four-
repetition conditions, the histograms are oriented upward. The
histograms for the one- and two-repetition conditions are ori-
ented downward to reduce clutter. Also, the data are plotted as
if the studied item was always on the right-hand side (i.e., if the
studied item was on the left, the confidence ratings are reversed).
Fig. 2E shows the predictions for a discrete-state model, and it is
simply the combined predictions from Fig. 2 B–D. The key struc-
ture is evident in the geometry: the modes of the histogram for the
one-repetition condition mirror the modes for the zero- and four-
repetition conditions. Fig. 2F shows a latent-strength competitor.
Here, the histograms of confidence shift with the number of rep-
etitions. A comparison of Fig. 2 E and F shows the distributional
differences between discrete-state and latent-strength models.
Three 2AFC recognition-memory experiments were ran to test

the differential predictions in Fig. 2 E and F. These experiments
vary in minor procedural differences, as discussed in Methods.
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Fig. 1. ROCs in extant confidence-ratings recognition memory tasks show curvature. (A) Points are data from Slotnick and Dodson (9), where the task was
yes/no memory recognition. Dashed and solid lines show the best fit of a discrete-state model with and without the certainty assumption, respectively. (B)
Points are data from Qin et al. (27), where the task was 2AFC source-memory recognition. Dashed and solid lines show the best fit of a discrete-state model
with and without the certainty assumption, respectively. (C) A discrete-threshold model with the certainty assumption. The figure shows the case for four
response options: sure new, maybe new, maybe old, and sure old, and detection leads to highest-confidence responses (the certainty assumption). Parameters
ds and dn denote the probability of detection for old and new items, respectively. Parameters γ1, . . . , γ4 denote the probability of making a response
conditional on guessing. (D) A more general discrete-state model without the certainty assumption. Parameters α1, . . . , α4 and β1, . . . , β4 denote the
probability of making a response conditional on detecting an old or new item, respectively.
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Results
Fig. 3A shows the ROCs for the three experiments across the
repetition conditions. As can be seen, these ROCs are orderly
and fairly typical for 2AFC paradigms. Fig. 4 shows histograms
for nine selected participants (labeled A–I) in the three experi-
ments, and we discuss how we selected these participants sub-
sequently. For each participant, there are two sets of histograms.
The left of each histogram shows of confidence ratings for the zero-
repetition condition (blue), combined one- and two-repetition
conditions (purple), and the four-repetition condition (red). For
the zero-repetition condition, the true pattern must be symmetric
because the participant has no knowledge which new item is con-
sidered the studied one. Hence, deviations from symmetry are
necessarily noise and provide a rough guide to range of variation.
The right side of each histogram shows discrete-state model esti-
mates of the distributions of confidence for a state (green for
guessing, orange for detection). If the discrete-state model holds,
the observed confidence distributions for the conditions should be
a mixture of these state distributions. By inspection, it seems
plausible that the observed distributions in blue, purple, and red
are mixtures of the bases in green and orange.
To more formally assess the plausibility of the discrete-state

model, we fit it to each participant’s histograms individually (see
Methods for full specification of the discrete-state model) and
calculated the log-likelihood ratio test statistic G2. If the dis-
crete-state model holds, these G2 values should be distributed as

a χ2 distribution with 39, 51, and 18 df for experiments 1, 2 and 3,
respectively. The number of participants for which the discrete-
state model could be rejected at α= 0.05 is 2 of 36, 1 of 33, and 5
of 20 for experiments 1, 2, and 3, respectively. The total number
is 8 of 89, or ∼0.08, which is reasonably close to the expected
type I error under the null that the discrete-state model holds.
We competitively fit the discrete-state model against latent-

strength alternatives. In fact, we fit several discrete-state and
latent-strength models and found that both classes of models did
reasonably well. Model-selection outcomes were largely a func-
tion of the simplicity of the compared models. Simple discrete-
state models outperformed complex latent-strength models and
vice versa. Consequently, we kept our focus on discrete-state and
latent-strength models that shared the same number of param-
eters for a given experiment (see Methods for full model speci-
fications). In these cases, we found overall advantages for the
discrete-state model. Fig. 3B shows the case for a simple dis-
crete-state and a simple latent-strength competitor with 10, 12,
and 7 parameters each for experiments 1–3, respectively. Plotted
is the difference in deviance (−2 log L, where L is the maximum
likelihood). Positive values indicate that the discrete-state model
fits better, and negative values indicate that the latent-strength
model fits better. These results show an advantage for simple
discrete-state model compared with a simple normal latent-
strength model. The results may not necessarily generalize to
other classes of latent-strength models, although after extensive
experimentation we have yet to find a latent-strength model
that outperforms a discrete-state model with the same number
of parameters.
There are nine lettered points in the deviance plots corre-

sponding to the nine selected participants whose data are dis-
played in Fig. 4. These nine participants were chosen as follows:
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0 0.2 0.4 0.6 0.8 1

Pr(Right | Left)

0

0.2

0.4

0.6

0.8

1

P
r(

R
ig

ht
 | 

R
ig

ht
)

A

Experiment 1
Experiment 2
Experiment 3

−20

−10

0

10

20

30

40B
D

ev
ia

nc
e 

C
om

pa
ris

on
(L

at
en

t S
tre

ng
th

  −
  D

is
cr

et
e 

S
ta

te
)

C

B

A

Experiment 1

F

E

D

Experiment 2

I

H

G

Experiment 3

3 tnemirepxE2 tnemirepxE

0 1 2 3 4
Number of Repetitions

0 1 2 3

2.5

3

3.5

4

4.5

M
ea

n 
R

T 
(s

ec
on

ds
)

C

2

2.5

3

3.5

4Conditional on Guessing
Marginal Average
Conditional on Detection

Fig. 3. (A) Average ROC plots from each repetition condition across each
experiment. The curvature and symmetry about the negative diagonal is
typical for a 2AFC recognition memory task. (B) Deviance difference values
for all subjects. Positive values indicate lower penalized deviance (better fit)
for the discrete-state model than the latent-strength model. The plot shows
that for a majority of the subjects, the comparison favors the discrete-state
model. (C) Mean response time as a function of repetition for experiments 2
and 3. Observed marginal RTs, RTs conditional on detection, and RTs con-
ditional on guessing are shown in purple, orange, and green, respectively.
Error bars denote 95% within-subject confidence intervals.

Province and Rouder PNAS | September 4, 2012 | vol. 109 | no. 36 | 14359

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S



three had data patterns best described by the discrete-state
model (A, D, G); three had data patterns best described by the
latent-strength model (C, F, I); and three were in between (B, E,
H). Hence, the selected participants in Fig. 4 reflect a fair sample
for assessing discrete-state and latent-strength predictions.
The above analyses show that the discrete-state model pro-

vides not only a good account of the data, but a better account
than the latent-strength model. It is worthwhile to consider
whether the discrete-state is improved by adding in a latent-
strength familiarity component (i.e., a dual-process account). To
this end, we compared the discrete-state model to a popular
dual-process alternative (16). In the alternative, participants
recollect the studied item and respond with highest confidence
(the certainty assumption) or, if recollection fails, use familiarity,
which is modeled as an equal-variance, normally distributed la-
tent-strength process. We compared the two models by the
Akaike information criterion (AIC) (17) and the Bayesian in-
formation criterion (BIC) (18) because there was no way to
equate the number of parameters (the dual-process alternative is
more richly parameterized than the discrete-state model). Across
all three experiments, the discrete-state model was selected over
the dual-process alternative for 73 and 87 of the 89 participants
by AIC and BIC, respectively.
We also constructed a dual-process signal detection (DPSD)

model without the certainty assumption. In this version, recol-
lection may lead to a range of responses. The model is a proper
generalization of the discrete-state model. What was a guessing
component in the discrete-state model is now a familiarity com-
ponent that is free to vary with repetition. Because this model is
a proper generalization of the discrete-state model, the two may
be compared with a log-likelihood ratio test statistic G2 with 3 df.
We found that the restricted discrete-state model could not be
rejected for 73 of the 89 participants (80%). Therefore, there is no
need to postulate a familiarity mechanism for the vast majority of
our participants. Whereas these tests occur on a per-participant
basis, it is reasonable to consider the power of them. We per-
formed a small Monte Carlo simulation in which the familiarity of
studied items was 0.5 (in d′ units) for the one-, two-, and four-
repetition conditions. Recollection was set to match overall

accuracy, and the other parameters were set to approximate
trends in the data.We found that the discrete-state model without
familiarity could be rejected for 439 of 1,000 simulation runs, in-
dicating that the above test has modest power on a per-participant
basis. Nonetheless, we observed far less than 44% rejections. We
can safely conclude that if there is any familiarity component, it
must be less than 0.5 in value.
The discrete-state model also makes a constrained prediction

about the time to make a response (RT). Accordingly, RT con-
ditional on amental state does not depend on stimulus parameters
(conditional independence). Hence, conditional mean RT should
not vary with the number of repetitions. To assess this prediction,
we assigned each response to a mental state by computing the
model-based probability that a given response was in the detect
state or guess state from the confidence-ratings data. If this
probability was greater than 0.5, the response was considered from
the detect state; otherwise it was considered from the guess state.
Fig. 3C shows the mean RT as a function of repetition for
experiments 2 and 3. The points in purple are the observed or
marginal RTs plotted as a function of repetition. For both
experiments, RT decreases substantially with repetition (de-
creasing ∼0.9 and 0.6 s in experiments 2 and 3, respectively). The
critical sequences are the RTs conditional on a mental state
(green for guessing; orange for detection). If the discrete states
from the confidence ratings data capture no variance, then these
state-conditional RTs should be the same as the marginal RTs.
Conversely, if the discrete-state model holds and the state mem-
bership is perfectly estimated for each observation, then these
state-conditional RTs should be constant across repetition con-
ditions. As can be seen, although there is a slight decrease in state-
conditional mean RT with repetition in some cases, the degree of
decrease is much less than in the marginal RTs. In experiment 2,
marginal RT fell at a rate of 0.238 s per repetition, whereas the
conditional RT fell at an average of 0.043 s per repetition, or at
∼18.1% of the marginal rate. Likewise, in experiment 3, marginal
and conditional RT fell at 0.206 and 0.032 s per repetition, for
a ratio of 15.5%. To assess the statistical significance of the slopes
of the conditional RTs, we constructed a one-sample t test. The
decrease was not significant [for experiment 2, t(32) = 1.62; for
experiment 3, t(19)= 0.92]. Amodern approach to assessing these
t statistics is to compute the Bayes factor between a model with
zero slope and one with nonzero slope (19). These Bayes factors
favor the no-slope model by values of 2.2 and 3.92 for experiments
2 and 3, respectively. These findings are impressive because state
membership was estimated solely from the confidence ratings
without consideration of the response times.
The response time data from experiment 1 is omitted because

there is no dependency of RT on repetition. In this case, consid-
eration of RT has no diagnostic value. (We suspect the lack of
a repetition effect reflects an idiosyncrasy in the procedure where
participants could and did overshoot the “absolutely sure” anchors.
When this happened, participants had to move the cursor back to
the valid range before depressing the mouse button to indicate
their response. In experiment 2, in contrast, the cursor could not be
moved outside the valid range of responses.)

Discussion
The vast majority of models in recognition memory are, or con-
tain, continuously valued latent-strength components. We show
here that previous rejections of discrete-state models were pre-
mature because they were made with recourse to the tenuous
certainty assumption. The current experiments test the key prop-
erty of discrete-state models: conditional independence. The
observe data increase the plausibility of conditional independence
as follows: (i) mixtures seem apparent by inspection (Fig. 4); (ii)
a formal version of the discrete-state model fits acceptably well by
a likelihood-ratio test; (iii) this discrete-state model outperforms
a latent-strength competitor with the same number of parameters

Experiment 1
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G

H

I

Fig. 4. Histograms of confidence ratings across repetition conditions for
selected participants. (A–C) Best, median, and worst discrete-state fits for
experiment 1. (D–F) Best, median, and worst discrete-state fits for experi-
ment 2. (G–I) Best, median, and worst discrete-state fits for experiment 3.
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(Fig. 3B) and outperforms a more richly parameterized, popular
dual-process alternative; and (iv) mean response times also dis-
play the conditional independence property (Fig. 3C). Hence,
discrete-state models may serve as as parsimonious descriptions
of the structure of recognition-memory responses.
The discrete-state interpretation is not necessarily incompatible

with the existence of continuously valued mnemonic signals.
However, these signals seemingly affect performance inasmuch as
they affect the probability of entering a detect state or guess state.
Consequently, an alternative description of recognition memory
may focus on factors and mechanisms that affect the probabilities
of entering various discrete mental states.

Methods
Experiments 1–3 were approved by the University of Missouri-Columbia
Campus Institutional Review Board (IRB), and all participants provided writ-
ten informed consent. The three experiments were highly similar. The dif-
ferences across them were in the procedure for collecting confidence ratings.
In experiment 1, participants used a mouse to position a cursor on one of 200
points on a scale with anchors of 100% positive. For example, if the words
table and frog were presented on the left and right, the left and right
anchors were 100% positive table and 100% positive frog, respectively. In
experiment 1, three additional intermediary positions were labeled on each
side of the scale (“pretty sure,” “believe,” and “guess”) to help calibrate the
confidence ratings. In experiment 2, we removed these intermediary posi-
tions, and, instead, rewarded participants with points; they risked more
points per trial with more extreme confidence ratings. Experiment 3 was
a replication of experiment 1, except that confidence was rated with six
options (e.g., “sure table,” “likely table,” “guess table,” “guess frog,” “likely
frog,” and “sure frog”). Instead of moving a mouse on a continuous scale,
participants depressed one of six corresponding keys on a keyboard.

Participants. Participants were groups of 36, 33, and 20 University of Missouri
students who participated for course credit in experiments 1, 2, and
3, respectively.

Design. The main independent variables were side of presentation of the old
item (old item on left/right) and the number of repetitions of the old item at
study. These variables were crossed in a within-subject factorial design.

Stimuli. For experiments 1 and 2, 480 nouns from the MRC Psycholinguistic
Database (20). Word length varied between four and nine characters, and
Kucera–Francis frequency varied between 1 and 200 occurrences per million
(21). For each participant, a subset of 240 items was chosen at random to
serve as the studied items, and these items were randomly crossed with
experimental factors. For experiment 3, 250 nouns obtained from the Uni-
versity of South Florida Free Association Norms Database (22) served as study
items. At test, the distracter for each studied item was a highly associated
noun (e.g., if “alligator” was studied, “crocodile” served as a distracter).

Procedure. The experiments were conducted on Mac OSX computers under
the Psychophysical Toolbox (23) in Octave. During study, words were visually
displayed, one at a time, at a fixation of 2 s each. At test, participants were
shown a studied and new word to the left and right of fixation.

In experiment 2, participants earned and lost points as follows: Let x be the
rating for a given trial, −1 ≤ x ≤ 1, where x = −1 and x = 1 correspond to
100% positive responses for the left and right test items, respectively. Let z
be an indicator that denotes whether the response was correct (z = 1) or in-
correct (z = 0). The total points earned on a trial is z(100jxj) − (1 − z)(100jxj +
400jxj5). This expression favors more intermediary responses because the los-
ses for high-confidence responses are disproportionately larger than the gains.
Trial-by-trial feedback consisted of presenting participants with the points they
had won or lost.

Model Analysis. We developed and fit a number of discrete-state and latent-
strength models. We fit models to each individual separately, and the fol-
lowing development is at the level of a single participant. For experiments 1

and 2, the ratings were continuous; for the purposes of modeling, these are
treated here as binned or discrete. Let Y = 1, . . ., K denote the binned rating,
where K is the total number of bins (for experiments 1, 2, and 3, K = 8, K = 10,
and K = 6, respectively, and these different values reflect the specifics of the
ratings procedure for the experiment). Rating Yijs is the rating for the ith
replicate in the jth repetition condition for target words presented on side s
(s = 0 and 1 for presentations on the left and right, respectively).
Vacuous model. The most general model that can account for any pattern of
data are the multinomial model where there is a separate probability pa-
rameter per cell. Let pjsk be the probability that the person produces the kth
rating in the (j, s) combination of conditions, subject to the constraint that
probabilities across the K responses sum to 1. In fitting this model, we also
constrained the probabilities in the no-repetition condition to be in-
dependent to the side of the target. The number of free parameters for this
model is (K − 1)(2J − 1), which evaluates to 49, 63, and 25 parameters for the
three experiments.
Discrete-state model. In discrete-state models, the probability of a response is
conditional on a mental state. Let d0k and d1k denote the probability of the
kth response for detecting that the target is on the left and right, re-
spectively; and let gk denote the same for guessing. Let πjs denote the
probability of entering the appropriate detect state for the (j, s) combina-
tion of conditions. For the zero-repetition condition, πjs = 0, and it increases
with repetition. The discrete-state model is a restriction on the vacuous
model, where

pjsk ¼ πjsdsk þ
�
1− πjs

�
gk :

We fit a number of different versions of this model with different symmetry
constraints. The most parsimonious models (by both AIC and BIC) had the
following reasonable symmetry constraints: (i) Detection did not depend on
the side of presentation, e.g., πj0 = πj1 = πj. (ii) The response upon entering
a detection state was symmetric; i.e., the probability of saying “sure left” for
the target on the left is the same as saying “sure right” for the target on the
right. Formally, d0k = d1(K −k + 1) for all k options. (iii) Guessing obeyed
a conditionally symmetric structure. There was one parameter, termed “bi-
as,” that was the probability of guessing toward the left or right test item.
Conditional on a side, however, the level of confidence was symmetrically
distributed. With these three constraints, the number of free parameters is
J + K − 2, which evaluates to 10, 12, and 7 for the three experiments. Model
parameters were estimated by maximizing likelihood in R with both simplex
and conjugate-gradient decent algorithms (24, 25).
Latent-strength model. In latent-strength models, the participant observes
a latent strength, denoted Xijs on each trial. This strength is compared with
K − 1 free criteria to produce responses. We have implemented a number of
different parametric forms for latent strength, including the normal, logistic,
and gamma. It matters little which is chosen because there is much flexibility
in the model with free criteria. We describe here the case for the normal,
with variance and mean as free parameters. For the normal, the most par-
simonious model contained the following symmetry constraints: (i) The
variance of the latent distributions was constant across side and repetition
condition—that is, the equal variance model held. (ii) For each repetition
condition, the locations of the latent-strength distributions for items pre-
sented on the left and right were symmetric about zero. For example, if the
mean of the latent-strength distribution for items on the right was 1.5, then
the mean for items presented on the left was −1.5 for the same repetition
condition. Model parameters were estimated by maximizing likelihood in R
with both simplex and conjugate-gradient decent algorithms (24, 25).
Likelihood-ratio test. The vacuous model is a proper generalization of both the
discrete-state and latent-strength model, and is used to test each through
a likelihood-ratio test (26). If the nested model holds, either discrete state or
latent strength, the corresponding G2 statistic is asymptotically distributed as
a χ2 with 39, 51, and 18 df for the three experiments.

Deviance. Because the discrete-state and latent-strength models contained
the same number of free parameters, the deviance is a suitable statistic for
comparing the two. Model comparison results by deviance in this case are the
same as by either AIC or BIC. Larger deviance values indicate a poorer fit
for a model.
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