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Abstract
Monocyte chemoattractant protein-1 (MCP-1) is the first discovered and most extensively studied
CC chemokine, and the amount of studies on its role in the etiologies of obesity- and diabetes-
related diseases have increased exponentially during the past 2 decades. This review attempted to
provide a panoramic perspective of the history, regulatory mechanisms, functions, and therapeutic
strategies of this chemokine. The highlights of this review include the roles of MCP-1 in the
development of obesity, diabetes, cardiovascular diseases, insulitis, diabetic nephropathy, and
diabetic retinopathy. Therapies that specifically or non-specifically inhibit MCP-1 overproduction
have been summarized.
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1. HISTORICAL PERSPECTIVES OF MONOCYTE CHEMOATTRACTANT
PROTEIN-1

1989 witnessed the birth of Monocyte Chemoattractant Protein-1 (MCP-1) into the light of
scientific investigation at the National Cancer Institute, Maryland, USA. This protein was
initially identified from the conditioned media of human myelomonocytic cell line as the
monocyte chemotactic factor (MCF) [1]. It was further named as monocyte chemotactic and
activating factor (MCAF), which was found to be rapidly produced in normal human dermal
fibroblasts in response to the stimuli of interleukin 1 (IL-1) or tumor necrosis factor (TNF)
[2]. Using glioma cells [3, 4] and stimulated mononuclear leukocytes [5], this protein was
sequenced and cloned, and was found to consist of 76 amino acids and four cysteine
residues [6], and named as MCP-1 for the first time [3]. It is worth pointing out that in the
same year this protein was also cloned and sequenced in Japan under the name of MCAF
[7].

Due to its high abundance and ubiquitous production, MCP-1 is the first discovered and
most extensively studied human CC chemokine, which is characterized by the conserved
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position of four cysteine residues (with the first two adjacent to each other) forming intra-
molecular disulphide bridges to stabilize peptide folding [8]. Therefore this protein is also
known as Chemokine (C-C motif) ligand 2 (CCL2). Human MCP-1 is located on
chromosome 17 (chr.17, q11.2) [9], with a putative molecular weight of 8,685 Da [8].
Mouse JE/mouse MCP-1 is thought to be the homologue of human MCP-1, with 49 more
amino acids at the carboxy-terminal end, increasing its putative molecular weight to 13,848
Da [8]. Glycosylation of MCP-1 resulted in higher molecular weight and slightly reduced
the chemotactic potency [10]. The main receptor used by MCP-1 is CCR2, consisting of two
isoforms, CRR2A and CCR2B, derived from a single gene via alternative splicing, and
differ in their terminal carboxyl tails [11]. CCR2B is the predominate form in human
monocytes, and the gene expression levels of both CCR2A and CCR2B decreases as the
monocytes differentiated into macrophages [12].

2. TRANSCRIPTIONAL REGULATION OF MCP-1
Expression of MCP-1 is ubiquitous in various cell types and is upregulated by a wide variety
of stimuli. The list of MCP-1-producing cell types grew rapidly after the aforementioned
pioneer studies in 1989 [13-18]. A summary of MCP-1-producing cell types and stimuli can
be found in Table 3 in a review by Van Collie et al. [8]. In addition, adipocytes have been
recognized as an important source of MCP-1[19, 20].

Human MCP-1 gene consists of 3 exons of 145, 118 and 478 bp in length, and 2 introns of
800 and 385 bp in length. In 1990 Shyy et al. reported two phorbol ester responsive
elements (TRE) 129 and 157 bp upstream from the translation initiation site, and the
upregulation of MCP-1 expression in cultured endothelial cell after phorbol ester treatment
[21]. Subsequently Ueda et al. [22] identified two remote kappa B binding sites known as
A1 (−2640/−2632) and A2 (−2612/−2603). A2 was found to be important for enhancer
activity induced by IL-1β, TNF-α, and 2-O-tetradecanoylphorbol 13-acetate (TPA). One GC
box (−64/−59) was also found important for the maintenance of basal transcriptional
activity, and can possibly be controlled by Sp1. A graphical summary of the transcriptional
regulatory elements of human MCP-1 gene is shown in Figure 1. Further studies by Ueda et
al. [23] revealed that lipopolysaccharide (LPS) stimulation induces the binding of p65/p65,
c-Rel/p65, p50/p65, and p50/cRel to the A2 probe and increase of MCP-1 mRNA in human
acute monocytic leukemia THP-1 cells, while TPA treatment on this cell line only resulted
in the binding of p65/p50 to A2 probe, but not increase of MCP-1 mRNA. However, TPA
treatment on other human cell lines such as cervical carcinoma HeLa, osteosarcoma HOS,
and glioblastoma A172 cells induced both binding of p65/p65 and cRel/p65 to A2 probe,
and elevated MCP-1 mRNA levels. Co-transfection of p65 or p65/cRel with hMCP-1
showed trans-activation. Thus stimulus-specific and tissue-specific regulation on human
MCP-1 gene has been emphasized [22, 23].

In rat JE gene, the −141/−88 promoter region is reportedly responsive to the phorbol ester
TPA, and the −70/−38 promoter region is essential for basal activity. The later region
harbors the sequence TGACTCC, resembling the consensus site for AP-1 binding
TGACTCA. The JE AP-1 site and the consensus AP-1 site have an overlapping but not
identical binding spectrum for AP-1 proteins [24]. Hanazawa et al. reported that TNF-α
induces JE expression via c-fos and c-jun genes following protein kinase C activation in
mouse osteoblastic MC3T3-E1 cells, and curcumin, a specific inhibitor of c-jun/AP-1,
markedly inhibited JE gene expression induced by the cytokine [25]. Ping et al. further
reported that TNF regulates the occupancy of both distal and proximal regulatory regions of
murine JE gene, and demonstrated a multi-step model involving chromatin accessibility,
transcription factor complex assembly, and protein phosphorylation [26]. In a subsequent
report from Ping et al. [27] it was shown that two distal kappa B sites, a novel
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dimethylsulfate-hypersensitive sequence, and a promoter proximal Sp1 site were required
for TNF induction, and illustrated a crucial role of p65 in the assembly of a NFκB
dependent enhancer in vivo.

The regulation of MCP-1 gene expression in pancreatic islets has been extensively studied
due to its clinical relevance (refer to Section 7). Reported regulatory factors include primary
inflammatory cytokines (i.e. IL-1β, TNFα), lipopolysaccharide, ERK1/2 and p38 MAPK,
but not glucose or nitric oxide [28, 29]. An IL-1β-responsive enhancer region has been
identified between −2180 bp and −2478 bp of the MCP-1 gene in rat β-cells, which contains
two NF κB sites binding to p65/p50 heterodimers and p65 homodimer. Mutation of either
NFκB sites present in this region abrogated IL-1 β-induced MCP-1 promoter activity.
Therefore NFκB plays an important role for MCP-1 expression in β-cells [30]. The lack of
expression of the transcriptional repressor B-cell lymphoma-6 (BCL-6), which inhibits
MCP-1 gene expression and NF κB activity, may render β cells particularly susceptible to
propagating inflammation [31]. The primary cytokines reportedly induce the expression of I
κB isoforms and MCP-1 several fold higher in rat INS-1E cells than in fibroblasts 208F
cells, and correlate with a proapoptotic outcome [32]. Angiotensin II (AngII) is another
factor regulating the expression of MCP-1 in rat RINm5F β-cell line and activating MCP-1
promoter, possibly through a MAPK signaling mechanism [33].

Role of hypoxia in MCP-1 expression in brain, cardiovascular system, and adipocytes has
been reported. Human MCP-1 was found regulated by hypoxia-inducible factor −1 (HIF-1)
in astrocytes [34], and upregulation of MCP-1 expression in neurons induced by hypoxic
preconditioning protected mice from stroke [35]. Chronic intermittent hypoxia also
upregulated MCP-1 expression in the carotid body in rats [36]. Controversial results were
documented regarding the responses of adipocytes to hypoxic condition. For example, Yu et
al. [37] showed upregulation of MCP-1 mRNA and protein expression in mouse 3T3-L1
adipocytes under 1% O2 atmosphere. In contrast, Famulla et al. [38] reported that the same
hypoxic condition reduced the secretion of MCP-1 from human primary adipocytes.

Other than transcriptional regulation, glucocorticoids have been reported to trigger the
specific binding of glucocorticoid receptor to MCP-1 mRNA, facilitating the mRNA
degradation [39]. Multiple studies have reported parallel increases of mRNA, protein, and
monocyte chemotactic activity of MCP-1 [14, 15, 17].

3. MCP-1 AND OBESITY
A Pubmed keyword-guided literature search showed a linear increase of the number of
publications related to “MCP-1” during the period of 1989 - 2010, while an exponential
increase of the percentages of these publications pertaining to either “obesity” or “diabetes”,
implicating a rapidly growing interest in the pathological role of this chemokine under obese
and diabetic conditions.

Obesity is a result of expansion in both number and size of adipocytes. The gene expression
of CC chemokines and their receptors (such as MCP-1 and CCR2) was found higher in the
visceral and subcutaneous adipose tissues of obese patients compared to lean controls [19].
Furthermore, MCP-1 protein expression was higher in omental fat than in subcutaneous fat
in severely obese patients, which was paralleled by elevated macrophage infiltration into
omental fat [20]. The plasma level of MCP-1 has been generally found increased in obese
adults [40] and obese children [41] compared to lean controls. It correlated with the number
and volume of omental adipocytes in baboos [42], and was similarly affected by visceral
adiposity in human [43]. The high levels of circulating MCP-1 in obese patients were further
increased by fructose consumption [44], reduced by low-glycemic index diet [45], and
mediated by parathyroid hormone [46]. In addition, 1α, 25-dihydroxycholecalciferol, the
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hormonally active form of vitamin D, was reported to attenuate MCP-1 production in human
adipocytes [47]. Similarly, plasma MCP-1 was found high in obese mice in comparison to
lean controls [18, 48], and this increase was suppressed by COX2 inhibitors [49]. Systemic
administration of MCP-1 in mice induced insulin resistance, and this adverse effect was
ameliorated by a CCR2 antagonist without affecting macrophage infiltration into adipose
tissue [50].

Furthermore, MCP-1 signaling has a direct role in the development of obesity. For example,
Younce et al. reproted that MCP-1-induced protein (MCPIP, a zinc finger protein) induced
adipogenesis in 3T3-L1 cells independent of PPARgamma activation [51]. Mice with CCR2
deficiency had attenuated deposition of visceral fat and insulin resistance when challenged
with a high fat diet [52]. Moreover, MCP-1 had angiogenic effect on endothelial cells [53],
and therefore it can contribute to the expansion and remodeling of adipose tissues.

Efforts have been exerted to inhibit MCP-1 over-production and ameliorate obesity-related
syndromes, such as insulin resistance and type 2 diabetes. As summarized in Table 1, a
significant portion of the studies was on plant-based extracts and compounds; other studies
also included bacterial-derived compounds, trace elements, antioxidants, synthetic ligands
and commercial drugs.

4. MCP-1 AND TYPE 2 DIABETES
Type 2 diabetes comprises 95% of diabetic cases and its etiology is closely related to obesity
and insulin resistance. Circulating MCP-1 has been found significantly increased in patients
with type 2 diabetes [80-84].

A common A/G polymorphism located at position –2518 in the distal regulatory region
regulates MCP-1 expression [85]. In a large cohort of German Caucasians, the MCP-1
G-2518 gene variant was found significantly and negatively correlated with plasma MCP-1
levels and the prevalence of insulin resistance and type 2 diabetes [84]. Similarly, reports
from Turkey and China also documented decreased prevalence of type 2 diabetes in
populations with MCP-1 G-2518 genotype [86, 87]. A study in Japan reported that there was
no association between this single-nucleotide polymorphisms (SNP) and type 2 diabetes, but
Japanese obese diabetic −2518AA carriers had a higher MCP-1 concentration and increased
insulin resistance than obese diabetic −2518G carriers [88]. In contrast, another Germany-
based study reported that the genotype frequencies were similar in diabetic and non-diabetic
subjects and were not related to MCP-1 levels [83]. Interestingly, the MCP-1 −2518 AG +
GG polymorphisms were found positively associated with the prevalence of diabetic
retinopathy [89] and the risk of developing carotid atherosclerosis [90]. The role of
A-2518G polymorphism in diabetic nephropathy is under debate. For example, Ahluwalia et
al. reported that −2518GG in co-occurrence with CCR5 (DD) and MMP9 (279Gln/Gln)
conferred a tenfold increased risk of nephropathy among type 2 diabetics in Indian
population [91]. In contrast, Moon et al. found that carriage of A allele significantly
associated with increased diabetic kidney failure in Korean patients [92]. While another
study carried out in Korea reported that there were no association of MCP-1 promoter SNP
with diabetic end-stage renal disease [93].

5. DIABETIC COMPLICATION - CARDIOVASCULAR DISEASE
Diabetes is associated with accelerated rates of atherosclerosis. MCP-1 attracts monocytes to
the inflammatory sites of vascular subendothelial space, initiating migration of monocytes
into the arterial wall to form excessive macrophage-derived foam cells. Large population-
based studies showed significant correlation between circulating MCP-1 and other
traditional risk factor for atherosclerosis, such as serum high-sensitivity C-reactive protein
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(hsCRP), plasma fibrinogen, and combined carotid artery intimal-medial thickness [81, 94,
95]. High level of MCP-1 mRNA was observed in epicardial adipose stores in patients with
critical coronary artery disease (CAD) [96]. Elevated MCP-1 was also found to correlate
with atherosclerosis-associated complications, including ischemic stroke [97], myocardial
infarction [95, 97], and cardiovascular disease mortality [81]. The correlations appear to be
stronger in obese individuals [81, 98] than in those of normal body weight [99]. High levels
of plasma MCP-1 have been found to independently associate with mortality after acute
coronary syndromes [100], and adverse outcome in advanced heart failure [101], and
therefore can be potentially considered as a prognostic marker.

A transgenic mouse study demonstrated that cardiac-specific expression of MCP-1 caused
transcriptional activation of a cluster of ER stress-related genes during the development of
ischemic heart disease [102]. In another study, cardiomyocyte-targeted expression of MCP-1
was found in the nuclei of apoptotic cells and caused heart failure in mice [103]. The
apoptotic effect of MCP-1 was attributed to MCPIP, which induced the expression of
apoptotic gene families and activate caspase-3 [103].

5.1 High glucose concentrations and MCP-1
Hyperglycemia is the major cause of diabetic angiopathy. High glucose treatment on
endothelial cells isolated from diabetic subjects resulted in a 40-70% increase of MCP-1
release, and a 10-20% increase of the basal expression of vascular cell adhesion molecule-1
(VCAM-1), indicating synergistic enhancement on the monocyte-endothelial cell interaction
[104]. Similarly, high glucose treatment on human aortic smooth muscle cells (SMC)
upregulated the expression of MCP-1 and fractalkine leading to increased monocyte-SMC
adhesive interactions by a mechanism involving activation of MAPK, AP-1 and NFκB
[105]. Up to 7 days of chronic incubation of human umbilical vein endothelial cells
(HUVEC) with high glucose increased mRNA expression and production rate of MCP-1 in a
time- and concentration (10-35 mM)-dependent manner, through upregulation of reactive
oxygen species (ROS) generation and subsequent activation of p38 MAPK [106]. Consistent
with previous reports, exposure of human endothelial ECV304 cells to high glucose for 24 h
caused an increase of MCP-1 and intercellular adhesion molecule-1 (ICAM-1), and
promoted cell adhesion between monocyte and ECV304 cells [107]. Furthermore, high
glucose treatment on human acute monocytic leukemia THP-1 cells increased both mRNA
and protein levels of MCP-1, enhanced the adhesion of THP-1 cells to endothelial cells, and
the pathways reportedly involved oxidative stress, protein kinase C, ERK1/2, and p38
MAPK [108]. Other than interact with endothelial cells, high glucose concentrations can
also induce cardiomyocyte death. Exposure of H9c2 cardiomyoblasts and primary rat
cardiomyocytes to a high glucose concentration resulted in elevated MCP-1 production and
MCPIP expression, and subsequently led to ROS production, endoplasmic reticulum (ER)
stress, autophagy, and cell death [109].

5.2 Low-density lipoprotein (LDL) and MCP-1
The progression of diabetic atherosclerosis entails complex interactions between the
modified low-density lipoproteins (LDL) and the cells of the arterial wall. LDL and
intermediate density lipoprotein (IDL) isolated from type 2 diabetic subjects induced the
mRNA expression of MCP-1 in cultured human endothelial cells, possibly through the
activation of NFκB pathway. The increment of MCP-1 mRNA content was positively
correlated with haemoglobin A1C (HbA1c, a biomarker of hyperglycemia) and
lysophosphatidylcholine (LPC, potential atherogenic molecular species [110]) content in the
lipoprotein, negatively correlated with diene formation lag time (a marker of oxidizability of
the lipoprotein), and inhibited by antioxidants probucol, alpha-tocopherol, and
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deferoxamine. These data indicate that oxidatively modified lipoproteins found in diabetic
plasma stimulate MCP-1 gene expression in endothelial cells [111].

When total LDL obtained from type 1 diabetic subjects was subfractionated into
electropositive LDL(+) and electronegative LDL(−) by anion exchange chromatography,
LDL(−) increased the release of MCP-1 and interleukin 8 (IL-8) in endothelial cells by two
folds, suggesting an inflammatory role [112]. In comparison to LDL(+), LDL(−) had higher
triglyceride, non-esterified fatty acids, apoE, apoC-III and platelet-activating factor
acetylhydrolase (PAF-AH), as well as lower apoB relative content, but no evidence of
increased oxidation. When LDL(−) was studied in type 2 diabetic patients, it was found that
the proportion of LDL(−) was increased in plasma from these patients compared to control
subjects and was not modified after glycemic optimization. LDL(−) from the patients
presented low binding affinity to the low-density lipoprotein receptor (LDLr) in cultured
fibroblasts compared to LDL(+), and 2-3 folds of increased ability to release MCP-1 and
interleukin-8 (IL-8) in endothelial cells [113].

In comparison to native LDL, glycoxidized LDL and LDL modified by phospholipase A2
(PLA2) have higher contents of lysophosphatidylcholine (lyso-PC), and induce upregulation
of MCP-1 mRNA expression through NFκB activation in HUVEC. In both in vitro and
human studies, palmitoyl- and stearoyl-lyso-PC contents correlated with MCP-1 expression
and NFκ B activity [114, 115]. Moreover, LDL isolated from diabetics contained more lyso-
PC than that from nondiabetic subjects, and induced higher MCP-1 mRNA expression and
NFκ B activity in HUVEC [115].

Hyperglycemia and the associated formation of advanced glycation end-products (AGE) and
AGE-modified low-density lipoproteins (AGE-LDL) can directly affect the cells of the
vascular wall. Exposure of human vascular smooth muscle cells (hSMC) to AGE-LDL, in
comparison to native LDL, induced increased MCP-1 gene expression (+160%) and protein
secretion (+300%), increased NADPH oxidase activity (+30%) and ROS production (+28%)
by up-regulation of NOX1, NOX4, p22phox and p67phox expression [116]. Similar effects
were observed in human endothelial cells (HEC): AGE-LDL induced an oxidative stress and
increased MCP-1 mRNA and protein [117]. Microarray and reverse transcription real-time
PCR analyses revealed that AGE-LDL significantly increased levels of CCR2 mRNA in
human macrophages compared with native LDL, an effect accompanied by increased levels
of CCR2 protein, mediated by the receptor for AGE (RAGE). Exposure of THP-1 cells to
AGE-LDL increased MCP-1-medicated chemotaxis by up to 3 folds in comparison to native
LDL treatment [118].

5.3 12/15-Lipoxygenase and MCP-1
12/15-lipoxygenase (12/15-LO) and its products are associated with LDL oxidation, cellular
migration, adhesion, and inflammatory gene expression. MCP-1 mRNA were increased in
Plox-86 cells, a J774A.1 cell line stably overexpresses leukocyte-type 12/15-LO [119]. The
12/15-LO product of linoleic acid, 13-hydroperoxyocta decadienoic acid (13-HPODE), can
transcriptionally upregulate the expression of MCP-1 in vascular smooth muscle cell
(VSMC) [120]. shRNA-mediated 12/15-LO knockdown resulted in reduced expression of
MCP-1, and attenuated oxidative stress and expression of vascular cell adhesion molecule-1
and IL-6 in a differentiated mouse monocytic cell line [121]. Knocking out 12/15-LO in
mice resulted in reduced activation of NFκB and expression of MCP-1 in VSMC, in
comparison to wild type controls [120].
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5.4 Treatments on MCP-1 over-production and arteriosclerosis
Table 2 summarizes studies that have utilized therapies to ameliorate MCP-1 over-
production and relieve arteriosclerotic development under diabetic condition. The
investigated compounds/products include: ligands to the PPARs (such as the
thiazolidinediones and fibrates) and the statins that inhibit cholesterol production, gliclazide
stimulate insulin secretion from pancreatic β cells, anti-hypertensive drugs, plant extracts,
and traditional Chinese medicine.

6. DIABETIC NEPHROPATHY
Diabetic nephropathy is a kidney disease that develops gradually over a period of 15–20
years after the onset of diabetes, affects ~40% of diabetic patients, and is the primary cause
of dialysis [138]. The pathologic abnormalities related to this diabetic complication include
mesangial expansion, glomerular basement membrane thickening, and glomerular sclerosis
[139]. The significant role of MCP-1 in the development of diabetic nephropathy has been
implicated by several studies using MCP-1 knockout mice. For example, in MCP-1(−/−) db/
db mice kidney macrophage accumulation and the progression of diabetic renal injury were
substantially reduced compared to MCP-1(+/+) db/db mice with equivalent diabetes [140].
Similar results were reported when diabetic condition was induced in MCP-1(−/−) mice by
streptozotocin treatment [141].

Locally produced MCP-1 has been reported to contribute to the development of advanced
diabetic nephropathy through monocytes/macrophages recruitment and activation [142,
143]. A strong upregulation of MCP-1 was observed in tubular cells in biopsy specimens
from patients with type 2 diabetes and overt nephropathy, correlating with NFκB activation
in the same cells [144]. Urinary MCP-1 levels were found significantly elevated in patients
with diabetic nephrotic syndrome [145-147], and well correlated with the number of CD68-
positive infiltrating cells in the interstitium [145]. An in vitro study showed that MCP-1
directly increased extracellular matrix (ECM) protein, and therefore may contribute to ECM
accumulation in diabetic nephropathy [148].

6.1 Hyperglycemia, advanced glycation end products and MCP-1
It has been shown that high concentration of glucose directly increased MCP-1 expression in
human mesangial cells (MCs) [149], and hyperglycemic condition stimulated MCP-1
production and excretion into the urine [146, 150]. Furthermore, elevated blood glucose
level was associated with enhanced generation of advanced glycation end products (AGE),
which stimulated the secretion of MCP-1 in MCs either alone, or synergistically combined
with high concentrations of glucose [151, 152]. Significant correlations between the levels
of serum glycated albumin and urinary MCP-1 have been reported [152]. Interaction
between AGE and their receptor (RAGE) may also activate PPARγ and induce oxidative
stress, which is another pathway contributing to diabetic nephropathy [153].

6.2 proteinuria and MCP-1
Proteinuria is a result of increased leakage of plasma protein from glomerular capillary to
the tubular fluid. Glomerular ultrafiltration of bioactive proteins, such as transforming
growth factor beta (TGF-β) and hepatocyte growth factor (HGF), has been reported to cause
increased expression and basolateral secretion of MCP-1 in proximal tubular and collecting
duct cells [154, 155]. Urinary MCP-1 level from type 2 diabetic patients with
macroalbuminuria was found over 2-fold higher than those from normo- and micro-
albuminuria [142]. Significant correlations between urinary MCP-1 and the extent of
proteinuria were also reported in several other studies [144, 152, 156], implicating that
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MCP-1 produced in renal tubular cells is released into urine in proportion to the degree of
proteinuria.

6.3 Treatments on MCP-1 over-production and diabetic nephropathy
The treatments documented to inhibit MCP-1 production and benefit diabetic nephropathy
are summarized in Table 3. The investigated compounds/products include:
thiazolidinediones and statins, anti-hypertensive drugs, immunosuppressants, vitamins,
polyunsaturated acids, compound/extracts from plants, and trace element.

7. DIABETIC RETINOPATHY
Diabetic retinopathy is a diabetic complication that can cause blindness. The incidence of
this disease is approximately 60% after 10 years with type 1 diabetes and after 20 years with
type 2 diabetes [192]. Reportedly myofibroblasts and vascular endothelial cells are the major
cell types expressing MCP-1 in epiretinal membranes (ERM), caused by changes in the
vitreous humor in diabetic eyes [193]. When ERM were collected from patients with
proliferative diabetic retinopathy (PDR), MCP-1 mRNA level was found significantly
higher in comparison to that in idiopathic ERM, and MCP-1 protein was co-localized with
active form of NFκB p50 [194]. The concentrations of MCP-1 in the vitreous samples from
patients with proliferative vitreoretinal disorders, including PDR, were higher than in the
cadaveric controls, implicating the role of MCP-1 in the recruitment of macrophages and
monocytes into the vitreous of eyes [195]. Furthermore, vitreous MCP-1 levels were found
positively correlated with the degree of proliferative membrane in PDR eyes, and negatively
associated with the extent of preoperative retinal photocoagulation, indicating that MCP-1
may play a role in the development of the proliferative phase of PDR [196]. Other studies
also reported that vitreous MCP-1 levels correlated with PDR activity[197], and the clinical
stage of diabetic retinopathy[198, 199]. The causative role of MCP-1 in diabetic retinopathy
was further supported by other studies documenting that the concentrations of MCP-1 in the
vitreous samples from patients with diabetic retinopathy were significantly higher than those
in controls [200-203]. Reportedly increased serum level of MCP-1 may also act as a
regulator of diabetic retinopathy [204]. An in vitro study showed that glycated albumin or
high glucose induced NFκB activation followed by up-regulation of MCP-1 promoter
activity and protein production in Müller glial cells, demonstrating that MCP-1
overproduction in the eye is a response to the hyperglycemic condition [194].

8. INSULITIS AND ISLET TRANSPLANTATION
Insulitis is an inflammatory status in pancreatic islets, signified by mononuclear cell
infiltration and destruction of insulin-producing β cells. It is a causative factor of insulin
dependence in both type 1 and type 2 diabetes [205]. In non-obese diabetic (NOD) mice,
MCP-1 mRNA expression was found to increase with age and peak at the early phases of
insulitis, and therefore the production of MCP-1 by β cells could contribute to the
recruitment of mononuclear cells into pancreatic islets [29]. While in a similar study, MCP-1
expression in islets and exocrine macrophages was found to increase during the later stages
of diabetes in NOD mice as well [206].

In clinical islet transplantation, high levels of donor-derived MCP-1 have been associated
with poor islet allograft outcome in patients with type 1 diabetes [207]. Transplantation of
islets with elevated levels of MCP-1into syngeneic recipients led to a significantly greater
influx of CCR2(+) cells and higher expression of monocyte/macrophage-associated
inflammatory cytokines compared with low MCP-1 donor islets. The level of pre-
transplantation MCP-1 inversely correlated with isograft function, while this correlation did
not present in CCR2−/− recipients [208].
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Under nonphysiologic state, MCP-1 expression was found significantly elevated in the islets
from brain death donors (the major tissue source of allograft), which is a causative factor for
early loss and poor long-term function of the grafts [209]. When adult porcine islets (APIs)
were used to substitute human donor tissues, MCP-1 secreted by APIs was suggested to
contribute to both instant blood-mediated inflammatory reaction (IBMIR) and rejection by
attracting monocytes into the islet [210].

9. MCP-1-SPECIFIC TREATMENTS
Due to the pathological significance of MCP-1, efforts have been exerted to specifically
target the signaling pathway of this chemokine. Several studies have attempted to decrease
MCP-1 level in the circulation or block CCR2 activity by antibody administration. Such a
neutralization of MCP-1 ameliorated glomerular crescent formation and development of
interstitial fibrosis in mice [211]. However, when a MCP-1 monoclonal antibody was tested
in patients with rheumatoid arthritis, the treatment did not show any beneficial effects, and
the highest dose even aggravated the symptoms, which may relate to the dramatic increases
of antibody-complexed MCP-1 levels in peripheral blood [212].

Antibody neutralization of CCR2 inhibited restenosis in primates [213]. When a similar
strategy was tested in mice with collagen-induced arthritis, early stage treatment improved
clinical signs, which was in contrast to the disease aggravation caused by a later stage
treatment [214]. Furthermore, a selective small molecule antagonist of mouse CCR2,
namely INCB3344, reduced multiple sclerosis and inflammatory arthritis in mice [215].

Another strategy to interfere the binding of MCP-1 to CCR2 was truncating the NH2-
terminal residues of MCP-1 [216]. Such antagonists, especially MCP-1(9-76), were found to
prevent the onset and ameliorate the symptoms of arthritis in MRL-lpr mice [217], to reduce
in-stent restenosis in cynomolgus monkeys fed a high cholesterol diet [218], and to decrease
vein graft thickening due to intimal hyperplasia and accelerated atherosclerosis in mice
[219].

Further studies attempted to abrogate oligomerization of MCP-1 in order to inhibit its in
vivo activity[220]. An obligate monomer mutant form, documented as CCL2(P8A), was
found unable to recruit leukocytes into the peritoneal cavity and into lungs of ovalbumin-
sensitized mice [221].

The interaction between MCP-1 and glycosaminoglycans (GAGs) of the extracellular matrix
and endothelial cell surfaces has long been known to mediate the chemotaxis process [222],
and contribute to MCP-1 oligomerization [223]. Recent molecular engineering was able to
increase the binding affinity to GAG and decrease that to CCR2 in antagonistic MCP-1
mutants. Such examples include MCP-1(PA508), which reduced inflammatory monocyte
recruitment, limited neointimal hyperplasia, and attenuated myocardial ischemia/reperfusion
injury in mice [224]; and MCP-1(Y13A/S21K/Q23R), which had a mild ameliorating effect
on experimental autoimmune uveitis in rats [225].

In summary, this article reviews the history, regulation, and function of chemokine MCP-1,
with emphases on its pathological role in the development of obesity, type 2 diabetes, and
diabetic complications. Tables 1-3 summarize studies that aimed to ameliorate obesity-
associated metabolic syndromes, diabetes-related cardiovascular diseases, and diabetic
nephropathy. In these studies the downregulation of MCP-1 production was found to co-
occur with the improvement of the symptoms. Although these studies did not confirm the
etiological role of MCP-1, they implicated a close relationship between MCP-1 and the
status of these diseases. The significance of MCP-1 in the development of obesity, diabetes
and diabetic complications was highlighted in the studies specifically targeting MCP-1, such
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as the MCP-1 and CCR2 knockout animals, MCP-1 SNP, and MCP-1 antagonistic
treatments. The promising results obtained from these studies implicate that MCP-1 is a
viable therapeutic target.
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Figure 1.
A graphical summary of the transcriptional regulatory elements in human MCP-1 gene.
TRE, phorbol ester responsive elements. The numbers indicate length in base pair. The
schematic illustration is not proportional to the length of the DNA.
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Table 1

Treatments that have been reported to inhibit MCP-1 over-production and ameliorate obesity-related
metabolic syndromes.

Treatment Comment Experimental model Result Ref.

Methanolic extract from
unripe
kiwi fruit (Actinidia deliciosa)

3T3-L1 cells MCP-1↓, NFκB activation ↓, cell
differentiation ↑ glucose
uptake ↑, adiponectin↑

[54]

Ethanolic extract from leaves
of bamboo Phyllostachys
edulis

Raw plant extracts Obese mice
3T3-L1, hepa6, C2C12
cells

Serum MCP-1 ↓
MCP-1 secretion under lipotoxic
condition↓

[48]
[55]

Mulberry (Morus Alba L.) leaf ApoE(-/-) mice MCP-1↓, macrophage infiltration in
adipose tissue↓,
adiponectin↑

[56]

Dehydroabietic acid Diterpene from rosin,
ligand for PPARs

Obese diabetic mice MCP-1↓, macrophage infiltration in
adipose tissues↓,
adiponectin↑

[57]

Co-culture of RAW 264
macrophages and 3T3-L1
adipocytes

MCP-1↓, TNFα↓, nitric oxide ↓ [58]

Capsaicin Spicy component of hot
peppers

Obese mice MCP-1↓, fasting glucose ↓, insulin↓,
hepatic triglyceride
content ↓

[59]

MCP-1↓, NFκB activation ↓, macrophage
migration and
activation↓, adiponectin ↑, PPARγ
activation↑

[60]

Curcumin Component of spice
turmeric

Diabetic rats MCP-1↓, glucose↓, oxidative stress↓ [61]

Diallyl disulfide, allyl
isothiocyanate, piperine,
zingerone, curcumin

Spice-derived components Adipose tissue and Raw
264.7 macrophages

MCP-1↓, macrophage migration ↓ [62]

Procyanidins Flavonoids from grape
seeds

Human adipocytes and
THP-1 cells

MCP-1↓, NFκB nuclear translocation ↓,
adiponectin↑

[63]

Berberine Isoquinolone alkaloid
from plants

Obese db/db mice MCP-1↓, other inflammatory factors
(TNFα, IL-1β, IL-6,
iNOS, and COX-2) ↓

[64]

Resveratrol Stilbenoid in red grape
skin and other fruits

TNFα -stimulated cells MCP-1↓, NFκB activation ↓ [65]

Acarbose Microbial product, α-
glucosidase inhibitor

Fructose-fed rats MCP-1 expression ↓ [66]

Propagermanium Trace element Obese db/db mice CCR2 activity↓, body weight gain↓,
macrophage
accumulation in adipose tissue↓, insulin
resistance↓

[67]

Chromium niacinate U937 monocytes MCP-1↓, oxidative stress↓ [68]

L-cysteine Antioxidant Zucker diabetic fatty rats MCP-1↓, NFκB activation ↓, insulin
resistance↓, glucose↓

[69]

Troglitazone Thiazolidinedione drugs,
PPAR ligands

Mononuclear cells of
nondiabetic obese patients

Plasma MCP-1 and insulin ↓, ROS
generation ↓, NFκB↓,
IκBα↑, IL-10↑ atherosclerosis↓

[70]

Rosiglitazone Obese humans subjects Plasma MCP-1 ↓ [71]

Troglitazone, rosiglitazone Human acute monocytic
leukemia THP-1 cells

MCP-1-induced migration↓ [72]

Atorvastatin Type 2 statin Human subjects Serum MCP-1 ↓ [73]

Dilazep; fenofibric acid PPARα ligands,
hypocholesterolemic

Human endothelial cells MCP-1 mRNA↑, glycoxidized LDL↓ [74]
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Treatment Comment Experimental model Result Ref.

HE3286 Synthetic adrenal steroid Obese/ diabetic mice MCP-1& CCR2↓, NF-κB activation↓,
hyperglycemia↓,
insulin resistance↓

[75]

TEI-K03134 CCR2 antagonist Obese mice MCP-1 and CCR2 ↓, insulin resistance↓ [76]

ARB L158809 Angiotensin receptor
inhibitor

Fatty rats MCP-1 expression↓, blood glucose,
cholesterol,
triglyceride↓, epididymal fat↓, lipid
peroxidation↓, insulin
resistance↓, adiponectin↑, small
differentiated adipocytes
number ↑

[77]

Bypass surgery Physical treatments Obese human subjects MCP-1↓, number of macrophages in
adipose tissue ↓

[78]

Exercise Human subjects with
metabolic syndrome

Plasma MCP-1 ↓, IL-8 and visceral fat↓ [79]
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Table 2

Treatments that have been reported to inhibit MCP-1 over-production and improve diabetic vascular
conditions.

Treatment Comment Experimental model Result Ref.

Troglitazone Thiazolidinedione drugs, PPAR
ligands

TNFα-treated HUVECs MCP-1 mRNA and protein secretion ↓ [122]

Rosiglitazone Streptozotocin-induced
diabetes mice

MCP-1 expression ↓, leukocyte
adhesion↓,
macrophage infiltration↓

[123]

Human subjects MCP-1↓, glucose↓, insulin ↓, LDL/
HDL↓,
HDL↑, adiponectin ↑ PPARγ activation
↑

[124]

Arteriosclerotic rats CCR2 expression in lesional and
circulating
monocytes↓

[125]

Aspirin; fenofibrate
and clofibrate

Anti-inflammatory drug; PPAR
activators

Human endothelial cells High glucose-increased MCP-1
expression↓,
ROS↓, activation of NFκB and AP-1↓

[126]

Simvastatin Statins, hypocholesterolemic via
inhibiting HMG-CoA reductase

Diabetic rats Serum MCP-1↓, ICAM-1↓ [127]

Atorvastatin Human subjects with
high
cardiovascular risk

Plasma MCP-1↓, ICAM-1↓ [128]

Pravastatin Fatty rats MCP-1↓, TGF-β1↓, endothelial nitric
oxide
synthase (eNOS)↑

[129]

Gliclazide Hypoglycemic, sulfonylurea
receptor
ligand leading to insulin release in β
cells

Human aortic vascular
smooth
muscle cells (HASMCs)

MCP-1↓, oxLDL-induced monocyte
adhesion↓
oxLDL-induced MCP-1↓

[130]
[131]

Irbesartan Anti-hypertensive ApoE-null mice Aorta MCP-1↓, atherosclerosis↓,
collagen
content↓, cellular proliferation↓,
macrophage
infiltration↓

[132]

Doxazosin Human monocytes MCP-1-directed monocyte migration↓ [133]

D-psicose Naturally occurred, ultralow-energy
monosaccharide

Human umbilical vein
endothelial cells
(HUVECs)

High glucose-induced MCP-1
expression↓

[134]

Erigeron multiradiatus
(Lindl.) Benth

Plant extracts Human endothelial cells;
alloxan-induced diabetic
mice

High glucose-induced MCP-1↓, NFκB
activation↓, serum MCP-1↓

[107]

Aqueous extract of
Buddleja officinalis

Human umbilical vein
endothelial cells
(HUVEC)

High glucose-induced MCP-1↓,
hydrogen
peroxide production↓

[135]

Danggui-Buxue-Tang Traditional Chinese medicine Diabetic rats Aorta MCP-1↓, ICAM-1↓ [136]

Shenqi compound
recipe

Aorta MCP-1↓, PPARγ↑ [137]
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Table 3

Treatments that have been reported to inhibit MCP-1 over-production and improve diabetic nephropathy
conditions.

Treatment Comment Experimental model Result Ref.

Rosiglitazone Thiazolidinedione drugs,
PPAR ligands

STZ-induced diabetic rats Renal & urinary MCP-1↓ [157]

MCP-1↓, ROS↓, NFκB activation↓ [158]

Stretched human mesangial
cells

MCP-1↓ NFkB activation↓,
monocyte chemotaxis ↓

[159]

Troglitazone Cultured human mesangial
cells

TNFα-induced MCP-1↓ [160]

Pioglitazone Type 2 diabetic rats;
cultured mesangial cells

MCP-1 gene expression↓, urinary
MCP-1& albumin ↓,
glomerulosclerosis↓

[161]

Pravastatin Satins Human subjects Serum MCP-1↓ [162]

Cerivastatin Spontaneously hypertensive
rats

MCP-1↓, albuminuria, glomerular
hyperfiltration,
mesangial expansion, and loss of
charge barrier↓

[163]

Olmesartan medoxomil Anti-hypertensive drugs Zucker Diabetic Fatty rats;
tubular epithelial cells

MCP-1 in tubular cells↓, proteinuria↓ [164]

Valsartan; PD123319;
pyrrolidine dithiocarbamate

Diabetic animals MCP-1 expression↓, macrophage
infiltration↓, p65
activation↓

[165]

Telmisartan Cultured mesangial cells MCP-1 expression↓, RAGE gene
expression ↓,
oxidative stress↓, PPAR-γ
activation↑

[153]

Enalapril; candesartan Diabetic rats MCP-1 expression↓, proteinuria↓,
glomerular
macrophage number↓

[166]

Enalapril; mycophenolate
mofetil

Diabetic rats Renal MCP-1 overexpression↓,
macrophage
recruitment ↓

[167]

Lisinopril Patients with type 1 and type
2 diabetes

Urinary MCP-1↑, proteinuria↓ [168]

Spironolactone Type 2 diabetic rats;
cultured mesangial and
proximal tubular cells

Renal and urinary MCP-1↓,
macrophage infiltration↓,
NFκB activation↓

[169]

Type 2 diabetic patients with
nephropathy

Urinary MCP-1↓, oxidative stress↓ [170]

OLETF rats; cultured cells Urinary MCP-1↓, urinary albumin↓,
NFκB activity↓

[171]

Mycophenolate mofetil Immunosuppressant STZ-induced diabetic rats MCP-1↓, podocytes loss↓ [172]

Renal MCP-1↓, early renal injury↓,
oxidative stress↓

[173]

Mizoribine Fatty rats Tubules and glomeruli MCP-1↓ [174]

LY333531 Protein kinase C-β isoform
inhibitor

STZ-induced diabetic rats MCP-1↓, urinary albumin↓,
glomerular volume and
tubulointerstitial injury↓ lipid
peroxidation↓,
macrophages recruitment↓
antioxidant enzyme
activities↑

[175]

Cilostazol Type 3 phosphodiesterase
inhibitor

Diabetic rats Kidney MCP-1↓, glomeruli
hypertrophy↓, NFκB

[176]
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Treatment Comment Experimental model Result Ref.

activation↓, inflammatory cell
infiltration ↓

Colestimide Hypolipidemic drug Human patients Urinary MCP-1↓, urinary oxidative
stress marker ↓

[177]

Insulin Hormone Type 2 diabetic patients with
microalbuminuria

Urinary MCP-1 excretion↓ [142]

Propagermanium Trace element Diabetic mice CCR2 antagonist, Mesangial matrix
expansion↓,
macrophage infiltration↓

[178]

Triptolide A constituent of
immunosuppressive
Chinese
herbal medicine

Patients with diabetic
nephropathy

Urinary MCP-1 ↓ [179]

Lithospermic acid B Active component in Salvia
miltiorrhizae

Fatty rats Renal MCP-1 expression ↓,
albuminuria↓, glomerular
hypertrophy↓, mesangial expansion↓,
extracellular
matrix expansion↓, lipid
peroxidation↓

[180]

Breviscapine Flavonoid from the Chinese
herb Erigeron breviscapus

Diabetic rats MCP-1 production in glomeruli and
tubulointerstitium
↓, albuminuria↓, glomeruli
hypertrophy↓,
tubulointerstitial injury↓, lipid
peroxidation↓,
antioxidant enzyme activities ↑

[181]

Azuki bean (Vigna angularis)
seed coats

Contain polyphenols STZ-induced diabetic rats MCP-1 expression ↓, macrophages
infiltration ↓,
glomerular expansion↓

[182]

Colchicine Compound from plants of
the
genus Colchicum

STZ-induced diabetic rats MCP-1 expression ↓, inflammatory
cell infiltration ↓

[183]

Retinoic acid Vitamin A Diabetic rats; cultured
podocytes

Urinary MCP-1↓, intrarenal MCP-1
protein
synthesis↓, high glucose-induced
MCP-1↓

[184]

1,25-Dihydroxycholecalciferol Vitamin D, hormonally-
active form

Mesangial cells from
vitamin D receptor knockout
animals

NFκB activation↓, hyperglycemia-
induced renal injury
↓

[185]

Vitamin E Vitamin E Type 1 diabetic patients MCP-1↓ [186]

Astaxanthin carotenoid Mesangial cells challenged
with high glucose medium

MCP-1 ↓, ROS ↓, NFκB activation↓ [187]

Eicosapentaenoic acid An omega-3 fatty acid Diabetic mice MCP-1 expression↓, ERK1/2 and
p38 ↓

[188]

Canola oil Contain n-3 poly
unsaturated
fatty acid

STZ-induced diabetic rats MCP-1 expression↓ [189]

Kremezin
(AST-120)

Uremic toxin adsorptive
carbon

Fatty rats Renal MCP-1↓, tubulointerstitial
injury ↓

[190]

Low-dose radiation Physical treatment STZ-treated mice Serum and renal MCP-1↓ [191]
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