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Abstract
Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of
estrogen receptor alpha (ESR1; ERa) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen’s importance in
endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes
in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endome-
triosis. Using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal
endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative
phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endome-
trium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment
with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably trans-
fected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated
by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis.
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Introduction

Estrogen, a critical regulator of uterine function, exerts its

classical, genomic effects by binding to the nuclear receptors,

estrogen receptor alpha (ESR1; ERa), and estrogen receptor

beta (ESR2; ERb). The estrogen-bound receptors subsequently

bind specific estrogen-response elements (EREs) on the

genomic DNA in the context of other transcription factors,

co-activators, and co-repressors to alter gene transcription.

These classical, genomic actions of estrogen typically require

hours to achieve a measurable effect.1,2 Estrogen can also act

more rapidly, with effects seen in minutes3-5; however, only

recently have the receptors and signaling pathways responsible

for rapid estrogen actions been delineated.6 Such rapid effects

of estrogen are mediated by at least 2 distinct receptors, a

membrane-associated form of ESR1 and a recently described

integral membrane receptor known as G protein-coupled estro-

gen receptor or G protein-coupled receptor 30 (GPER;

GPR30).7 The characterization of GPER as an estrogen recep-

tor and development of a GPER-specific agonist, G-1, and an

antagonist, G-15, have revealed several important physiologi-

cal and pathophysiological functions for this receptor.8,9

Expression of GPER has been identified in multiple tissues,

including uterine endometrium, brain, adrenal, kidney, ovary,

endothelium, heart, and breast.9-13 In the mouse, GPER appears

to mediate a substantial portion of estrogen-induced endome-

trial epithelial proliferation, but its role in human endometrial
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physiology remains largely unexplored. In the human, overex-

pression of this nonclassical receptor has been associated with

high-grade, poor prognosis endometrial cancer and uterine car-

cinosarcoma.14-16 In estrogen-responsive breast cancer, GPER

expression is associated with metastasis and poor outcome, and

in vitro studies suggest a role for GPER in endometrial cancer

proliferation and invasion.15,17,18 In addition, GPER can mediate

tumor cell proliferation in response to weak ESR1 agonists or

antagonists, including 4-hydroxytamoxifen and

ICI182,780,17,19,20 suggesting that tamoxifen-induced hyperpla-

sia and cancer may be mediated by GPER in some patients.

Finally, decreased endometrial GPER expression has been

observed in patients with PCOS compared to controls.21

Endometriosis is a disorder affecting up to 10% of the nor-

mal population of reproductive aged women but present in 50%
to 70% of women with infertility and/or pelvic pain.22 Given

the importance of estrogen in normal endometrial physiology

and endometriosis-related pathogenesis and pathophysiology,

we hypothesized that GPER would be differentially regulated

across the menstrual cycle and between women with endome-

triosis and those without disease. In order to test that hypoth-

esis, we utilized real-time reverse transcriptase–polymerase

chain reaction (RT-PCR) and immunohistochemistry to

investigate samples of endometrium from normal women

throughout the menstrual cycle as well as in ectopic and euto-

pic endometrium from women with endometriosis. We also

used cell culture models of endometrial epithelium and endo-

metrial stroma to investigate the mechanisms of hormonal

regulation of GPER expression that may underlie the

observed cycle-dependent changes.

Materials and Methods

Normal Human Participants

Samples from normal volunteer participants (ages 18-35, mean

age 27 years) with cycles ranging from 25 to 35 days were

obtained from a tissue library. These participants underwent

endometrial sampling in a natural cycle under a protocol

approved by the Institutional Review Board at the University

of North Carolina at Chapel Hill. These normal controls had

no known anatomic or functional reproductive tract abnormal-

ities and had not taken any medications known to affect repro-

ductive hormone production or action for the past 3 months.

An endometrial biopsy was performed on each participant

randomized to a specific proliferative cycle day or a specific

day post-urinary luteinizing hormone (LH) surge. Cycle phase

assignment was confirmed by endometrial histological assess-

ment. Forty-eight samples were selected and analyzed for

this study.

Endometrial biopsy tissue was divided into aliquots, with

larger fractions snap frozen in liquid nitrogen for RNA analysis

and a smaller fraction placed into 10% buffered formalin for

fixation and paraffin embedding. Paraffin-embedded fixed

samples were sectioned for immunohistochemistry and hema-

toxylin and eosin (H&E) staining. A single blinded observer

(S.L.Y.) evaluated endometrial histology and confirmed

endometrial dating according to the Noyes criteria.23 Samples

were categorized as early proliferative (n¼ 7), late proliferative

(n ¼ 15), early secretory (n¼ 8), mid secretory (n¼ 12), or late

secretory (n ¼ 6).

Human Participants With Endometriosis

All endometrial tissue collection and storage was performed

after informed consent using approved protocols by the Institu-

tional Review Committee at Greenville Hospital System,

Greenville, South Carolina. Endometrial samples from women

with and without endometriosis were obtained by Pipelle sam-

pling in regularly cycling women in both the proliferative and

mid-secretory phases. Mid-luteal phase samples were obtained

by office biopsy between post-ovulatory day 7 to 10, based on

urinary LH surge detection. Matched samples of endometrium

and endometriosis were also obtained in the operating room at

the time of laparoscopy. These tissues were not LH timed and

were randomly collected during the menstrual cycle in women

with cyclic menses who had taken no hormonal medication for

the prior 3 months. Samples were placed in 10% buffered for-

malin for paraffin embedding for immunohistochemistry or

snap frozen in liquid nitrogen within 10 minutes of sampling

for messenger RNA (mRNA) preparation. Histologic confir-

mation was based on Noyes criteria.23

Decidualized Stromal Cells

Protocols for human endometrium collection, culture, and use

were approved by the Institutional Review Boards of Emory

University and the University of Illinois. Endometrial samples

from the early-proliferative stage of the menstrual cycle were

obtained using Pipelle biopsy from fertile volunteers at Emory

University Hospital. Primary human stromal cells were isolated

from endometrial tissue by enzymatic digestion and filtration

as described previously.24,25 The cells were grown in Dulbecco

Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F-

12; 1:1) medium containing 5% charcoal-stripped fetal bovine

serum. The cells were treated with or without a hormone

cocktail containing 0.5 mmol/L 8-bromo-cyclic adenosine

monophosphate (cAMP) analogue, 100 nmol/L progesterone

(P), and 1 nmol/L estradiol (E) for 0 to 8 days. Ethanol

(0.1% v/v) was used as a carrier control. During this process,

the media were changed on even numbered days and replaced

with fresh media containing E plus P plus the cAMP analogue.

When the cells were examined morphologically, a distinct

transition from fibroblastic to a plump, epitheloid phenotype,

characteristic of decidual cells, was observed starting 3 to 4

days of culture.26 The in vitro decidualization is associated

with the characteristic, progressive expression of prolactin and

insulin-like growth factor–binding protein 1 (IGFBP-1)

mRNAs.27 Results from an enzyme-linked immunosorbent

assay for prolactin protein expression paralleled the prolactin

mRNA findings (data not shown). Cells cultured in the absence

of E þ P þ cAMP for up to 9 days showed no upregulation of
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prolactin or IGFBP-1 mRNA expression. The cells were

harvested at different times after addition of the hormone cock-

tail. Total RNA was isolated and subjected to real-time PCR

using gene-specific primers.

Cell Culture

Ishikawa cells, which are endometrial adenocarcinoma cells

that express ESR1, ESR2, and GPER, were used for in vitro

experiments. Cells were passaged and grown in phenol red con-

taining DMEM/F12, supplemented with 10% fetal bovine

serum. Twenty-four hours prior to treatment, the cells were

rinsed twice with phosphate-buffered saline (PBS) and trans-

ferred to phenol-red free DMEM/F12 medium, supplemented

with 0.5% charcoal-stripped fetal bovine serum. All media and

serum were obtained from GIBCO (Carlsbad, California). Cells

were treated for varying periods of time with one of the follow-

ing ligands: E, propyl pyrazole triol (PPT—an ESR1-selective

agonist), diarylpropionitrile (DPN—an ESR2-selective ago-

nist), or G1 (a GPER-specific agonist).8,28,29 Ethanol, 0.01%,

was used as a carrier control for E and DPN, and dimethyl sulf-

oxide (DMSO) was used as a carrier control for G1 and PPT.

Additional experiments were performed using Ishikawa cell

lines stably transfected with either a control vector (ILV3) or

vectors overexpressing progesterone receptor-A (PGR-A)

and/or progesterone receptor-B (PGR-B), which were provided

by LJ Blok (Rotterdam, The Netherlands).30 Verification of the

PGR isoform content was verified using Western Blot analysis.

Western Blot Analysis

Cells were lysed using modified RIPA buffer (50 mmol/L Tris-

HCl pH 7.5, 1% NP-40, 0.25% sodium deoxycholate, 150

mmol/L NaCl, 1 mmol/L EDTA [pH 8.0], 0.1% sodium dode-

cylsulfate [SDS]) containing protease-inhibitor cocktail (Roche

Applied Science, Indianapolis, Indiana) at 4�C for 10 minutes.

The cell lysates were scraped from the dish and homogenized

with a 23-gauge needle. Soluble components were separated

from insoluble componenents by centrifugation at 20 800g for

15 minutes at 4�C. Protein concentrations were determined

using the Bio-Rad protein assay kit (Bio-Rad Laboratories,

Hercules, California).

Total protein (100 mg) was denatured in Laemmli buffer,

separated by size using gradient polyacrylamide gel electro-

phoresis (8%-15%, Bio-Rad Precast Ready Gel), and trans-

ferred to nitrocellulose membrane. Blots were blocked for 30

minutes in Tris-buffered saline Tween-20 ([TBST] 20 mmol/

L Tris [pH 7.5], 500 mmol/L NaCl, and 0.1% Tween-20) con-

taining 5% nonfat dry milk. Blots were washed twice for 5 min-

utes each time in TBST, then incubated with mouse

monoclonal anti-PGR (kindly provided by Dr Dean Edwards,

Baylor College of Medicine, Houston, Texas) at a concentra-

tion of 1 mg/mL overnight, rocking at 4�C. The blots were then

washed 3 times with TBST for 5 minutes each, followed by

incubation for 3 hours at room temperature with peroxidase-

conjugated anti-mouse immunoglobulin G ([IgG] 1:2000, cat

#sc-2060, Santa Cruz Biotechnology, Santa Cruz, California).

Blots were again washed 3 times for 5 minutes each with

TBST, followed by a final wash for 30 minutes. The immunor-

eactive protein complexes were detected using enhanced che-

miluminescence protocol (Amersham Pharmacia Biotech Inc,

Piscataway, New Jersey). Each experiment was performed at

least 3 times. Molecular size standards were used to distinguish

between PGR-A and PGR-B isoforms.

RNA Isolation and Quantification

Quantitative real-time RT-PCR was performed on total RNA, in

triplicate, using probe-primer sets specific for GPER and the con-

stitutively expressed gene, cyclophilin (PPIA; Gene Expression

Assays, Applied Biosystems—assay ID HS00173506_m1

(GPER) and HS99999904_m1 (PPIA)). These probe-primer sets

cross introns and, therefore, provide a specific signal from mRNA

and not from genomic DNA. Cyclophilin was chosen because

previous work suggested that cyclophilin exhibits little variation

across the menstrual cycle (Steven L. Young, MD, PhD, 2006). In

the current experiment, Ct values were consistent between sam-

ples, further confirming the constitutive expression of this gene.

Total RNA from cultured cells or endometrial tissue

(depending on the experiment) was isolated from frozen tissue

samples using the RNAqueous-4 PCR Kit (Ambion, Austin,

TX), according to the manufacturer’s suggested conditions.

RNA quantification was performed using RiboGreen (Invitro-

gen, Carlsbad, CA) with a ribosomal RNA standard curve. First

strand complementary DNA (cDNA) was synthesized from

1 mg of total RNA (Stratagene, Affinity Script QPCR cDNA

Synthesis Kit). An equivalent volume of water was substituted

for the RNA for each reaction as a ‘‘no template’’ negative con-

trol. The total reaction volume was 20 mL, and reverse tran-

scription conditions were 25�C for 5 minutes, 42�C for

15 minutes, 95�C for 5 minutes.

Each sample of cDNA was diluted 1:5 and plated in tripli-

cate with 2X Brilliant II QPCR Master Mix (Stratagene) and

sterile water. Primers and probes for GPER and cyclophilin

(PPIA) were obtained in a predesigned mix for each gene.

The total reaction volume for all real-time PCR experiments

was 20 mL. Reactions were performed in 96-well plates on a

Stratagene MX3000 device for 40 cycles (95�C for 25 seconds

and then 60�C for 1 minute). Ct values were converted to rela-

tive expression using the delta–delta Ct method, allowing nor-

malization to both the housekeeping gene, PPIA, and a single

sample in the proliferative phase.

Immunohistochemistry

Immunostaining was performed on 8 mm sections of paraffin-

embedded formalin fixed endometrial tissue samples. Slides

were deparaffinized in toluene, rehydrated in graded ethanol,

and rinsed in PBS. All samples were treated with 5% H2O2

in methanol for 30 minutes to reduce endogenous peroxidase.

Sections were incubated in 0.01 mol/L citrate buffer, pH 6.0 for

high-temperature antigen retrieval in a standard microwave on
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high setting for 15 minutes followed by a 15-minute cool down.

After a PBS rinse, sections were blocked with 2% normal goat

serum for 10 minutes. Slides were incubated overnight with the

primary antiserum (GPER C-terminal rabbit polyclonal anti-

body—a generous gift from Dr Eric Prossnitz, University of

New Mexico) diluted 1:6000 at 4�C in a humidity chamber. Fol-

lowing primary antisera incubation, sections were blocked again

in 2% normal goat serum for 10 minutes followed by 1 hour

incubation with biotinylated goat anti-rabbit secondary anti-

body for GPER at room temperature. Slides were incubated with

avidin DH-biotinylated horseradish peroxidase H complex

(Vectastain Standard ABC kit, Vector Laboratories, Burlin-

game, California) for 1 hour at room temperature, rinsed in PBS

and then placed in 3,3’diaminobenzidine tetrahydrochloride

(Aldrich Chemical Company, Milwaukee, Wisconsin) at 150

mg/200 mL 0.05 mol/L Tris-HCl buffer containing 0.002%
hydrogen peroxide for 10 minutes with constant stirring. Slides

were exposed to osmium vapors for 10 minutes, counterstained

with 0.05% toluidine blue, dehydrated, cleared, and mounted

with Permount (Fisher Scientific, Pittsburgh, Pennsylvania).

Staining was visualized with the 3,30-diaminobenzidine (DAB)

Substrate kit according to manufacturer’s instructions (Vector

Laboratories). Photographs were taken using a SPOT-4 Mega-

pixel Digital Color Camera System (Diagnostic Instruments,

Inc, Sterling Heights, Michigan) attached to a Nikon ECLIPSE

E600 microscope and prepared using SPOT image processing

software (Diagnostic Instruments).

Staining intensity and location were measured by a single

experienced observer who was blinded to the identity of the

slides using the semiquantitative histologic scoring (HSCORE)

system. The following equation was used to calculate

HSCORES: HSCORE¼ SPi (Iþ 1)/100. I represents the stain-

ing intensity (values of 1, 2, or 3 signify weak, moderate, or

strong staining, respectively), and Pi is the percentage of

stained cells for each intensity category (ranging from 0% to

100%). Previous work has demonstrated the low intra-

observer and inter-observer variability of the HSCORE system

applied to immunostaining of endometrium.31

Statistical Analyses

Data were grouped by cycle phase (when appropriate) and ana-

lyzed by 1-way analysis of variance using Dunnett Multiple

Comparison Test for post hoc analysis. Analyses were per-

formed using Prism Statistical software (v4, GraphPad Soft-

ware, La Jolla, California). Randomization of cycle day was

performed by drawing lots.

Results

Real-time PCR analysis of relative GPER expression per-

formed on endometrial biopsies from healthy volunteers

revealed increased expression in the late-proliferative

phase, which was significantly higher compared to the early-

(P < .01), mid- (P < .001), and late-secretory phases (P < .05;

Figure 1).

To correlate GPER mRNA expression with GPER protein and

characterize the cellular and subcellular localization of GPER pro-

tein over the normal human menstrual cycle, immunohistochem-

ical analysis was performed (Figure 2A-H). Immunoreactive

GPER protein abundance paralleled mRNA abundance with the

highest staining seen in the proliferative phase. As shown in

Figure 3, the immunohistochemical results (HSCORE) for each

cell type changed throughout the menstrual cycle. Luminal epithe-

lium exhibited the largest decrease (4-fold) in staining between the

proliferative and secretory phases (P < .05). Apparent glandular

and stromal changes did not reach statistical significance. Addi-

tionally, some increase in mid-and late-lutueal stromal cell immu-

nostaining was observed, but this staining was largely limited to

scattered perivascular stromal cells, suggesting a relationship with

stromal decidualization.

The greater abundance of GPER mRNA during the prolif-

erative phase suggests that GPER expression is regulated by

estrogen via one of its cognate receptors. To test this hypoth-

esis, we treated the well-differentiated Ishikawa adenocarci-

noma cell line with 10 nmol/L E for 2 to 48 hours. As shown

in Figure 4A, there was a significant upregulation of GPER

mRNA beginning with 2 hours of treatment persisting for 48

hours. To more fully evaluate the specific estrogen receptor-

type responsible for this rise, we used specific ER ligands: PPT,

DPN, or G1. Treatment with the ESR1-selective agonist, 10�8

PPT resulted in a statistically significant increase in GPER

mRNA expression that paralleled the response seen with E

Figure 1. GPER expression in endometrial biopsies from normal
women across the menstrual cycle. GPER indicates G protein-
coupled estrogen receptor; EP, early proliferative; LP, late prolifera-
tive; ES, early secretory; MS, mid-secretory; LS, late secretory; mRNA,
messenger RNA. Each bar represents the mean relative mRNA
expression at the cycle phase indicated + standard error of the mean.
*P < .05 as compared to late proliferative phase. For EP, LP, ES, MS,
and LS, n ¼ 7, 15, 8, 12, and 6, respectively. Data were grouped by
cycle phase and analyzed by 1-way analysis of variance using Dunnett
Multiple Comparison Test for post hoc analysis.
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(Figure 4B). Treatment with either 10�9 DPN or 10�9 G1 did

not result in an increased expression over carrier alone, sug-

gesting that the estrogen-mediated effect on GPER expression

is through ESR1 and not ESR2 or GPER. All doses were

selected to maximize potency and minimize cross-reactivity

based on published data.8,32 Notably, higher concentrations

of DPN (10�7 mol/L) could stimulate GPER expression (not

shown); however, DPN at this concentration can have signifi-

cant activity via ESR1 as well as ESR2.32

Given the nadir of GPER expression seen in the mid-

secretory phase, a time of peak P concentrations, we hypothe-

sized that P might suppress GPER expression. In order to test

this hypothesis, GPER expression was examined in untreated

Ishikawa cells that overexpress PGR-A (IKPRA) and/or

PGR-B (IKPRB). Verification of the PGR isoform was con-

firmed by Western blot analysis (data not shown). Expression

of GPER was low in the cell line overexpressing PGR-A com-

pared to cells overexpressing PGR-B or those lacking PGR-A

and PGR-B (a null vector, ILV3). Interestingly, cells overex-

pressing both PGR-A and PGR-B (IKPRAB) showed inter-

mediate GPER expression. Treatment with P did not further

alter GPER expression. These results suggest that unliganded

PGR-A can suppress GPER expression (Figure 4C).

As noted above, mid- and late-secretory stroma exhibited

increased immunostaining around small arteries, a site of early

predecidualization. To investigate whether decidualization

increased GPER expression, primary human stromal cells were

decidualized in vitro by treatment with E, P, and a cAMP

analogue (Materials and Methods section). Successful decidua-

lization was confirmed by demonstration of characteristic

changes in cell shape and increases in IGFBP-1 mRNA as

Figure 2. Cyclic changes in immunolocalization of GPER expression in human endometrium. Immunostaining for GPER in human endometrium
from proliferative phase (cycle day 10, A and E), early secretory (LHþ 3, B and F), mid-secretory (LHþ9, C and G), and late secretory (LHþ 14,
D and H). Panels A-D are taken with a�20 objective and panels E-H are taken with a�60 objective and no photos are cropped. GPER indicates
G protein-coupled estrogen receptor; LH, luteinizing hormone.

Figure 3. GPER HSCORE analysis of immunohistochemical staining in
endometrium across the menstrual cycle. Immunohistochemical stain-
ing was independently scored in luminal epithelium (black bars), gland-
ular epithelium (white bars), and stroma (gray bars) using the
HSCORE method. GPER indicates G protein-coupled estrogen recep-
tor; P, proliferative (n¼ 3); ES, early secretory (n¼ 3); MS, mid secre-
tory (n ¼ 16); LS, late secretory (n ¼ 3); HSCORE, histologic scoring.
*P < .05 as compared to proliferative phase.
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measured by real-time RT-PCR (not shown). A significant

increase in GPER mRNA expression was seen after 4 days of

in vitro decidualization, and this expression was maintained for

at least 5 days (Figure 5).

Due to the reported P resistance observed in endometriosis,

we hypothesized that GPER might be upregulated in the mid-

secretory phase of affected women. In mid-secretory phase

samples, matched eutopic and ectopic lesions were compared

for GPER expression (Figure 6). The ectopic endometriosis

lesions expressed significantly higher levels of GPER mRNA,

compared to levels of expression in normal endometrium (P <

.05; Figure 7). Using immunohistochemistry, eutopic endome-

trial epithelium from women with endometriosis demonstrated

significantly increased mid-secretory GPER protein expression

as compared to those without disease (P < .05; Figure 8).

Discussion

We demonstrated cycle-regulated expression of GPER in nor-

mal human endometrium, with maximal expression in the

Figure 4. Steroid hormone regulation of GPER expression. Panel A, Real-time RT-PCR analysis of GPER mRNA abundance in response to
estradiol treatment. Ishikawa cells were treated with 10�8 mol/L E for the indicated times. C, carrier-treated (0.01% ethanol) control. *P <
.05 as compared to carrier control. Panel B, Changes in GPER expression in response to E and specific estrogen receptor ligands. Ishikawa
cells were treated for 2 hours with 10�8 mol/L E, 10�9 mol/L G1, 10�8 mol/L PPT, 10�9 mol/L DPN, or carrier. Data are expressed as fold
change over carrier control. *P < 0.05 as compared to carrier control. Panel C, Effect of PGR on GPER mRNA expression. Ishikawa cells were
stably transfected with an empty expression vector (ILV3) or expression vectors for PGR-A (IKPRA), PGR-B (IKPRB), or both PGR-A and
PGR-B (IKPRAB), and GPER mRNA was assessed by real-time RT-PCR. *P < .05 as compared to ILV3. #P < .05 as compared to IKPRB. GPER
indicates G protein-coupled estrogen receptor; mRNA, messenger RNA; RT-PCR, reverse transcriptase–polymerase chain reaction;
E, estradiol; G1, GPER-specific agonist; PPT, propyl pyrazole triol; DPN, diarylpropionitrile; PGR, progesterone receptor.
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proliferative phase. In vitro studies demonstrate estrogen

stimulation of GPER expression via ESR1 but not ESR2 or

GPER. Progesterone receptor-A appears to mediate the down-

regulation of GPER in endometrial epithelial cells. Further-

more, eutopic and ectopic endometrium from women with

endometriosis appear to overexpress GPER. Together with

known proliferation-promoting actions of GPER, these data

suggest a role for GPER in the pathogenesis and pathophysiol-

ogy of endometriosis. Finally, stromal decidualization mark-

edly induces GPER.

Endometriosis is a proliferative disorder affecting 30%
to 50% of women with infertility and 50% to 70% of those

with pelvic pain.22,33 Estrogen promotes cellular proliferation

in endometrium and endometriosis. Consequently, therapies

aimed at reducing estrogen action are used to treat endome-

triosis and other proliferative endometrial disorders. Previ-

ously, exaggerated estrogen action has been reported in both

eutopic and ectopic endometrium of women with endometrio-

sis, and this condition has been associated with a marked

resistance to P.34-37 This previous work is consistent with our

finding that GPER is normally suppressed by P but elevated in

endometrium from women with endometriosis. Our finding of

elevated GPER in both eutopic and ectopic tissues provides a

new insight into the pathophysiology of endometriosis and

may suggest novel treatment paradigms to slow or eliminate

its growth.

Kolkova et al have recently explored the role of GPER

in normal human endometrium, as well as in pregnancy

decidua.38 Their mRNA studies are in agreement with ours—

showing peak expression in the late-proliferative phase and

reduced expression in the secretory phase. In contrast, Kolkova

et al did not find differences in protein expression during the

cycle or with decidualization. Additionally, our immunostain-

ing suggests cytoplasmic localization of GPER protein. The

subcellular localization of GPER remains controversial, but our

findings are consistent with previous reports.7,21,39 The use of

different primary antibodies for immunohistochemistry could

explain the discrepancy between Kolkova’s findings and ours.

In our data, changes in immunostaining correlate with changes

in mRNA abundance, suggesting that cyclic GPER expression

is regulated, at least in part, at the transcriptional level. In addi-

tion to studying cyclic GPER expression, Kolkova et al exam-

ined GPER expression in decidualized stroma taken from 7 to

10 weeks of pregnancies. In contrast, our experimental model

examined stromal cells after 2 to 8 days of in vitro decidualiza-

tion. The large temporal difference between the studies may

explain the discrepancy in experimental findings.

Using in vitro models of endometrial epithelium, we have

demonstrated the novel observation that estrogen, acting

through ESR1, but not ESR2 or GPER, stimulates GPER

expression. This observation provides a likely mechanism

to explain our finding that GPER expression is maximal in

the late-proliferative phase, since this is the cycle phase char-

acterized by peak levels of E and ESR1 expression.40,41 In the

secretory phase, multiple factors may influence GPER

expression. First, reduction in ESR1 expression may reduce

GPER. Second, maintained PGR-A expression coupled with

declining PGR-B may further suppress mid-secretory GPER

levels.42,43

One caveat to this interpretation is that we have demon-

strated effects of PGR-A in epithelial cells, while PGR expres-

sion in the mid-secretory phase is largely stromal. One

possibility is that, both in vitro and in vivo, PGR-A action leads

to the elaboration of a paracrine or autocrine mediator which

acts to suppress GPER expression. Additionally, 2 of our find-

ings (GPER expression was lowest in the mid-secretory phase,

but stromal cell decidualization increased GPER expression)

appear somewhat paradoxical. The lack of a stromal–epithelial

relationship in the stromal cell cultures may, in part, explain the

discrepancy.

In women with endometriosis, evidence suggests a resis-

tance to P action and an excess effect of E with maintenance

of estrogen receptors in the mid-secretory phase of both eutopic

and ectopic endometrial tissue.34-37 Since estrogen stimulates

GPER expression, the increased mid-secretory estrogen effects

seen in women with endometriosis may explain the observed

increase in GPER expression.

Although the function/functions for GPER in the reproduc-

tive tract remain unclear,44 ovariectomized mice treated with

G15 demonstrate less than 50% of the uterine proliferative

response to E as E-treated control mice.9 G protein-coupled estro-

gen receptor is necessary for tamoxifen-analogue–dependent

Figure 5. Decidualization increases GPER expression. Isolated human
stromal cells were treated with 1 nmol/L estradiol, 100 nmol/L pro-
gesterone, and 8-bromo cAMP for the days indicated. Relative quanti-
tation of GPER was performed using real-time RT-PCR. *P < .05 as
compared to time 0. GPER indicates G protein-coupled estrogen
receptor; RT-PCR, reverse transcriptase–polymerase chain reaction;
cAMP, cyclic adenosine monophosphate.
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proliferation of the endometrial epithelial cell lines, Ishikawa,

and H-38.20 Additionally, estrogen-stimulated proliferation of

other endometrial epithelial cell lines is mediated by GPER.15,17

Signaling of GPER may also be involved in proliferation of

Figure 6. Immunolocalization of GPER expression in endometriosis. Immunostaining for GPER from human eutopic (A) and ectopic (B) endo-
metriotic endometrium in the mid-secretory phase. Images are taken with a �40 objective. GPER indicates G protein-coupled estrogen
receptor.

Figure 7. Mid-secretory GPER mRNA expression is increased in
endometriosis lesions. GPER indicates G protein-coupled estrogen
receptor; normal Prol, normal proliferative phase endometrium;
normal MS, normal mid-secretory phase endometrium; eutopic
MS, eutopic mid-secetory phase endometrium; ectopic MS, ectopic
mid-secretory phase endometriosis lesion; mRNA, messenger
RNA. Each bar represents the mean relative mRNA expression at
the cycle phase indicated + standard error of the mean. *P < .05
compared to normal mid-secretory phase endometrium. For Nor-
mal Prol, Normal MS, Eutopic MS, and Ectopic MS, n ¼ 15, 12, 3, and
3, respectively.

Figure 8. Mid-Secretory GPER immunostaining of eutopic endome-
trium from women with and without endometriosis. Each bar repre-
sents the mean HSCORE of the indicated tissue compartment +
standard error of the mean. White bars denote samples from women
without endometriosis and black bars denote women with endome-
triosis. *P < .05 between endometriosis and unaffected samples in the
same tissue compartment. For normal glandular tissue, endometriotic
glandular tissue, normal luminal tissue, endometriotic luminal tissue,
normal stromal tissue, and endometriotic stromal tissue, n ¼ 16, 18,
15, 17, 16, and 18, respectively.
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human breast cancer cells,45 human prostate stromal cells,46

ovarian epithelial cancer cells,47 and thyroid cancer cells.48

Our findings of maximal endometrial epithelial GPER

expression in the late-proliferative phase (a time of maximal

proliferation) and minimal expression in the mid- and late-

secretory phases (times of minimal proliferation) suggest a role

for GPER in the proliferation of human endometrium. Decidua-

lization of stromal cells in vitro, which is also associated with

transient and marked cellular proliferation, resulted in a large

induction of GPER expression.27 Taken together with previ-

ous work, these findings strongly suggest a role for GPER

in endometrial proliferation.

Given the association of GPER with proliferation and the

clear role of estrogen in promotion of endometriosis growth

and survival, it is tempting to speculate that abnormally ele-

vated GPER expression in the secretory endometrial epithe-

lium of women with endometriosis is one mechanism by

which the shed endometrial cells continue to proliferate in the

peritoneal cavity. With the availability of new and specific

GPER antagonists such as G15,9 our data suggest that GPER

may be a new target for the treatment of endometriosis.

In conclusion, GPER expression is dynamically and differ-

entially regulated in endometrial stromal and epithelial cells,

likely due to the actions of estrogen through ESR1, P through

PGR-A, and through the decidual differentiation process.

These changes suggest a role for GPER in estrogen action in

both normal and diseased endometrium.
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