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Abstract There are three basic paradigms of classical

conditioning: delay, trace and context conditioning where

presentation of a conditioned stimulus (CS) or a context

typically predicts an unconditioned stimulus (US). In delay

conditioning CS and US normally coterminate, whereas in

trace conditioning an interval of time exists between CS

termination and US onset. The modeling of trace condi-

tioning is a rather difficult computational problem and is a

challenge to the behavior and connectionist approaches

mainly due to a time gap between CS and US. To account

for trace conditioning, Pavlov (Conditioned reflexes: an

investigation of the physiological activity of the cerebral

cortex, Oxford University Press, London, 1927) postulated

the existence of a stimulus ‘‘trace’’ in the nervous system.

Meanwhile, there exist many other options for solving this

association problem. There are several excellent reviews of

computational models of classical conditioning but none

has thus far been devoted to trace conditioning. Eight

representative models of trace conditioning aimed at

building a prospective model are being reviewed below in a

brief form. As a result, one of them, comprising the most

important features of its predecessors, can be suggested as

a real candidate for a unified model of trace conditioning.
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Variety of the computation mechanisms of trace

conditioning

Theoretical preview

There are four basic paradigms of the classical condition-

ing (see Fig. 1) where presentation of a conditioned stim-

ulus (CS) or context typically predicts an aversive outcome

such as a shock. A conditioned response (CR) to a CS alone

is taken as evidence that association between the CS and

the unconditioned stimulus (US) has been learned. Delay

and trace procedures differ in the temporal relationship

between CS and US. In delay conditioning CS and US

normally coterminate, whereas in trace conditioning some

time passes between a CS termination and an US onset.

The delay conditioning is usually not hippocampus-

dependent, while trace and context conditioning typically

result in a weaker response than delay conditioning does

and require an intact hippocampus. The magnitude of trace

conditioning is inversely related to the duration of the trace

interval.

Modeling of trace conditioning is a rather difficult

computational problem mainly due to a time gap between

CS and US. To account for trace conditioning, Pavlov

(1927) postulated the existence of a stimulus ‘‘trace’’ in the

nervous system which did not disappear with the physical

stimulus, but persisted long enough to allow associations

between this trace and a subsequent US even in the case of

a time gap between CS and US presentations. Meanwhile,

there exist many other ways to solve the association

problem. For example, some researchers suggested restor-

ing the contiguity between CS and US by means of a

tapped delay-line (Desmond and Moore 1991; Zipser 1986)

or by stochastic sustained neural activity (Yamazaki and

Tanaka 2005; Rodriguez and Levy 2001), or by using an
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STM to fill the time gap (Larrauri and Schmajuk 2008).

These approaches allowed explanation of many new data

and put restrictions on a possible neuronal mechanism of

trace conditioning. It will be useful to have a closer look at

such approaches which may provide components for a

unified model of trace conditioning.

According to Marchand et al. (2004), there are basically

three classes of theoretical descriptions of trace condi-

tioning: timing models, multiple-time-scale models and

conditioning of secondary cues. Each is briefly described as

follows. According to the timing models, any association is

indicative of the of time interval between the events,

wherefore trace conditioning is not different in nature from

simple delay conditioning. A trace interval does not pre-

vent establishment of an association, because it is the time

that is encoded rather than the residual trace of a particular

stimulus. According to the multiple-time-scale models, any

sensory event elicits multiple parallel basis functions in the

central nervous system, each function having its particular

time course. Basis functions may be triggered by the CS

onset or offset, but will not necessarily be maintained

during the CS. Thus, the time elapsed since the event is

uniquely represented by a pattern of active basis functions,

and this pattern can become associated with the US. The

third way to account for trace conditioning is to assume

that CS somehow becomes associated with other stimuli

that call up secondary cues which can bridge the temporal

gap between CS and US. According to this theory, each

stimulus, context including, is composed of a set of ele-

ments which become associated together as long as they

are simultaneously presented. Trace fear conditioning

should first generate CRs to both the context and the CS

trace. Contextual conditioning is often parallel to long-

trace fear conditioning, it is sensitive to hippocampal

lesions and can bridge the time gap. One can also include

in this list the traditional, and recently updated, attentional

theory of trace conditioning. According to the present-day

attentional theory, increases and decreases in attention can

influence the stimulus processing response in such a way

that the time gap between CS and US will be bridged by

additional attentional resources governed by novelty

(Larrauri and Schmajuk 2008).

Besides the timing problem, the main question is what

function of the hippocampus is necessary during trace and

contextual conditioning, but is not needed in delay condi-

tioning. There have been proposed several theories

regarding the specific role of the hippocampus during trace

conditioning. For example, the hippocampus may be nee-

ded to overcome stimulus discontiguity (Wallenstein et al.

1998), to time CRs accurately (e.g. Balsam et al. 2002) or

to distinguish between the intertrial interval and the trace

interval (Bolles et al. 1978). Another possibility is that the

hippocampus is more active during complicated and diffi-

cult forms of classical conditioning (Beylin et al. 2001;

Quinn et al. 2008; Shors 2004). Trace conditioning,

according to Clark et al. (2001), is fundamentally different

from delay conditioning. It resembles delay conditioning in

that it also depends on the cerebellum (Takehara et al.

2003; Clark and Squire 2004) but it is additionally

dependent on the hippocampus and the neocortex (for a

review see Clark et al. 2002). Another theory is that it is

trace but not delay conditioning that is an associative

learning task dependent on awareness which requires hip-

pocampus activity (Clark and Squire 1998, 2004; Cheng

et al. 2008; Shors 2004).

There are several excellent reviews of computational

models of classical conditioning (e.g. Vogel et al. 2004;

Schmajuk 2008; Moustafa et al. 2009) that have provided

mathematical and/or simulation explanation and described

of various effects of delay conditioning in the last 40 years.

Below, we shall briefly review some representative models

of trace conditioning with the aim of establishing a pro-

spective unified model. For each model we follow the same

outline: the class of the model, the main task of the model,

the model architecture, the learning rule, the main predic-

tions, possible specific contributions to the unified model,

as well as its limitations.

The tapped delay-lines model (Desmond and Moore

1991)

This model belongs to the multiple-time-scale class of

models. It was developed from earlier neuronal network

models of trace conditioning proposed at first to associate

noncontiguous stimuli by means of a delay line to a delay CS

until a US comes. It allows simulating the following complex

timing characteristics of CRs: (1) in trials presenting a CS

alone, the CR would reach its maximum at the time a US

would be expected; (2) CR onset tends to be delayed for a

period corresponding to the expected time of the US; (3) the

length of the delay of the CR depends upon the CS–US

interstimulus interval (ISI), but the CR timing is also adap-

tive in that a change in the ISI produces a corresponding

US

US 

US 

Tone CS

Tone CS

C. Context Conditioning

A. Delay Conditioning

B. Trace Conditioning

US 

Tone CS

D. Reverse Conditioning

Fig. 1 Four basic paradigms of classical conditioning
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change in the time of the peak; (4) double peaks are also

observed if the ISI alternates between two different values.

The original idea (due to Zipser 1986) of using the

tapped delay-line to compensate the variable trace interval

in the nictitating membrane response (NMR) is illustrated

in Fig. 2. If the output from all these taps is used as the CS

input to the hippocampus, then pulses of the CS-derived

signal will overlap all phases of the undelayed NMR. It is

only those synapses emanating from the taps at the

appropriate delays that will be strengthened, because they

will be the only ones where CS and NMR activities are

coincident in time. Thus, this network describes in princi-

ple the ability to learn both the ISI and the time–amplitude

profile of the NMR. The full network architecture is

illustrated in Fig. 3. Basically, each CS is committed to

activate two tapped delay-lines: one at the onset of the CS

and the other at the offset. Each tap forms Hebb-like

modifiable connections1 with two units, labelled V and E.

The function of the E-unit is to learn the time of US

occurrence relative to the onset and offset of all CSs, which

corresponds to the tap with the strongest connection. With

repeated CS–US presentations, the E-unit starts sending a

signal to the V-unit indicating the time when a US is

expected. This signal permits the V-unit connection

strengths to be modified. The network’s output (the simu-

lated CR) is derived from the V-unit. As each tap is acti-

vated, its connection weight contributes to the magnitude

of the CR, affecting it in either an excitatory (positive

weight) or inhibitory (negative weight) manner, thus sim-

ulating the above CR complex. This model makes a pre-

diction that an increase of the CS duration will produce

double-peaked CRs. Indeed, CR peaks were often observed

at two different points at a time when the duration of a

trace-conditioned CS was lengthened.

While some investigators observed that the arrangement

of parallel fibers in the cerebellar cortex resembled a delay-

line, Moore et al. (1989) suggested that the timing func-

tions were performed by the cerebellum, and according to

Zipser (1986), the tapped delay-line input to hippocampal

neurons could account for the response firing properties of

those neurons during rabbit NMR conditioning. Whether

pyramidal
cell

w50 w100 w200 w250

NMR(t)

CS(t)
delay line

50ms 50ms 50ms 50ms 50ms

Fig. 2 Basic structure of the hippocampal delay line model of

adaptive timing as proposed by Zipser (1986). Each synapse

introduces a delay; the total delay from activation of the first element

in the delay-line to the last element is a direct function of the number

of sequential synapses. Taps from the delay-line units send timing

information to higher-order processing units. NMR(t) is the nictitating

membrane response produced by US, which acts as teaching signal.

unmodified, modified synapse. CS input initiates

sequential propagation of signal through a delay-line

V E

USCR

CS
Offset CS

Onset

Fig. 3 Diagram of the tapped delay-line network (from Desmond and

Moore 1991). CS onset and CS offset are assumed to activate separate

tapped delay-line stimulus traces. The taps form modifiable connec-

tions—denoted by closed (     ) synaptic terminals—with the V

and E units. CR is generated when V-unit connections that have

positive weights are activated

1 In classical conditioning, it is often assumed that presynaptic inputs

from CSs and US converge on one or more postsynaptic units. The

postsynaptic unit initially responds strongly to the US input, but only

weakly to the CS input. Through repeated CS–US pairings, the

connection strength of the CS input is altered so that the CS becomes

capable of eliciting a robust output from the postsynaptic unit.

Alternatively, both CS and US can converge presynaptically, thus

performing non-Hebbian learning as in Zipser (1986). However, both

the Hebbian and non-Hebbian learning rules are problematic for trace

conditioning in view of the unsolved problem of shifting information

from the hippocampus to the cortex (see Frey and Morris 1997;

Lesburguères et al. 2011).
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the tapped delay-line stimulus processing is a neurobio-

logically plausible mechanism, especially with long delays

(tens of seconds) or is simply an analogy for the timing

processes that underlie conditioning, is an open question.

The timing mechanism assumed in this model is specula-

tive. Although the tapped delay-line structure is capable of

providing the timing functions necessary for CR appear-

ance, it cannot account for the ISI function, which is the

conditioning strength plotted as a function of the CS–US

interval, which tends to have an inverted-U shape.

Nevertheless, the use of the delay-line in stimulus pro-

cessing is supported by single-neuron studies of the limbic

system (Vinogradova 2001; McEchron et al. 2003; Gil-

martin and McEchron 2005) although the role of CS offset

is relatively insignificant (Burman and Gewirtz 2004). The

tapped delay-line is probably an indispensible part of the

mechanism of trace conditioning and should be utilized in

the unified mechanism of trace conditioning, if it is phys-

iologically supported.

The temporal basis functions model (Ludvig et al.

2008)

This model also belongs to the multiple-time-scale class of

models of trace conditioning and is designed to solve more

complicated problems. It is a reinforcement-learning con-

nectionist model describing the role of the hippocampus in

classical conditioning, focusing on the difference between

the trace and delay conditioning. It is a modern variety of

the so-called spectral models that perform Fourier-like

stimulus representation. In particular, all stimuli are rep-

resented both as an intact whole and as a series of temporal

elements with varying delays. These two stimulus repre-

sentations interact, producing different patterns of learning

in the trace and delay conditioning.

The model consists of three separate modules: the

stimulus representation, the learning algorithm, and the

response rule. The stimuli are represented as a series of

basic elements or internal microstimuli, which are gradu-

ally broadening elements of Gaussians. The model learns

through a well-known Sutton-Barto algorithm (Sutton and

Barto 1998), which can be explained as follows. At each

time step, the US prediction is determined by the linear

weighted combination of the above basis functions. This

US prediction is compared to the reward received in the

comparator to generate a time difference error which is

then used to update the weight vector. Finally, these US

predictions are used as a driving into responses through a

simple, threshold leaky-integrator response rule.

The model suggests that hippocampal lesions eliminate

the long-latency temporal elements, but preserve the short-

latency ones. In accord with the empirical data, simulated

hippocampal damage impairs trace conditioning, but does

not delay conditioning at medium-length intervals. With

the longer intervals, learning is impaired in both proce-

dures, with shorter intervals in neither. As it is mentioned

in the Theoretical preview, there are several theories for the

role of the hippocampus in trace conditioning, including

modulation of timing, establishment of contiguity, and

overcoming of task difficulty. This model is designed to

provide a computational mechanism that could unite these

three proposed theories.

Although a simple Gaussian basis function approach

suffices for the datasets considered in the connectionist

approach, other related mathematical functions are certainly

possible. For example, replacing the temporal microstimuli

in this model with the spectral traces as in Grossberg and

Schmajuk (1989) produces results that are similar to this

model. However, there is one important characteristic of the

microstimulus series in both cases which shows that the

individual elements should not decay too quickly. Another

key challenge for the future modeling is reconciling the

abstract account of the hippocampal function in trace con-

ditioning of this model with the approaches that consider

some greater physiological details (e.g. Rodriguez and Levy

2001; Yamazaki and Tanaka 2005, see later). At the same

time, the principle of comparator and the feedback learning

by extracting the time difference error is essential for the

unified model of trace conditioning.

Inherent dynamics model (Rivest et al. 2009)

The representation gained by this model can be viewed as

learning one of the temporal basis functions and associating it

with a relevant stimulus, while the previous two models need

to be given a whole set of fixed basis functions, covering the

necessary temporal space for every possible stimulus. Delay-

line representations require multiple predefined lines with

specific parameters to accommodate all the possible timing

information for all possible stimuli of a given task, similar to

having axons of various lengths or diameters or a set of

polysynaptic connections. This seems physiologically unre-

alistic for delays in the order of seconds. The proposed model

involves a representation of the environment dynamics in an

adaptive biologically plausible framework, and predicts a US

without a recourse to delay lines or other special-purpose

timing circuits. The model predicts that the task-dependent

representation of time is learned by experience, is encoded in

ramp-like changes in a single-neuron cortical activity dis-

tributed across small neural networks, and points out a tem-

poral integration mechanism resulting from the inherent

dynamics of recurrent connections within the network. The

model also reproduces the known finding that trace condi-

tioning is more difficult than delay conditioning.

The major weakness of this model at the moment is the

considerable extent of training it requires using a method
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similar to back propagation. In the best cases, some net-

works learned the task in about 4,000 trials. The model

clearly cannot accommodate the rapid acquisition of timing

found in animals (e.g. Balsam et al. 2002). Animals are

probably helped by an episodic memory system such as the

hippocampus, while a lack of episodic memory in this

model could also be a crucial factor contributing to a slow

learning rate and a limited insight in this model. Acquisi-

tion of an eye-blink trace conditioning without the hippo-

campus is very difficult, sometimes almost impossible even

with 1- or 2-s delays, although with shorter delays it may

well take place within the neocortex-cerebellum network.

This model can direct trace modeling to neocortical col-

umns as a possible place of long STM traces in trace

conditioning (cf. Larrauri and Schmajuk 2008) if the

extension to long delays is possible, e.g. by slowing down

cortical column intrinsic dynamics near the point of phase

transitions, as described in the following model.

Phase transition model (Rodriguez and Levy 2001;

Levy et al. 2005a, b)

This model, like the previous one, stresses the importance

of the inherent dynamics of neuronal activity not in the

neocortex but in the hippocampus which is able to effec-

tively bridge the time gap by means of activity that emerges

upon an increase of synaptic connection strengths as a result

of learning and subsequent phase transition. The model

hypothesizes the hippocampus functions as a time-indexed

encoding device for the CS, rather than as a CS storage

buffer. Specifically, the CS initiates a sequence of neural

activity during the trace interval which is but indirectly

representative of the CS. This sequence of CS-initiated

firing patterns is stable enough across training so that neu-

rons that are consistently active at the end of the interval

become associated with the US. But initially, the CS-initi-

ated activity is low and only after some training does it

become self-sustained to the point of bridging the time gap

between CS and US. This basic result is robust to variations

in input size, length, and adjustments to parameters.

The model may be outlined as follows: neurons are

McCulloch-Pitts-type threshold elements; input is a

weighted sum; output is a binary threshold of this sum with

no memory of the past. Recurrent excitatory connections

are sparse and randomly distributed. Inhibitory neurons

control activity in a broad manner. Most connections are

excitatory, have a time-spanning, and can be modified

associatively based on a local Hebbian-type rule.

The model allows making two predictions: Some cells

will increase their activity only during the trace interval,

and some US-coding cells will shift in time and fire before

US onset. That is, some US-related neurons will be acti-

vated earlier in time, during a trial before the initial

increase in CRs. These neurons are responsible for pre-

dictive US encoding in the hippocampus which provides

information for timing an anticipatory CR.

The model presents the hippocampus as the critical site

of US prediction in the brain mainly due to the state of

phase transition in the CA3 field. The boundary line of its

phase diagram shows the upper boundary of the reliably

learnable trace interval. During this transition, three

behaviorally distinguishable modes of eye-blink condi-

tioning can occur: failure to blink; blinking too soon; and

occasionally, appropriate predictive blinking.

The authors believe these simulations to provide cur-

rently the best explanation of how the hippocampus can

predict a US across a learnable trace interval by using den-

tate gyrus with CA3 as a recoder and CA1-subiculum with

deep layers of entorhinal cortex as a decoder. However, the

network of formal neurons used in the model does not nec-

essarily predict the phase transition in more realistic neu-

ronal nets due to the exponential decay of membrane

potential and stochastic spike activity (Kryukov 2008).

Besides, stochastic activity in the hippocampus alone cannot

explain the complex timing characteristics of CRs, as

described by the tapped delay-lines model. Therefore, some

important operations for US prediction must be performed

beyond the hippocampus as can be seen in the models

described below.

The strength of this model lies in the fact that trace

conditioning is considered not as attributed to the single

neuron activity, but as an emergent phase transition prop-

erty in the stochastic net activity of the whole hippocam-

pus. Contrary to an almost universally held view, the

hippocampus here is not a memory store, but performs a

rather simple operation of the US timing prediction. These

ideas are yet to be further developed in the unified model of

trace conditioning.

Septo-hippocampal model (Yamazaki and Tanaka

2005)

This model suggests using the septo-hippocampal loop to

stop sustained hippocampal activity during trace condi-

tioning that is needed to bridge the CS–US time gap and to

start a new learning cycle. For that purpose the CA3 net-

work is modeled as having both a recurrent all-to-all

excitatory and random inhibitory connections and an out-

put neuron corresponding to a neuron in CA1 which is

connected to all excitatory neurons in the model, with

synaptic weights representing Schaffer collaterals. The

study of the dynamics of a neural network that has both

recurrent excitatory and random inhibitory connections

shows that neurons start to become active when a relatively

weak transient excitatory signal is presented, and that this

activity is sustained due to the recurrent excitatory
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connections. The sustained activity stops when a strong

transient signal is presented or when neurons are disin-

hibited through the CA1-septum pathway.

It is assumed in this model that the output neuron will

only receive a US directly through another pathway cor-

responding to the perforant path and the CA3 neurons will

only receive a CS. Activation of neurons in the perforant

path to CA1 does not evoke neuronal activity in CA1

unless neurons in CA3 are activated. That is, the CA1 field

serves as an AND-gate for CA3 field inputs. The CA1

neurons excite inhibitory neurons in the septum, and these,

in turn, inhibit the inhibitory neurons in CA3. As a result,

CA3 neurons cease to be active only after the stimulation.

The output neuron learns to associate the US onset with

the CS onset, which are separated by an off-stimulus

interval and can be associated due to sustained CA3

activity. The synaptic modification corresponds to long-

term potentiation (LTP) at Shaffer collaterals induced by

the conjunctive stimulation of the output neuron by the US

and by the signals from CA3 neurons.

The model hypothesizes that increasing activity is

developed in two stages. At the first stage, a time code is

generated, and at the second stage increasing activity is

develops. Therefore, the model consists of two circuits: the

first circuit corresponding to CA3 generates a time passage

signal and at the second circuit representing CA1 shows

increasing activity during the delay period.

Despite some deviations from experiments (e.g. inhibi-

tory reset is gradually habituating during presentations of a

stimulus according to Vinogradova et al. 1998) the model

implies close interaction of the hippocampus with other

brain structures. The model can explain to some extent the

temporal evolution of the total hippocampal activity during

trace conditioning but does not present any specific pre-

dictions apart from the modulatory role of the septum. The

reason for this lies in the fact that the hippocampus and the

septum, while playing the central role in trace conditioning,

alone are not sufficient to explain timing in trace condi-

tioning. Timing can only be accounted for by the interac-

tion of many brain structures as demonstrated by the

following model.

Pacemaker-accumulator model (Buhusi and Meck

2005)

This model implies that trace conditioning is not a matter of

forming associations between stimuli and responses but

involves estimations as to when an emitted response will be

rewarded, and this is mainly the timing problem. From this

perspective, the time gap issue or the difference between trace

and delay conditioning is a comparatively minor problem.

Briefly, the pacemaker-accumulator model (PAM) sug-

gests the processing of temporal information by four

synchronized modular information processing systems: the

clock, accumulator, memory, and decision (see Fig. 4). The

clock system consists of a pacemaker that regularly gener-

ates or emits neural ticks or pulses that are transferred (via a

gaiting switch) to the accumulator, which accumulates ticks/

pulses (neural counts) that correspond to a specific CS–US

time interval. The raw representation of the stimulus dura-

tion in the accumulator is then transferred to the short-term

memory, a component of the PAM memory system. The

contents of the short-term memory are then compared with a

standard in the long-term (reference) memory, the second

component of the PAM memory system. Finally, the deci-

sion level of the PAM is conceptualized to include a com-

parator that determines an appropriate response based on a

decision rule involving a comparison between the interval

duration present in the short-term memory and the corre-

sponding duration in the reference memory.

The model predicts that conditioned responses follow a

normal distribution over the ISI duration and, more

importantly, that the width of this response distribution is

proportional to the length of that interval duration. The way

in which the mean and standard deviation of the response

distribution covary implies a constant coefficient of varia-

tion, which is usually referred to as the scalar property, and

resembles Weber’s law, which is reflected in most sensory

dimensions.

The first challenge is to connect PAM with more con-

ventional cognitive psychology, in particular where it deals

with context, memory and attention. Numerous studies

have shown that attention, picking out a stimulus from its

context, plays a critical role in timing behavior. Another

S
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t
c
h

Pacemaker Accumulator

Short Term
Memory

Long Term
Memory

Decision Process

Observed Behavior

Fig. 4 Outline of the pacemaker-accumulator model. The upper level

shows the pacemaker-accumulator clock, the middle level the long-

term reference memory and the short-term working memory, and the

lowest level the decision mechanism
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major challenge is to understand the physiological pro-

cesses underlying timing. Some researchers (e.g. Matell

and Meck 2000) have criticized PAM and its derivatives on

physiological grounds. The biggest drawback of PAM,

however, is according to Meeter et al. (2005) that it is

entirely functional, with few guidelines as to how it might

be implemented in the brain. Perhaps, when it is made

biologically more plausible, e.g. involving attention, and

becomes closer to associative models, then both classes of

models will converge to form a unified model.

Attentional-associative model (Schmajuk et al. 1996;

Larrauri and Schmajuk 2008)

This is a behavior model of classical conditioning that

incorporates and extends the properties of several associ-

ation models to include the effects of attention, extinction

and trace conditioning. Therefore, it is reasonable to con-

sider it as a behavioral version of the unified model of trace

conditioning. The model incorporates: (a) a mechanism

capable of establishing associations between CS and US

and between two CSs, (b) a real-time attentional variable

regulated by the novelty of the US, the CSs, and the context

(CX), and (c) a competitive rule that describes CS–US,

CS–CS and CS–CX associations.

The model works as follows. To allow for a CS to

establish associations with other CSs or a US, even when

separated by a temporal gap in trace conditioning, the

model suggests that the CS activates a short-term memory

trace, sCS (see Fig. 5), which gradually increases over time

from zero to a maximum when the CS is present and then

decays back to zero when the CS is absent. It is assumed in

this model that animals respond to novelty by increasing

attention to environmental stimuli. The synaptic weight

(represented by a triangle) connecting Node 1 to Node 2

reflects the value of attention zCS, which can vary between

1 and -1. When novelty is greater than a certain value, zCS

gradually increases; when novelty is smaller than another

value, zCS decreases. The novelty of a CS, CX, or US is

computed as the absolute value of the difference between

the average observed value of the CS, CX, or US, and the

average of the sum of all predictions for the CS, CX, or US

and all active CSs and CXs. The total novelty, Novelty, is

the sum of the novelties of all stimuli present or predicted

at a given time, normalized between 0 and 1. Attentional

control of learning (memory storage) and performance

(retrieval) is the most important feature of the model.

Figure 6 is a block diagram of the same model which is

able to describe many of the properties of classical con-

ditioning, and incorporates the above mechanisms with

explicit interconnections. The error correction feedback

from output to input is especially important since the

appearance of Rescorla and Wagner’s (1972) model, and is

applied here for trace conditioning to slow the CS decay in

STM.

Common to Pavlov’s theory (1927) and this model is the

notion that during extinction attention to the CS decreases

and this is because Novelty decreases as the prediction of

the US increases. Also common to both approaches is the

idea that extinction shares some properties with both

habituation and latent inhibition.2 In this model, both

habituation and latent inhibition occur because novelty and

attention to a stimulus are supposed to decrease with its

repeated presentations.

As in the Rescorla–Wagner model, changes in associa-

tions are also proportional to the difference between

Fig. 5 A simplified diagram of the attentional-associative model

(from Larrauri and Schmajuk 2008). Triangles represent variable

connections between nodes. Arrows represent fixed connections

between nodes. scs—trace of the CS; zcs—attention to the CS; Xcs—

internal representation of the CS; Vcs–us—CS–US association; Bcs—

predicted CS; Bus—predicted US; CR—conditioned response

Novelty

Configurations

AssociationsAttention
Perception

Image

Conditioned
Response

Multiple
CS Representations

US

Fig. 6 A model that incorporates many of the mechanisms required

to describe the multiple properties of classical conditioning (from

Schmajuk et al. 1996). Novelty is the sum of the absolute values of

the differences between perceived and expected (through associations

with other CSs) CSs and USs. The configuration refers to internal

representation of combined simple CS representations. This configu-

ral representation has the highest activity when some CSs are present

and others are absent. Associations refer to the connections

established between the representations of CSs and USs which allows

simple and configural CSs to predict other CSs and USs

2 Habituation is a decrease in responsiveness to a stimulus when that

stimulus is presented repeatedly or for a prolonged time. The latent

inhibition refers to the effect that preexposure to a CS followed by

CS–US pairings retard the generation of the CR.
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predicted and real values of the US (US–BUS). This allows

explaining almost all classical effects (such as blocking,

latent inhibition, etc.) as well as those requiring attention,

e.g. extinction and its numerous properties. However, the

model is admittedly unable to explain the important effect

that extinction does not erase the original excitatory

learning (e.g. Brooks and Bowker 2001), nor some other

effects such as saving and overtraining (Schmajuk and

Larrauri 2006).

Among many predictions of this model the most

important is the rate of reacquisition, decreased by exten-

ded extinction, which should increase with presentation of

a novel CS preceding each US presentation. According to

this model, the novel CS will increase Novelty, increase

attention to the target CS, and speed up reacquisition. The

question is: what does novelty mean in biological terms,

where is it located and how is it detected in the neural

system3? A more general problem of this model is that it is

entirely behavior-functional and far from biological reality.

No wonder that the model simulation reveals discrepancies

with the relevant literature when describing the hippo-

campal lesion effects on trace conditioning with shock US

under short and long ISIs, and trace conditioning with an

air-puff US under long ISIs. Nevertheless, this model’s

ability to explain many classical results when updated

attentional mechanisms are incorporated is remarkable.

Attention and memory should be the central aspect of the

unified model of trace conditioning.

Theta-regulated attention model (Vinogradova 2001;

Kryukov 2008)

This model belongs to the class of physiologically moti-

vated attentional models, and therefore can in principle

explain all of the abovementioned attentional effects as

well as many new ones. Despite the fact that the model was

originally proposed for solving of long-term memory

problems, it can be easily adapted to trace conditioning as a

particular case model of attention and hippocampus-

dependent memory (Kryukov 2008). Indeed, here again

attention is the key to all effects. It is closely connected

with theta/gamma partial synchronization of basic brain

structures with the specific function of binding oscillatory

representations of CS, US and action, so that the CR is

possible without US as a result of learning and partial

synchronization. Such synchronization is most easily

realized by introduction of the central oscillator with var-

iable frequency acting as a global pacemaker. The sim-

plified star-like architecture with a central oscillator (CO)

and peripheral oscillators (POs) is given in Fig. 7. Some

POs represent a CS, some a US, and some others a final

reaction. The association of CS and US through synchro-

nization in trace conditioning is usually difficult because

oscillatory CS representation decays during a trace interval.

But repeated presentation of CS, recruiting new POs

through phase resetting by CS and recirculating activity

between CO and POs, leads to a stronger CS representation

until synchronization of CS and US becomes possible

despite the time gap. The flexible control and adaptivity are

attributed to the forward–backward connections of POs

with CO that can change the current frequency of ensemble

synchronization, involving cortical, cerebellar, and amy-

gdalar POs with different natural frequencies in various

multimodal ensembles. Accordingly, attention is switched

(automatically as well as voluntarily) from one group of

oscillators to another through this changing of the fre-

quency of the CO, thus realizing different configural and

contextual acquisition, retrieval and extinction. Detailed

descriptions of this model, its structure, working principles,

and predictions are given elsewhere (Kryukov 2005, 2008;

Kryukov et al. 1990). In this review, we shortly restate

some details needed for understanding of the trace condi-

tioning model.

The model works like a PLL4 system, well known in

communication engineering. It comprises five standard mod-

ules: receiver, voltage-controlled oscillator, phase detector,

low-pass filter, and summator. Its neural representation is

sketched in Fig. 8, based on the well-established functions of

various parts of the limbic system (Vinogradova 2001): the

Fig. 7 Simplified architecture with central oscillator CO, and

peripheral oscillators POs

3 The answer to this question is given in biological terms by

Vinogradova (2001) and in computational ones by Kryukov (2008)

4 A phase-locked loop (PLL) is an electronic control system that

generates a signal of controlled oscillator that is locked to the phase of

an input signal. A phase-locked loop circuit responds to both the

frequency and the phase of the input signals, automatically raising or

lowering the frequency of a controlled oscillator until it is matched to

the input in both frequency and phase. For description of the PLL

system see Gardner’s text-book (1979), for application in the neuronal

modeling based on PLL see Songnian et al. (2003) and for the

numerical simulation of PLL with CO and several POs see

Kazanovich et al. (1991).
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medial septum (MS) is the central pacemaker and voltage-

controlled oscillator; the CA3 field of the hippocampus is a

comparator or a phase detector; the hippocampal fascia dentata

(FD) is an input mixer and receiver of specific inputs; the lateral

septum (LS) is an output mixer and summator of individual

lamellas of the CA3 field, i.e. as concurrently operating s

ections of the hippocampal formation, almost independent

from each other structurally and functionally (Witter et al.

2000). The similar lamellar structure of the CA1 field and the

corresponding parallel pathways of the limbic system are a

morphological basis for parallel delay-lines. All these struc-

tures, according to Vinogradova (2001) are interconnected and

form two closed loops, as shown in Fig. 9. The first loop deals

with information and includes the hippocampal field CA1,

anterior thalamus, neocortex, and other structures which retain,

even if partially, their signal-specific sensitivity. This loop is

active during initial information memory formation in the

neocortex, as well as during online information treatment,

causing, for example, long delays in the recycling of signals for

the working memory and trace conditioning. The second CA3-

based loop acting as a regulator is responsible for non-specific

brain activation (arousal) and control of the activating reticular

formation. At the same time, the second loop serves as a

negative feedback for regulation of the septal oscillator theta

frequency, with CA3 being a phase detector or comparator. As

a result, the whole ensemble of POs will be synchronized by

phase resetting from CO at the frequency of the system theta

rhythm which is defined by the overall activity of all POs, with

the relative salience of corresponding stimuli taken into

account.

The learning rule is non-Hebbian, being based on the

following Isolability Assumption: when the number of POs

locked in an ensemble reaches a critical value, their

physiological labilities5 tend to be equalized, i.e. the

oscillators that are gradually brought to a common rhythm

in an ensemble will change their natural frequencies

towards a common one through synthesis of new proteins,

thus implementing isolability coding of information, which

is a form of configural coding. Such learning initially may

be very rapid, (potentially one-shot), while post-learning

fixing of new natural frequencies is rather slow (taking

hours or even days due to consolidation and reconsolida-

tion) and starts after the initial signal retention and some

rest or sleep. The next important assumption is that the

hippocampus functions as a dual comparator system in

which CA3 is the comparator of neocortical and septal

inputs while CA1 is the time comparator of enthorinal

(ECIII) and septal inputs working under inhibition control

from the CA3 field. The outputs of both comparators are

summed in a lateral septum and jointly regulate the theta

frequency of the medial septum: the former for binding of

CS and US representations and the latter for compensation

of long delays between them.

According to this model, conditioning is a system pro-

cess with many brain structures interacting through theta

synchronization, the septo-hippocampal system being a

global coordinator of various centers. Its operation resets

not only the sustained CA3 activity, like in the model of

Yamazaki and Tanaka (2005) but the whole cortico-septo-

hippocampal system (Kitchigina 2010). The time gap

between CS and US is bridged by means of two mecha-

nisms. The first, in the case of small trace intervals,

involves inherent STM dynamics of cortical columns,

FD CA3 LS RF MS

NC

Fig. 8 Schematic diagram of the theta-regulated attention model.

Abbreviations as in Fig. 9

CA1

EC

PLC

AVT
SUB

NC

CA3

FD MS-
DB

RF

mR
LS input

input

mossy

cing

SC

F.pre

F.post

PP
MFB

PP

Fig. 9 Simplified scheme of two limbic circuits: regulatory and

informational (adopted from Vinogradova 2001). Only principal

connections are shown. AVT—antero-ventral nucleus of thalamus;

CA1 and CA3—hippocampal fields; cing—cingulum; FD—fascia

dentate; F.pre—fornix precomissuralis; F.post—fornix postcomissu-

ralis; EC—entorhinal cortex; LS—lateral septal nucleus; MFB—

medial forebrain bundle; mossy—mossy fibre; MS-DB—medial

septal nucleus and nucleus of diagonal band; NC—neocortex;

PLC—posterior limbic cortex; PP—perforant path; RF—reticular

formation; mR—median raphe nucleus; SC—schaffer collaterals;

SUB—subiculum. New powerful reciprocal connections of CA1 with

MS added (see dashed lines) according to Takács et al. (2008), as well

as well known projections from CA1 to LS according to Risold and

Swanson (1996)

5 Lability as temporal unsteadiness in the case of oscillatory networks

can be characterized quantitatively by the value of natural frequency.

The lability is the basic concept of the Russian neurophysiological

school of Vvedensky-Ukhtomsky who maintained that connections

between nervous structures are promoted trough the correspondence

in their frequency characteristics that is in equalizing their excitation

cycle rate (Ukhtomsky 1966/1936). Thence follows our Isolability

Assumption.
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much like the way it appears in the models of Rivest et al.

(2009) and Larrauri and Schmajuk (2008). The second

mechanism, in the case of long trace intervals, uses the

delay line for CS in the CA1-based informational circle,

like the tapped delay line of Desmond and Moore (1991).

By the same token, the model could also account for a

more complex CR, like in the model of Ludvig et al. (2008)

and Desmond and Moore (1991). The role of phase tran-

sition (arousal acting as the physical temperature parame-

ter) in this model, like in the model of Rodriguez and Levy

(2001), is bridging the time gap in the CA1-based circle.

But in contrast to it, the phase transition also provides long

controlled delays, by slowing down the dynamics of cor-

tical columns and theta synchronization of all interacting

subsystems. Finally, due to similarity of all basic modules

with corresponding modules of PAM (pacemaker, accu-

mulator, comparator, and memory), this model can be

considered as neuronal implementation of PAM (Buhusi

and Meck 2005) that can meet all of its challenges.

The main predictions that can be derived from the model

are as follows. The neocortical columns may act as a

permanent repository of traces in trace conditioning. The

medial septum may serve as a global pacemaker and

(jointly with septo-hippocampal system) as a ‘core timer’

of variable speed. The hippocampus functioning as a phase

comparator (CA3), or as a delay time comparator (CA1), or

both, could affect the common septal theta pacemaker to

change its frequency in an adaptive way. The CA1-based

information circuit can provide the controlled long delays

through reverberating the trace of the CS in the limbic

system. Due to a circular, or spiral, mode of neural

reverberation, the multipeak responses in trace condition-

ing are possible, most probably, with equidistant intervals

between the peaks. Many other behavioral and physiolog-

ical effects can also be explained with this model; some of

them (e.g. habituation, extinction, novelty) were described

in the original ‘‘Neurolocator’’ model of LTM and attention

(Kryukov 2008). However, it is not quite clear whether the

model is able to strictly generate the scalar property pre-

dicted by PAM. Besides, there are some key empirical

findings that may be problematic for this model to explain.6

1. Several studies have shown that hippocampal lesions

made after training can eliminate trace conditioning.

The model’s prediction of an acquisition deficit is clear,

but not so is its effect on retrieval or consolidation.

2. The hippocampus is not related to ISI in trace

conditioning in a linear fashion: while in eyeblink

conditioning hippocampal involvement emerges at

about 500 ms, in fear conditioning it does not occurs

until 15 or 20 s into the process, which is too long an

interval to support even delay conditioning in eyeblink

(Moyer et al. 1990; Chowdhury et al. 2005). For

example, at 500 ms there is substantial involvement of

the hippocampus in eyeblink but not in trace condi-

tioning. At 3 s no sort of eyeblink conditioning will be

obtained but the hippocampus will not be required for

fear trace conditioning at this interval.

3. There are even data to cast doubt that the hippocampus

has any bridging function in trace conditioning as

similar effects of hippocampal lesions are obtained

when backward trace intervals are used (Quinn et al.

2002). Indeed, it is hard to see that backwards trace

conditioning has anything to do with CR timing. Such

findings are not necessarily fatal problems for this

model. But can they be incorporated in the ‘‘unified’’

model or do they remain to be serious hurdles?

4. The model is described as non-Hebbian. This may

strike readers as questionable, as NMDA receptors,

which are known to mediate Hebbian plasticity, have

been shown to be critical to trace conditioning (Huerta

et al. 2000; Misane et al. 2005; Quinn et al. 2005).

5. Trace conditioning of eyeblink and fear depend on

different neural substrates downstream from the hip-

pocampus (cerebellum and amygdala, respectively).

Sometimes the transition between these in the proposed

model is a bit confusing considering that both trace and

delay conditioning depend on the cerebellum, which is

not true of fear, though. This point as well as the above

problems needs to be addressed in greater detail.

Mathematical analysis of the proposed unified model

Nonlinear differential equation of trace conditioning

To answer the above questions we present a short mathe-

matical description of the proposed unified model as a

particular case of the attention and LTM model ‘‘Neuro-

locator’’ which was previously been described by the fol-

lowing system of stochastic integro-differential equations

(Kryukov et al. 1990, Eq. (9.7)).

dui

dt
¼ K0i �

Xn

j¼1

A0jgjðujÞ þ NjðtÞ
" #

FðpÞ; ði ¼ 1; . . .; nÞ

ð1Þ

where ui—mean phase difference of the septal and ith

groups of cortical oscillators; K0i—frequency detuning

between the cortical and septal oscillators; A0igi(ui)—non-

linear sigmoid output function of the CA3-field phase

comparator in the ith lamella of the hippocampus repre-

senting the cross-correlation of its two major inputs;

Ni(t)—random walk process of the ith lamella; n—total6 We are grateful to Reviewer #1 for this list of problems.
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number of lamellas; F(p)—transfer function of the low-

pass mRF filter, which stabilizes the PLL system in case of

e.g. lapse of attention. Operator multiplication by F(p) on

the right-hand side of (1) means convolution with function

f(t), for which F(p) is Laplace transform.

In the case of trace conditioning, we first reduce

n-dimensional system (1) to two equations corresponding

to CS and US representation with intensities A01 and A02

respectively, but with the same discriminative function

g3(u) of the CA3-based comparator. Then we take into

account that, by the Isolability Assumption and phase reset

of POs, K01 tends to K02, and hence u1 stochastically tends

to u2, which is also clear from the numerical simulation of

system (1) (Kazanovich et al. 1991, Fig. 5); hence the

system (1) with i = 1, 2 can be further reduced to the

following single equation:

du
dt
¼ K0 � ½Atg3ðuÞFðpÞ þ NðtÞ� ð2Þ

This is a nonlinear integro-differential equation of trace

conditioning sufficient to answer the above questions. Here

N(t) is random walk process with Poissonian jumps and

exponential drift between jumps; its drift rate is equal to

1/T, if F(p) = K/(1 ? pT), where K = KoKd is the loop

gain.7 The time-dependent intensity or arousal At in Eq. 2

is given by

At ¼ A01 þ A02 þ A01A02g1ðtÞ; ð3Þ

where the last summand reflects the AND-gate function of

the CA1-field comparator (Vinogradova 2001; Ang et al.

2005). This summand can be explained as follows. If we

assume that CS(t) = A011CS(t), US(t) = A021US(t–ISI) and

that the CS–US association can be expressed as

convolution, then

Z t

0

CSðt � xÞUSðxÞdx ¼ A01A02g1ðtÞ ð4Þ

where g1(t) is the association function of the CA1-field

comparator of CS and US. From (4) we have

g1ðtÞ ¼
Z t

0

1CSðt � xÞ1USðx� ISIÞdx; ð5Þ

where 1CS(t) = 1, if CS(t) = 0 and 1CS(t) = 0, other-

wise. The same is true for 1US(t). Figure 10 shows the

structure of function g1(t) for different duration of the CS

stimuli.

Below, Eqs. 2, 3 and 5 will be used for describing five

basic properties of the proposed unified model along with

the corresponding experimental findings.

Boundary conditions for hippocampal involvement

in Pavlovian conditioning

Here, we make some additional assumptions which will

help to explain the core mechanism of trace conditioning

but will be dismissed later on. We shall consider Eq. 2 in

the deterministic case (N(t) = 0), without filter (F(p) = K)

and with time-averaged At over ISI, i.e.

At ¼ A01 þ A02 þ A01A02

sCS þ sUS

ISI
; ð6Þ

where sCS and sUS are the durations of CS and US,

respectively. Under such conditions, Eq. 2 takes a simple

form of

du
dt
¼ K0 � A

t
Kg3ðuÞ: ð7Þ

This equation can have a stationary solution only if the

following boundary conditions are fulfilled

g3 min\
K0

AtK
\g3 max; ð8Þ

which together with Eq. 6 implies that the hippocampus is

involved in trace conditioning only within some interval of

ISI values, in accord with the empirical finding by Misane

et al. (2005). This interval depends on particular values of

A01A02K/K0: if this value is small it shifts to the lower

values of ISI (e.g. in EBC), if high, it shifts to the higher

values of ISI (e.g. in fear and appetitive conditioning).

Moreover, our model predicts that sometimes the hip-

pocampus may be involved in delay conditioning, but not

involved in trace conditioning. To see that let us suppose

that in Eq. 6

CS

ISI

ISI

CS

ISI

US

CS

ISI

US

US

ISI

ISI

ISI- CS US
t

t

t

t

t

t

Time course of timing Association function g1(t)

CS

CS

CS US

CS US

CS

USUS

ISI- CS

Fig. 10 Association function g1(t) is formed by time-shifting of CS

towards US without overlapping. In fact g1(t) is not a rectangle but

according to Eq. 5 is a triangle for CS and US having equal durations

and a trapezium in general case as shown by dashed lines. But since

US duration is much less than that of CS, the rectangle is a quite

acceptable approximation

7 Ko and Kd are transfer coefficients for the septal VCO and the CA3

phase detector, respectively.
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A01 þ A02 � A01A02; ð9Þ

i.e. nonassociative interaction of CS and US is much

weaker than that of associative interaction.8 Then, instead

of (8), we have for sCS [[ sUS approximately

g3 min\
K0

A01A02K

ISI

sCS
\g3 max ð10Þ

which explicitly expresses the upper and lower ISI bounds

for hippocampal involvement in conditioning (see

Fig. 11a). From Inequality (10) it follows that the hippo-

campus may be needed even for delay conditioning (ISI/

sCS \ 1) if A01A02KsCS is relatively low as found experi-

mentally by Quinn et al. (2008), in case of few training

trials or low footshock intensity and Beylin et al. (2001) in

case of long delay task. On the contrary, violation of the

left side of Inequality (10) means that the hippocampus is

not required even in trace conditioning (ISI/sCS [ 1) if ISI

is relatively short and/or A01A02KsCS is relatively high (as

found experimentally by Thibaudeau et al. 2007, 2009;

Kyd et al. 2008; McGlinchey et al. 2008; Beylin et al.

2001). In general, Eq. 10 provides the boundary lines not

only for the hippocampal involvement in conditioning but

also the border lines between trace and delay conditioning

depending on the task difficulties (see Fig. 11).

Optimal values of trace conditioning parameters

Being a system of automatic control, our model has opti-

mal processing speed. Therefore, there exists an optimal set

of parameters of trace conditioning in which learning is

fast. It will occur when e.g. K = K0Kd is maximal (see

footnote 7). Since K0 is constant, Kd = dg3(u)/du should

be maximal, which occurs at the point of inflexion u0 = u,

such that d2g3 (u0)/(du)2 = 0 (see Fig. 12). In general, not

only Kd but each parameter involved in equality K0

AtK
¼

g3ðu0Þ can be optimal at fixed values of other parameters.

However, the shift of any parameter in conditioning from

the optimal value will require some additional learning to

reach the optimal regime. This optimality property was

repeatedly discovered in many experiments. For example,

there exist optimal CS duration sCS (Kehoe et al. 2009),

optimal US intensity A02 (Oswald et al. 2009), optimal

arousal At (Berry and Swain 1989; Shors 2001), optimal ISI

(Vogel et al. 2004; Kehoe et al. 2010). After the ISI

change, additional training proved necessary to allow

asymptotic responding at the new ISI (Steinmetz et al.

2011).

Explanation of timing effects

Let us return to the general case, as described by Eq. 2, to

make a fundamental assumption relating it to behavior: the

conditional response CR(t) can be expressed as a random

process that is equal to the positive part of the right hand

side of Eq. 2 taken with the opposite sign, i.e.

CRðtÞ ¼ ½Atg3ðuÞFðpÞ þ NðtÞ � K0�þ; ð11Þ

where [x]?=x, if x [ 0, and [x]?=0, if x \ 0. Figure 13

gives a schematic picture of this assumption when

F(p) = K. Formation and timing of the CR are as fol-

lows:From Eq. 11 it follows that CR(t) = 0 at the initial

stage of conditioning when At is small due to poor
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Fig. 11 a The upper and lower

ISI-boundaries for the

hippocampal involvement in the

conditioning according to

Inequality (10). b Three

parametric regions of Pavlovian

conditioning based on

Inequality (10): (1)—‘‘Trace but

not delay’’; (2)—‘‘Both trace

and delay’’; (3)—‘‘Delay but

not trace’’
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Fig. 12 Non-linear discriminating function of the CA3-field phase

comparator

8 In fact, the supposition (9) is not true according to Lindquist et al.

(2009), but it helps in simple explanation of many so far unexplained

experimental findings. .
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synchronization. Upon repeated stimulation, CS and US

representations become synchronized at a common theta

frequency so that At increases causing the time of threshold

K0 being first passed by random process N(t) to be close to

the time of US appearance. With further training this ten-

dency increases since function At, which was initially

evenly distributed over ISI with the mean value given by

(6), becomes concentrated near US due to the function g1(t)

as it is shown in Fig. 10. From Fig. 13, it can be seen that

acquisition of CR is faster and reaches a higher asymptote

with high AtK, e.g. with more intensive US (in accord with

Oswald et al. 2006), or with more intensive CS (in accord

with Miller et al. 2008; Weinberger 2003; Fritz et al. 2007;

Galvez et al. 2006). Acquisition is complete when At

reaches the value at which CR habituates, i.e. when
K0

AtK
\g3 min, in violation of Inequality (8), and hence the

septo-hippocampal system is switched off. However, pre-

sentation of CS alone (without US) causes dehabituation9

and CR reappears.

The above random timing is adaptive in the sense that a

change of any parameter e.g. ISI or CS duration, shifts K0

AtK

from the optimal value (shown in Fig. 12), which requires

additional learning (changing A01A02) to gain the optimal

regime. In particular, inhibition of delay as a constraint on

the CR to a few seconds prior to US delivery, depends on

the ISI duration, such that CR latency decreases when

training is conducted with relatively short ISI but increases

with relatively long ISI, as found experimentally by Vogel

et al. (2003).

The most difficult problem of timing is explanation of

its scalar property in terms of neural activity. It requires a

detailed calculation of the mean (M) and the standard

deviation (SD) of the first time of N(t) passage over

threshold K0. This problem in the context of random walk

models of neuron firing was investigated both analytically

(Kryukov 1976) and by computer simulation (Stein 1967).

In particular, it was found that CV = SD/M varies as

inverse root of the neuronal threshold value, while M is

proportional to the threshold value itself. Thus, the CV can

not be constant and the scalar property can not be explained

in terms of the random walk models. Fortunately, the

latency of CR in the trace conditioning model includes not

only the time of first passage across the threshold K0 but

also the delay in the limbic delay line. Simulation shows

that the latter has a low CV for short delays but a rising

tendency for long delays (see below). Thus, it is possible to

explain a constant CV as a combination of rising and

N(t)

CR(t)

0

0

AtK g3( )

dl fp

d

on

off

p

N(t)

Time, t

(A01+A02)K g3( )

CR(t)

m

Fig. 13 Schematic representation of the temporal relationship

between all the components of CR(t) as defined by Eq. 11 at

F(p) = K. Note that rectangle in the central part is function

g1(t) multiplied by product A01A02Kg3(u). It makes most probable

crossing of K0 by a random process N(t) near the time at which US

occurs. In contrast, the non-associative part of CR(t), connected with

earlier portions of the CS is due to crossing of K0 by a process

N(t) long before the time at which US appears. It occurs with much

lower probability than that of the associative part of CR(t). Pavlov

believed that the earlier portion of the CS developed a conditioned

inhibition and called it inhibition of delay. Note that the timing of

CR(t) is defined by interaction of two major delay sources: the limbic

delay time (sdl) and the first passage time (sfp) of N(t) through

threshold K0. The other temporal parameters such as peak time (sp).

duration (sd) and the times of CR onset (son) and offset (soff) are only

different combinations of these two major delay sources, which

allows estimation of variability for each parameter (see Eq. 12) in

terms of CVs of these two sources

9 For the explanation of habituation and dehabituation mechanism

see Kryukov (2008, p. 152) .
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declining CVs, at least for not too long delays. To show

that, let us calculate the SD of the sum of two independent

random delays, one of which has CV with a rising ten-

dency, and the other with a declining tendency.

ðSDRÞ2 ¼ ðSD1Þ2 þ ðSD2Þ2 ¼ ðCV1Þ2M2
1 þ ðCV2Þ2M2

2 ;

whence

ðCVRÞ2 ¼ ðCV1Þ2
M2

1

ðM1 þM2Þ2
þ ðCV2Þ2

M2
2

ðM1 þM2Þ2
ð12Þ

In short, CV of the sum of two independent intervals is an

almost linear combination of component CVs. Therefore,

we can qualitatively estimate the CVs of all random inter-

vals shown in Fig. 13 taking into account both the rising and

declining tendencies weighted by their relative duration

(see Fig. 14). Comparison of model predictions and

experimental CVs presented in Fig. 15 shows that (a) simi-

lar timing characteristics have a similar curvilinear depen-

dence on M & ISI, (b) timing is not strictly scalar across

ISI, (c) the only discrepancy is that the model predicts

CVp [ CVon, i.e. the peak latency is more variable than the

onset latency, while in experiment CVp \ CVon. A possible

reason for this discrepancy may be that M = ISI, i.e. dif-

ferent abscissas in panels A and B of Fig. 15 are used.

The review of timing literature, in accord with the above

analyses, shows that the scalar property may be oversim-

plification of the real data. Contrary to the constant pre-

dicted by Weber’s law, the Weber fraction (CV) is larger at

2 s than at 0.2 s (Lavoie and Grondin 2004). Similarly,

Lejeune et al. (2006), showed that the scalar property of

variance measured by the CVs of the Gaussian curves

would normally hold over a range of durations, but that

CVs tended to increase as the interval value became very

large. On contrary, Lewis and Miall (2009) found that the

CV of human subject timing monotonically decreases.

These findings join previous reports in demonstrating a

systematic violation of the scalar property in timing data

(e.g. Lejeune and Wearden 2006).

Hippocampal lesion effects

In general, the effects of hippocampal lesions in trace

conditioning are predicted by the Theta-Regulated Atten-

tion Theory (Vinogradova 2001) and the ‘‘Neurolocator’’

model (Kryukov 2008), as in the particular case of hippo-

campus-dependent memory. But the above specific role of

the CA1 and CA3 field as time comparator and phase

comparator, respectively, allows predicting the following

specific effects.

Pretraining lesions of CA1 or CA3 or both fields

attenuate the acquisition of trace memories. Experimental

support for this point can be found in Hunsaker et al.

(2009), Kishimoto et al. (2006), Quinn et al. (2005), Bur-

man et al. (2006), Wanisch et al. (2005), Seo et al. (2008),

Yoon and Otto (2007).

Posttraining lesions of the hippocampus result in more

complex effects since the hippocampus is not a place where

the LTM of trace conditioning is stored and there are

several ways in addition to the hippocampus for the

retrieval of memory when the medial septum is activated.

While consolidation, reconsolidation and extinction theo-

retically require an intact hippocampus (Kryukov 2008,

2011a, b) since performance of these tasks is impossible

without phase synchronization, the retrieval/expression is

possible through frequency synchronization, i.e. without

CA3-based regulatory circuits.10 In such a case, CA1-based

informational circle can alone synchronize CS and US

representations through the direct path to the medial sep-

tum (see dash lines in Fig. 9). Moreover, in the case of both

CA1 and CA3 lesions, the synchronization needed for

retrieval of already consolidated memories can be provided

by the direct path from the mPFC to the medial septum

(Gabbott et al. 2005; Nieuwenhuis and Takashima 2011) or

through phase resetting of theta by the external stimuli

(Sauseng et al. 2008).

The most relevant recent data in support of these pre-

dictions are as follows:

• Lesions restricted to the dorsal hippocampus blocked

acquisition of trace fear conditioning. Larger lesions

were required to impair retrieval of trace fear condi-

tioning (Burman et al. 2006).

• Lesion of CA1 connections with the medial septum

impairs consolidation/retrieval of auditory-cued and

context fear (Hunsaker et al. 2009).

• APV injected in the dorsal hippocampus impairs

acquisition of context memories but does not affect

its retrieval or retrieval of trace fear memories (Matus-

Amat et al. 2007).

0.1
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0.2
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10050 150

C
V

=S
D

/M p Peak Latency

dl Delay Time

fp First Passage

Mean Interval, M 

Fig. 14 Constant CV can be at least partially explained as a result of

two opposite tendencies

10 For the difference between the phase and the frequency synchro-

nization (acquisition) (see Gardner, 1979, Ch. 5).
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• Retrieval of trace memories is possible without the

hippocampus at short ISI (Chowdhury et al. 2005;

Moyer et al. 1990).

• Trace conditioning is possible without the hippocampus

if CS and US were associated through delay condition-

ing before hippocampal lesion (Beylin et al. 2001).

• Selective lesions in the medial septum induce a

perceptible deficit in acquisition, but not in retrieval

of EBC using the trace paradigm (Fontán-Lozano et al.

2005).

The central role of theta-regulated attention

Since Eq. 2 is only a slight modification of the previously

known equation, governing the attention and the hippo-

campus-dependent memory (Kryukov 2008, Eq. 2), all

properties of attention are applicable to the case of trace

conditioning. For example, the very unusual case of

simultaneous learning of both trace and delay conditioning

with identical ISIs but dissimilar stimuli (Cheng et al.

2008) is only a particular case of divided attention

(Kryukov 2008, p. 150). Another important property of

attention, its transient character, is found in experiments

with the theta-contingent trace conditioning, when learning

is unusually fast during transient computer-defined specific

time intervals of high attention and spontaneous theta

activity (Griffin et al. 2004).

But the most important role of attention in trace con-

ditioning is its mediation in cortical plasticity. Recently, a

new type of memory code was discovered in auditory,

visual and somatosensory cortexes during classical condi-

tioning. Receptive field (RF) plasticity develops in the

primary auditory cortex A1 when a tone CS becomes

associated with an appetitive or aversive US. This associ-

ation is accompanied by shifts of frequency tuning of

neurons toward or to the frequency of the CS. RF plasticity

has all of the major characteristics of behavioral associative

memory: it is highly specific, discriminative, rapidly

induced, consolidating, and can be retained indefinitely

(Weinberger 2003; Edeline 2003). A similar new coding

have been found within the primary visual cortex V1

(Miller et al. 2008), in the extended visual cortex (Bradley

et al. 2003), and in the somatosensory cortex (Galvez et al.

2006). In the latter case, it has also been demonstrated that

during trace EBC learning-related expansion of the cortical

barrel size occurs when rat whisker stimulation is utilized

as a CS and corneal air-puff as a US.

All these data support the general, modality-nonspecific,

theta-contingent learning rule stated in our model as the

Isolability Assumption. According to this assumption, theta

synchronization recruiting new oscillators in common pool

changes the natural frequencies of synchronized oscillators

towards that of the CS oscillators thus rapidly inducing

specific long-term memories. Admittedly, no direct evi-

dence has been found yet to this learning rule. Below,

however, we present a series of mutually consistent

attention-dependent effects which add up to count in favor

of the new learning mechanism referred to as the Isolability

Assumption, generalizing the RF cortical plasticity. First, it

is trace rather than delay fear conditioning that requires

attention in mice (Han et al. 2003) and rabbit EBC (Steele-

Russell et al. 2006). Second, attention is the key trigger that

initiates dynamic RF changes and attention-triggered

plasticity in A1 (Fritz et al. 2007). Third, attention is lar-

gely theta-contingent and relies on the hippocampal theta

rhythm. Moreover the theta rhythm is not only a correlate

of attention but is a most important part of the neuronal

mechanism of attention and memory (Vinogradova 2001;

Sauseng et al. 2008; Sirota et al. 2008). Fourth, theta-

contingent training, if it take place only during computer-

defined explicit presence of spontaneous theta activity, has

0.1

200

0.2
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p Peak Latency

on Onset Latency

dl Delay Time

d Duration

fp First Passage
off Offset Time

10050 150
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/M
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A B

Fig. 15 a Model prediction of CVs for each random time interval

shown in Fig. 13. The rising CV curve is the same as in the simulation

model (see Fig. 16b), the falling CV curve is proportional to 1=
ffiffiffiffiffi
M
p

,

the other curves are plotted according to Eq. 12. b Experimental CV

from Kehoe et al. (2010). Note the qualitative agreement of model-

predicted curves with experimental ones, except for the unusual

upward concavity of the Onset Latency curve, which is probably due

to differences in abscissas in a and b graphs
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a dramatic facilitatory effect on trace conditioning: the

animals given theta-contingent training learned several

times faster than those given non-theta-contingent training

(Griffin et al. 2004, Darling et al. 2011), with the number of

required trials reduced by a factor of up to 4 (Berry and

Hoffmann 2011; Griffin et al. 2004).

Phase transitions underlie a stimulus trace of long

duration

The most serious problem of modeling trace conditioning

is to show how neurons and synapses operating on a mil-

lisecond time scale can encode information about time

intervals on the order of seconds and minutes. Our model

solves this problem by using the physical phenomenon of

critical slowdown of neural kinetics near the point of phase

transition. The existence of phase transitions in physio-

logically plausible neural nets of integrate-and-fire neurons

has been proved and the lifetimes of long-lived states have

been estimated (Kryukov et al. 1990), with simulation

results (Kirillov et al. 1989; Kryukov et al. 1990; Borisyuk

and Cooke 2007) provided to confirm the theoretical pre-

dictions. One of the simulation results, which is particu-

larly relevant to the problem of long-duration traces, is as

follows (see Kryukov 2008, Fig. 2). A two-dimensional

computer simulation network of 30 9 30 integrate-and-fire

neurons with fixed nearest-neighbor synaptic connections

of identical strength (Basic Neuronal Model), starts with a

spot of units of zero background taken as the initial state,

and evolves as follows. The net activity dwindles to the

DOWN state if the synaptic strength is small, so that the

configuration consisting mainly of zeros gets stabilized. On

the contrary, if the synaptic strength is high enough, the

spot of units spreads out, to result in the UP state. A net-

work with critical parameter values, however, is capable of

remaining for a long time in a state close to the initial one,

manifesting itself in spot persistence.

This effect is used in formation of a neuronal oscillator

with the unusual property of very slow oscillations with a

high period’s stability. It is obtained by introducing into the

above Basic Neuronal Model a single inhibitory neuron

which receives positive connections of identical strength

from all neurons, and sends negative connections of iden-

tical strength to all other neurons. As a result, the network

becomes capable of producing oscillations of very long

periods, with small period’s variance; a wide range of

linear frequency regulation is provided by the varying

threshold of the excitatory neurons. Such oscillators,

locally connected to each other, can hold the spots of

activity for a very long time, even after quenching of

oscillations, which can explain the long-term memory

traces of previous conditioning. The mathematical theory

of such persistent states shows (Kryukov et al. 1990,

p. 250) that their lifetime depends essentially on the

number of elements in the spot, and can be very long in the

case of their optimal number, in a way similar to physical

metastability phenomena. Figure 16 shows the main char-

acteristics of such a new oscillator: its linearly regulated

frequency in a wide range and a comparatively low CV of

oscillation periods.

Unfortunately, this CV is not constant but has an

upwards tendency over long periods. We supposed that this

tendency, at least partly, was due to the small size of the

simulated network. In support of this supposition, we have

recently reexamined our earlier oscillator simulation results

(Kirillov et al. 1989) and have found that the supposition to

be correct. The simulation model is as follows. Tree

oscillatory submodules A, B, and C are connected con-

secutively so that submodule A can transmit excitation to

submodule B, B to C, and C to A, imitating a relay race-

reverberation in the limbic circle (Batuev 1993). The

excitation can only be transmitted when the total activity of

the module reaches its threshold level, i.e. when the cor-

responding inhibitory neuron fires. After the inhibitory
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neuron has fired, the activity of its module is set to be small

enough for the module to be inactive with a high proba-

bility until excitation from another module comes. There-

fore, submodules A, B and C work in succession and the

activity of the whole system is nearly periodic. Figure 17a,

b display the mean period M and the standard deviation

(SD) as a function of the noise amplitude r, representing an

input control signal. The upper curves in Fig. 17 corre-

spond to a square 10 9 10 submodule, the middle ones—to

a 9 9 9 submodule and the lower ones—to a 8 9 8 sub-

module. Using these simulation results, we have lately

calculated CV as a function of the mean period M for each

r value. The result is presented in Fig. 17c. It shows that

CV still has the upwards tendency, but this tendency is

significantly weaker for larger networks. To sum it up, a

chain of ‘‘metastable’’ oscillators has a fairly stable oscil-

lation period, its frequency is regulated linearly in a wide

range, and it can exhibit arbitrarily long oscillation periods

without changing the time constants of its elements.

Therefore, it can serve as a neural network model of a

limbic delay line with long delays. Thus, the solution to the

problem of long time intervals lies not in a single neuron,

even less so in its synapses, but in the collective effect

similar to the one known in statistical physics.

As for its neurobiological substrate, the CA1-based

information circle with parallel lamellae can operate as a

parallel delay line. This function is supported by many

studies on the single neuron level (Vinogradova 2001;

McEchron et al. 2003; Gilmartin and McEchron 2005), on

the neural population level (Chen et al. 2009; Batuev

1993), by the lesion studies (Lee and Kesner 2003; How-

land et al. 2008; Risterucci et al. 2003; Huerta et al. 2000;

Misane et al. 2005),by research in the brain imaging

(Knight et al. 2004), and in the event related potentials

(Onoda et al. 2003). In particular, a significant number of

neurons at single and population levels reveal upon

retrieval maximal firing on CS-alone timed to 10 and 20 s

after CS, respectively. These latencies were similar to the

duration of the trace interval used in previous trace con-

ditioning (McEchron et al. 2003; Chen et al. 2009), which

means that some sort of timing memory should exist in the

delay line. As for the longer latencies, the hippocampus

and the medial prefrontal cortex (mPFC), as critical

structures of the limbic circle, interact with each other to

ensure information processing in the time range from 10 s

up to 5 min (Lee and Kesner 2003) and even up to 30-min

(Floresco et al. 1997). Such long times periods are proba-

bly the result of many recurrent NMDAR-dependent

Fig. 17 Simulation results of

CA1-based circle. Graphs a and

b are adopted from Kirillov

et al. (1989). Graph c obtained

from graphs a and b by

computing of SD/M for each

fixed r
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transmissions in the mPFC-hippocampus loop (Gilmartin

and Helmstetter 2010) with basic recirculation period of

15–30 s (Misane et al. 2005; Huerta et al. 2000).

Discussion

The proposed unified model of trace conditioning is able to

answer the major questions that are currently under dis-

cussion concerning what the hippocampus does during trace

conditioning and how it does it. This model provides not

only a computational mechanism that links several existing

theories for the role of the hippocampus in trace condi-

tioning, such as gap bridging, overcoming of task difficulty,

and temporal processing; it also identifies the neurobio-

logical substrate that enable the hippocampus to perform

such a role. For example, the gap bridging is performed by

joint action of both CA1 and CA3 fields, the former acting

as part of the delay line and AND-gate for restoring CS–US

contiguity and the latter as a phase detector to bind the CS

and US representations in the theta synchronization process

as well as to provide US input to the AND-gate. Such a way

of restoring the contiguity is independent of which of the

two stimuli comes first, because Eq. 6 is symmetric with

respect to the CS and US action, although the time to reach

the asymptote depends strongly on their time order,

wherefore the backward trace conditioning is much slower

to learn than the usual forward one.11

Another important question is how the proposed unified

model could explain the key empirical finding that a

boundary between trace and delay conditioning has 40-fold

difference in the ISI for the fear and eyeblink conditioning

(Chowdhury et al. 2005). The proposed unified model give

an unexpected answer: there is no clear-cut ISI-defined

boundary between the two paradigms, since their respec-

tive task difficulties depend not only on the ISI value but

also on the whole set of conditioning parameters which for

the hippocampus to be involved must meet the strict

mathematical limitation expressed, e.g. by Eq. 10. On the

contrary, the ISI or trace interval values alone as indicators

of the hippocampal involvement may prove misleading

unless the CS duration and other parameters are given. For

example, Chowdhury et al. (2005) and Burman and Gew-

irtz (2007) for a similar task using the same (3-s) trace

interval, obtained seemingly contradictory results because

they used very different CS durations.

But how does the hippocampus ‘‘know’’ which task is

difficult enough to be involved in it or what information

must be processed and maintained for establishing a

hippocampus-dependent trace memory versus that for the

delay-type memory (Shors 2004)? The answer is unex-

pectedly simple: it (hippocampus) does not ‘‘know’’ that

and starts the same operations regardless of the paradigm,

but an easier delay conditioning task will produce earlier

habituation to stimuli and the hippocampus will switch off

at very early stages of delay conditioning. This explains

why delay conditioning is frequently considered as proce-

dural and hippocampus-independent memory, while trace

conditioning is treated as declarative, hippocampus-

dependent memory requiring conscious expectance

(awareness) for when US is going to occur. In fact, evidence

was found for a dissociation of CRs and US expectance

occurring regardless of whether there was a delay or trace

conditioning (Weidemann et al. 2011). Similarly, adult

neurogenesis in hippocampus FD can not be considered

longer as required for trace, but not delay, conditioning,

since mice, specifically, lacking adult neurogenesis showed

proper fear conditioning and many other hippocampus-

dependent functions (Jaholkowski et al. 2009).

The learning rule of the proposed unified model is non-

Hebbian because according to the Isolability Assumption, a

basic element of learning is not a synapse, nor even a whole

neuron, but a small oscillatory neural network capable of

changing its natural frequency as a result of collective

synchronization of isolabile oscillators during learning. The

new learning rule can explain many memory effects that are

problematic for Hebbian learning, such as reconsolidation,

extinction, backward conditioning, etc. A question arises as

to how this new learning rule can match the data on the

critical role of NMDARs in trace but not delay conditioning

(Seo et al. 2008; Gilmartin and Helmstetter 2010; Wanisch

et al. 2005). A key to this question can be found in the paper

of Claflin et al. (2005) which suggests that trace and delay

conditioning have different neural mechanisms for timing

but a common neural substrate for memory acquisition. We

assume that this different mechanism is NMDARs-depen-

dent transmission in the limbic delay line, which is con-

sistent with the available data (Huerta et al. 2000; Gilmartin

and Helmstetter 2010; Sakamoto et al. 2005; Gruart et al.

2006, Misane et al. 2005), while the common neural sub-

strate for trace and delay learning is mainly the sensory

cortical theta-dependent plasticity according to the Isol-

ability Assumption. Both the temporal and sensory mech-

anisms are interdependent in that the delay line needs

sensory synchronization of CS and US representations to

restore the CS–US contiguity in the CA1 AND-gate, while

cortical sensory memory depends on timing of US, in

accord with Miller et al. (2008), Galvez et al. (2006, 2007),

and Shuler and Bear (2006).

The critical role of NMDARs in trace conditioning does

not mean that a trace conditioning model should be based on

Hebbian learning for the only reason that NMDARs is also

11 Formally our model explains this asymmetry in learning by less

favorable initial state for Eq. 7 to reach the stationary state if US

comes before CS.
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known to mediate the Hebbian LTP. Firstly, trace condi-

tioning is a comparatively slow process requiring a large

number of paired CS–US presentations and therefore cannot

be directly related to the rapid LTP mechanism (Gruart et al.

2006). Secondly, there exists non-Hebbian LTP (Kato et al.

2009; Engert and Bonhoeffer 1997; Tsukamoto et al. 2003).

Thirdly, the Hebbian LTP is computationally insufficient

for simulation of many real conditioning features (Krasne

et al. 2011). Nevertheless, the memory mechanism in the

proposed unified model can be considered as a functional

analog or, rather, as generalization of the Hebbial LTP since

both mechanisms (a) have the property of associability of

weak input with delayed strong stimulus, (b) require syn-

chronous activation of two or more functional units, neu-

rons and neuronal oscillators, respectively, (c) depend upon

the synthesis of new proteins, and (d) are most effectively

induced by the theta frequency stimulation. However,

unlike Hebbian LTP, the learning mechanism in the pro-

posed unified model provides life-long bidirectional asso-

ciation of two (or more) stimuli regardless of the distance

between the location of their representations in the brain,

and, most importantly, have no problems with the infor-

mation shifting from the hippocampus to the cortex which

arise in the contemporary consolidation theory (Frey and

Morris 1997; Lesburguères et al. 2011).

The important question about the functions of different

brain structures, such amygdala and cerebellum, in trace

conditioning can not be adequately discussed here since

Eq. 1, which can describe their role, is reduced here to

single Eq. 2. Nevertheless, it is quite clear that the PLL

system, being a global synchronization system, makes less

than probable the existence of separate specialized memory

systems for different paradigms, and even less so for dif-

ferent types of trace conditioning. For example, fear and

EBC are universally considered as dependent on different

neural substrates downstream from the hippocampus

(amygdala and cerebellum, respectively), but according to

the model architecture shown in Fig. 7, they both take part

in fear and EBC as partner POs. This unusual prediction of

our model was recently confirmed by Timmann et al.

(2010) who showed that the cerebellum was involved in

motor, emotional and cognitive associative learning using

classical eyeblink and fear conditioning.

Conclusions

This short review of trace conditioning models shows that

there exists a computational potential for building a unified

model but simultaneously points to the serious difficulties

yet to be overcome. The first point leads to two objectives:

(a) to fill the time gap by means of a delay line appended

by phase transition to lengthen the delay duration and (b) to

use a new model architecture similar to that of PAM but

with a global pacemaker automatically regulated by the

septo-hippocampal loop to incorporate the attention in

conditioning. The second more difficult aspect of modeling

may be reduced to three major problems:

1. A way (if any) to be found to relate the unified model

to the prevailing memory systems theory which

requires different neuronal substrates for declarative,

procedural, and emotional memories and a different

role of the hippocampus therein.

2. The unified model should explain how neurons and

synapses operating on a millisecond time scale can

encode information about trace intervals on the order

of seconds and tens of seconds.

3. The learning algorithm of the unified model should be

able LTM of trace conditioning reconcile to the short

living hippocampal LTP.

By combining the desired features of existing models,

the proposed unified model of trace conditioning provides a

solution to the above three major problems and as a result

is capable of explaining most of the experimental effects in

the field. Therefore, this model is the best candidate for a

unified model of trace conditioning.
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