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Three-dimensional periodic complex
structures in soft matter: investigation
using scattering methods

Marianne Impéror-Clerc*

Laboratoire de Physique des Solides, Université Paris-Sud, Bat 510, Orsay, France

Three-dimensional periodic complex structures are encountered in various soft matter systems
such as liquid crystals, block-copolymer phases and the related nano-structured materials. Here,
we review several well-defined topologies: two-dimensional hexagonal phase, three-dimensional
packing of spheres, tetrahedral close packing (tcp) bi-continuous and tri-continuous cubic
phases. We illustrate how small-angle X-ray scattering experiments help us to investigate
these different structures and introduce the main available structural models based on both

direct and inverse methods.
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1. INTRODUCTION

Three-dimensional periodic complex fluids with different
architectures can form based on the nano-segregation
between two incompatible components at the molecular
level. Since the 1970s, many soft matter systems have
shown this phenomenon in liquid-crystalline (LC)
phases, including thermotropic molecules, surfactants,
block-copolymers and lipids. Nowadays, thanks to the
development over the last 15 years of the synthesis of
nano-structured materials using surfactants as structure-
directing agents, the same architectures are encountered
in hybrid materials and porous materials. In this area,
many application fields are in development such as
porous media in catalysis, nano-molds to synthesize nano-
particles of controlled size or biomaterials for drug delivery
or bone tissue regeneration. These structures have there-
fore generated considerable interest in the soft matter
and the materials fields.

Small-angle scattering (SAS) is a widespread tech-
nique to investigate these structures and it has been
essential to elucidate new phases. In contrast with
atomic or molecular crystals, the basic units are supra-
molecular aggregates of a few nanometres. We first
introduce here the basic methods and specificities with
SAS dealing with mesophases and nano-structured
materials. After that we give an overview of the available
structural models, with a special emphasis on the use
of intensity measurements. The different phases dis-
cussed in this paper are given in table 1: two-
dimensional hexagonal phase, three-dimensional packing
of spheres, tetrahedral close packing (tcp), bi-continuous
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and tri-continuous cubic phases. This list corresponds to
all the three-dimensional phases found experimentally
for which the driving force is the segregation between
two incompatible molecular blocks. The case of the
lamellar/smectic phase is not included here because
stacking of layers corresponds to a quasi-one dimensional
long-range order, and this implies a different structural
approach. In the same way, mesophases based on orien-
tational order (nematic phases, blue phases...) or a
combination of orientational and positional order (smec-
tic blue phases, smectic Q phases...) are out of the
scope of this paper, as we focus here on the case of struc-
tures exhibiting only long-range positional order.

2. MEASUREMENTS WITH SMALL-ANGLE
SCATTERING

SAS is a well-known method to investigate structural prop-
erties in many soft matter systems, using either X-rays
(SAXS) or neutrons (SANS) at length scales ranging
from 1 to 100 nm. Dealing with periodic structures, the
main feature in SAS is the presence of several Bragg
peaks, because of long-range order organization at the
nano-scale, as illustrated in figure 1. These Bragg peaks
do not come from the crystalline arrangements of atoms
as in usual crystallography, but reveal a periodicity inside
matter at a molecular level between supra-molecular enti-
ties. Usually, only a very small number (typically 10 of
them or less) of Bragg reflections are recorded. From
their positions in reciprocal space, one can deduce the
unit cell dimensions, its symmetry elements and the
space group. For each phase, the list of the observed reflec-
tions is given in table 1. The space-group identification step
is quite straightforward, but, when only a small number
of Bragg peaks are observed, the choice of space-group is
often based on additional hypothesis and when different
space-groups are possible, the space-group with the highest

This journal is © 2012 The Royal Society
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Table 1. List of the different three-dimensional phases discussed in this paper. For each of them, the space-group and the
sequence of the Bragg reflections are provided [1]. For each Bragg reflection, the Miller indices are given with the value of §°
and the multiplicity m inside brackets. Depending on the symmetry of the phase, notations are as follows: three-dimensional
cubic: hkl (s°> = h* + k* + 2, m); three-dimensional hexagonal: hkl (s* = (4/3)(h? + k* + hk) 4+(1/R*)I*>, m) with R = c/a~ (8/
3)'/2; two-dimensional hexagonal: hk (s> = h*+ k* 4+ hk, m); three-dimensional tetragonal: hkl (s* = h*+ k* + (1/R*)?, m)
with R = ¢/a. Miller indices are written in bold script when they correspond to a usually strong Bragg reflection.

type space-group

Bragg reflections

references

three-dimensional micellar Im3m (bee)
sphere packing

Fm3m ( fec)

110 (2, 12), 200 (4, 6), 211 (6, 24), 220 (8, 12), 510 (10,
24), 222 (12, 8), 521 (14, 48), 400 (16, 6) ...
111 (3, 8), 200 (4, 6), 220 (8, 12), 311 (11, 24), 222 (12,

8), 400 (16, 6), 851 (19, 24), 420 (20, 24), 422 (24, 24),
511 (27, 24)), 333 (27, 8), 440 (32, 12), ...

P63s/mme (hep)

100 (4/3, 6), 002 (4/ R 2), 101 (4/3+1/R% 12), 102 (4/ 2]

3+4/R? 12), 110 (4, 6), 103 (4/34+9/R* 12), 200 (16/
3,6), 112 (4+4/R* 12), 201 (16/3+1/R* 12) ...

three-dimensional micellar Pm3n
(tep) tetrahedral close
packing

Fd3m

110 (2, 12), 200 (4, 6), 210 (5, 24), 211 (6, 24), 220 (8, 3]
12), 310 (10, 24), 222 (12, 8), 320 (13, 24), 321 (14, 48),
400 (16, 6) ...

111 (3,8), 220 (8, 12), 311 (11, 24), 222 (12, 8), 400 (16,  [4]
6), 331 (19, 24), 422 (24, 24), 511 (27, 24), 333 (27, 8)

440 (32,12) ...

P4s/mnm

311 (104+1/R? 16), 002 (4/R% 2), 112 (2+4/R* 8), 410  [5,6]

(17, 8), 330 (18, 4), 202 (4+4/R* 8), 212 (5+4/R”,
16), 411 (174+1/R” 16), 331 (18+1/R" 8), 222 (8+4/
R* 8), 812 (10+4/R” 16) ...

two-dimensional hexagonal P6/mm

10 (1,6), 11 (3,6), 20 (4, 6), 21 (7, 12), 30 (9, 6), 22 (12,

6), 51 (13,12) ...

bi-continuous cubic Ia3d (G-surface)

211 (6, 24), 220 (8, 12), 321 (14, 48), 400 (16, 6), 420 [7]

(20, 24), 352 (22, 24), 422 (24, 24), 451 (26, 48), 521
(30, 48), 440 (32, 12) ...

Pn3m (D-surface)

110 (2,12), 111 (3, 8), 200 (4, 6), 211 (6, 24), 220 (8,

) 12), 221 (9, 24), 310 (10, 24), 311 (11, 24)....
Im3m (P-surface) 110 (2, 12), 200 (4, 6), 211 (6, 24), 220 (8, 12), 810 (10,
24), 222 (12, 8), 521 (14, 48), 400 (16, 6), ...

tri-continuous cubic Im3m

110 (2, 12), 200 (4, 6), 211 (6, 24), 220 (8, 12), 810 (10, 8]

24), 222 (12, 8), 821 (14, 48), 400 (16, 6), 411 (18, 24),
330 (18, 12), 420 (20, 24), 552 (22, 24), 422 (24, 24) ...

symmetry is chosen. For example, for cubic phases, one
always assumes that the point group is m3m, and this
corresponds to the presence of an inversion centre and mir-
rors perpendicular to the fourfold and twofold axis.
However, the knowledge of the space-group is not sufficient
for structure identification. For example, in table 1, three
different phases have the same space-group Im3m: the
bce phase, the P-surface bi-continuous cubic phase and
the tri-continuous cubic phase. In order to distinguish
between these three structures, one has to take into account
not only the positions but also the intensities of the Bragg
peaks. Therefore, this paper focuses on the elaboration of
structural models based on these intensities. Indeed,
because the dimensions of the basic structural units (the
supra-molecular entities) are comparable to the size of
the unit cell, their molecular form factor gives rise to
strong modulations of the Bragg peak intensities. First,
we discuss how to take Bragg peak intensity measurements
with SAS experiments. We detail how the usual expressions
of the scattered intensity from standard crystallogra-
phy using discrete atomic coordinates are modified in
the case of SAS. In that case, we are able to derive the
expressions of the scattered intensity in absolute scale,
including all the pre-factors. As SAXS is much more
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suitable than SANS to measure Bragg peaks with a good
resolution, we will give the intensity expressions only in
the case of X-rays.

We start from the general expression of the scattered
intensity for SAXS in absolute scale’ defined as

2
I(g) =3~ (A9
ot (2.1)
with A(q) = J p(r)e 4 dyr.
Vtot

where r, = 2.81794 x 10~ m is the classical radius of
the electron, Vi is the sample volume illuminated by
the X-ray beam and q is the scattering vector in the
reciprocal-space. The modulus of the scattering vector
is ¢ = 4msin(6)/A, where 26 is the scattering angle and
A is the wavelength of X-rays. In an SAXS

The intensity I(q) in absolute scale is in units of the inverse of a length
[Lil} usually expressed in ecm™! or mm~'. Experimentally, intensity
measurements in absolute scale are made using a calibration sample.
For SAXS, one can use the constant intensity contribution of water
equal to 0.016 cm™'. For SANS, the constant incoherent scattering
signal from a 1 mm thick water (H,O) sample is a widespread standard.
In addition, corrections by the transmission of the sample and by the
background contribution have to be done using standard procedures.
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Figure 1. Typical SAXS pattern of a bi-continuous Ia3d phase [9]: () single-crystal pattern along a fourfold axis, (b) powder
pattern and (c) the radially averaged powder intensity. (d) Relationships in reciprocal space between the integrated intensity

of an individual Bragg peak ij‘rfgle(qhkl) and the integrated powder intensity I™

(gn)- The radially averaged intensity for a

powder

powder sample Ioyaer(g) takes into account the multiplicity myy of the hkl reflection and the isotropic average over the

orientation in space.

measurement, the fundamental quantity derived is the
Fourier transform A(q) of the electron density p(r),
the number of electrons per unit volume. Using the elec-
tron density, matter is described at the nano-scale as a
continuous medium, and the scattered intensity reflects
the spatial repartition of high- and low-electron density
regions. Note that one can either define for SAXS a
scattering length density (SLD) pgrp(r) = r.p(r), simi-
lar to the coherent SLD in neutron scattering (SANS),
which is associated with the nuclei of the atoms. In
the general case, an ensemble average (brackets nota-
tion (|A(q)|*)) over different configurations of the
system upon time and disorder factors has to be taken
into account.

Only relative variations of the electron density p(7)
with respect to a constant electron density level contribute
to the measured intensity. This can be shown writing
p(r) = po + Ap(r), where py is a constant, such as the
solvent electron density for a colloidal or micellar solution,
or the average electron density for a periodic structure.

p(r)e 4"dr
Viot

= Ap(r)e ' 17dr + p, J
Vto(

Ag) =

e '"dr
Viot

= Ap(r)e 9 dr.
Vto(

(2.2)

Because the total sample volume Vi is always
assumed to be macroscopic, the second integral over
Vies can be neglected in A(q), as it contributes only
for very small scattering vector moduli that are not
accessible experimentally.
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For SAS, the scattering angles are small (less than
typically 5°) and cosf = 1. As in standard crystallogra-
phy, intensity is recorded in reciprocal space only for
scattering vectors g located on the Ewald sphere. The
intersection with the Ewald sphere gives rise to a geo-
metrical correction (Lorentz factor) in the measured
intensities that depends on the scattering angle. How-
ever, because cosf=1, the Lorentz factor can be
neglected in the intensity expressions. Similarly, the
polarization factor is equal to one for SAS.

For a three-dimensional periodic structure, the
electron density p(r) is a three-dimensional periodic func-
tion, and the amplitude can be factorized as follows:

Alq) = (Jvc p(r)eiq-rdr) Zle:eiq.R,
= F(q) XN: e

v

1
No—1 Ny—1
— F(q)( e—irnq-a) (Z e—inq-b)
m=1 n=1
N1
X e P,
< p=1 )

Fla) = |

(2.3)
with

p(r)e 4 dr,
Ve

(2.4)

where V( is the volume of the unit cell defined by the
basis vectors (a,b,c), N= N,N,N, is the total number
of unit cells and { R;} are the lattice vectors R; = ma +



592  Three-dimensional periodic structures in soft matter M. Impéror-Clerc

nb + pc. Like in crystallography, we can introduce the
Laue function

L@,N):(s:igg)f in A(q):

4@ = PP ML L0 L (15 ).

(2.5)

For a perfectly ordered structure, all unit cells are
identical and the electron density corresponds to the
average structure inside the unit cell (|F(q)]>=
{|F(g)|?)). The intensity can be written as

2 N N
Te —ig-(R;—

I(g) = g |F(@)f YD e mom)
tot =1 j=1

2
_ Te

‘/tot

where S(q) is the structure factor associated with the
three-dimensional lattice:

N|F(q)"S(q), (2.6)

:l iy —ig(Ri—R;)
S(@ =5 D ¢
=1 j=1
1 /q-a qg-b qg-c
_NL<2’N“)L( 2 ’Nb>L<2’Nc)

For a large number of unit cells (macroscopic crys-
tal), the three integers N,, N, and N, are large, and
the intensity is concentrated inside Bragg peaks located
at the nodes of the reciprocal lattice: gy = 2m(hd* +
kb* + 1¢*). It is only in the ideal case of an infinite crys-
tal that the Bragg peaks reduce to points in the
reciprocal space. For a crystal of finite size, the Bragg
peaks are extended to a small volume in the reciprocal
space that is linked to the shape of the crystal as
described by the Laue functions [10]. However, with a
standard resolution of an SAS experiment, this effect
may be detectable only for very small crystals (typically
less than 0.1-0.3 wm). The most usual situation is that
the crystals are large enough so that the measured
extension of the Bragg peaks is fixed by the experimental
resolution and not by the size of the crystals. Then, the
relevant quantity to introduce is the integrated intensity
of a Bragg peak in reciprocal space. Its expression can be
obtained by integrating the expression with the Laue
functions for each Bragg peak within a small reciprocal
volume V};, around it. For a single crystal, this integrated

intensity I () is well approximated by

in T.Z 2
sintglc(qhkl) = J |A(qu + q)"dq

Vtot
Vin
N 2(277)3
= —Tr, Fry 2.8
e Bl (28)
with
Fuyy = J p(r)e 9wy, (2.9)
Vo
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For a fixed position of a single crystal, the intersection
with the Ewald sphere gives rise to asymmetric patterns
on a two-dimensional detector. This is because, even if
the scattering angles are small, Bragg peaks at g, and
— @ are not simultaneously in reflection position on
the Ewald sphere. Then, for a single crystal, one needs
to rotate the sample in order to collect the integrated
intensity of the Bragg peaks. For example, in figure 1a,
the two-dimensional scattering pattern was recorded
when applying to the sample oscillations of a few degrees
in amplitude around the vertical axis, to allow the differ-
ent Bragg peaks to cross the Ewald sphere. The rotation
of the sample has then to be taken into account for
intensity measurements.”

Reliable measurements of the integrated intensity
are easier to obtain with a sample in a powder confi-
guration rather than with a single crystal. Typical
experimental data for both situations are given in
figure 1 for comparison. A powder sample is composed
of a large number of independent crystals (all of macro-
scopic size) exhibiting all possible orientations in space
with the same probability. This sample is formally
described by the assembly of M identical crystals of
volume Vi../M, containing N/M unit cells. Note that
the contribution of a powder of M crystals of N/M
unit cells is equal to the contribution of only one
single crystal of size N averaged over all orientation in
space. The integration is performed in reciprocal space
on a sphere of radius ¢, as illustrated in figure 1 and
the integrated powder intensity is

: M N 1 (2m)?
Ilnt — svL2 ] F 2
powder (@it Vol M T Mt | Fpia 7
N 27
2 | Foa (2.10)

= r—
2
Viot € hi Ve

where my,,; is the multiplicity of the hkl Bragg reflection.

Again, the relevant quantity is Ili)‘(ﬁg,der(CIhkz), the inte-
grated intensity of a Bragg peak on the radially
averaged intensity Iowder(¢). It may be useful to intro-
duce peak-shaped function L(¢qu) to model

continuously Iowaer(q) as follows:

N 272
2 2—VZ st Fra” L(q, quaa),

Ipowder(q) =T
Vtot ¢ q ¢ hkl

(2.11)

where the L(q,qny) function is normalized as follows:
fq L(q, gnw)dg = 1.
: -2
For a powder sample, the two corrections are the ¢
dependence of the intensity with respect to the
scattering vector and the multiplicity term.

3. DIRECT AND INVERSE METHODS

In §2, we have shown how to deduce the values of the
Fourier coefficients Fj;; of the electron density p(r)
from experimental measurements of the Bragg peak

For an oscillating single crystal (amplitude Aa along a rotation axis
7'7), the integrated intensity measured for an individual Bragg peak
quiy is divided by Aa|ghi®|, where |ghi?| is the component of g
perpendicular to Z’Z. Note that Bragg peaks located along the

rotation axis Z'Z are not measured.
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intensities. Once the Fj;; values are known, there are
two ways to obtain a structural model in real-space,
the so-called direct and inverse methods. With the
direct method approach, the structural model is built
directly in real-space, and the Fourier coefficients Fy,
are calculated from the model and compared with
the experimental values. The different parameters of
the model (size, contrast, disorder terms...) are
adjusted by a least-squared minimization procedure to
fit the experimental intensity. The main advantages
of this method are: (i) to provide quantitative values
of the parameters to describe the structural model,
(ii) to be able to model the whole intensity curve (not
only the Bragg peaks integrated intensities), and
(iii) to introduce disorder terms in the description of
the structure. The main drawbacks of a direct method
are that a structural model has to be built already as
a starting point, and that it may happen that several
different models can fit as well the same experimental
data. Inverse methods consist of the reconstruction of
the electron density function, using an inverse Fourier
transform from reciprocal space to real space. Its main
advantage is to provide the global features of the struc-
ture without assuming initially any models. Dealing
with periodic structures, the key point is to solve the
‘phases problem’, which may be complicated for a
large number of Bragg peaks. As the reconstruction is
based only on the integrated intensities of the Bragg
peaks, it provides a periodic average structure but
includes no disorder terms. The electron density maps
are obtained with a finite spatial resolution, fixed by
the accessible g-range and it is then more difficult to
derive quantitatively the sizes of the structural units
when compared with the direct methods. Before
giving several examples of structure determination
using both methods, we will describe the reconstruction
of the electron density (§3.1) and the introduction of
disorder contributions (§3.2).

3.1. Reconstruction of the electron density

The reconstruction of the electron density is obtained by
an inverse Fourier transform from reciprocal space to the
direct space, using the Fj,; values (equation (2.9)):

1 _— 1 . ,
P("') _ 7 E Fhkleﬁqw r_ 7 E Fhkle+127r(hz+ky+lz).
¢ hkl € hkl

(3.1)

Experimentally, only |Fj> is measured for hkl
values different from 000. The fact that only the
modulus of a Fjy,; coefficient is measured is known at
the ‘phases problem’ in crystallography and the Fj,
coefficients are a priori complex numbers of unknown

phase @p:

1 .
r) = Fretidmm
P( ) V. hEkl hkl

1 . .
_ 7 § : |Fhkl|e+1cphk,e+12w(hz+ky+lz)'
C hkl

(3.2)

For the structures we are interested in, it happens
that they all contain an inversion centre and the
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space-group is centrosymmetric. If the origin of real
space is taken at this inversion centre, the Fj,,; coeffi-
cients are real and a phase ¢ can take only two
discrete values, ¢, =0 or +

_ Fooo
1
+— Z | Fhit| cos(epr) cos(2m(he + ky + 12)).
Ve wiZ000

(3.3)

The ‘phases problem’ reduces to a sign determination
(cos(@nr) = + 1) and it is very often possible to solve it.
As the number of measured Bragg peaks is rather low,
the usual method is to generate the electron density
maps for all the different sign combinations. Among
them, the best combination of signs is selected, which
is in agreement with the independent knowledge of
the structure in terms of the size of the building-
blocks and the repartition of high and electron density
regions. The complete sums of cosine terms for all
space-groups are tabulated in the International Tables
for Crystallography [1], more details are provided in®
and an example of reconstruction for the Ia3d space
group (electronic supplementary material, figure S2) is
discussed in §6.

The Fygo coefficient cannot be measured because the
scattering vector g = 0 is not experimentally accessible.
Consequently, as already mentioned (§2 equation
(2.2)), only the relative variations of the electron den-
sity with respect to a constant electron density level
can be determined. In practice, the value of the Fq
coefficient is obtained from the knowledge of the mol-
ecular composition of the sample. Either the average
value (p) within the unit cell is taken, or the average
variation (Ap) referring to a constant density level p,
(for instance the solvent electron density for a colloidal
suspension). In this latter case, the Fj,; coefficients are
relative to the Fourier transform of Ap(r).

p(r) =<(p)

1
+— Z | Fra| cos(@p) cos(2m(he + ky + 12))

VC hkl#000

(3.4)

or

1
p(r) = py +<Ap) + A
€ RkI£000

| | cos( @) cos(2a(ha + ky + 12)).

In the case of a two-dimensional hexagonal phase, the
lattice is two-dimensional and equation (5.3) has to be
used instead.

3Note that the sum is performed over all the permutations and signs
for each hkl set (containing m terms, where m is the multiplicity)
and that the Fypy, Finy F—pi - .. are not always equal and may be
related by an extra sign depending on the space group and its
symmetry elements. For example, because of the sliding mirrors,
Fy= (—1)""**" F, for the space group Pm3n, and F_,u=
_1\htk (1 \(h+k+1)/2 51

(=1)""" Fyy and Fiy= (—1) Fy for the space group la3 d.
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3.2. Disorder contribution

It is possible to introduce some disorder contribution in a
structural model based on direct methods. The nature of
the disorder can be a displacement disorder over the lat-
tice nodes (modelled by a Debye—Waller contribution),
or a substitution disorder (distribution in size or in
nature of some supra-molecular units). Another origin
for disorder can be the conformation of the supra-mol-
ecular aggregates themselves, like for micelles of bloc-
copolymers with long polymeric chains, that do not exhi-
bit a spherical symmetry [11]. In this section, we will
introduce only basic general equations, to show that all
types of disorder affect scattering in the same way.
When disorder is included, the unit cells are not identi-
cal, and a more general expression than in equation
(2.6) applies, where one assumes that the structure is
on average a three-dimensional periodic arrangement:

TQ N N ) .
I(q) = ¢ <§ Fi(q)F; (gq)e R-7>>, (3.5)
b \=1 j=1

where Fi(q) = [}, piy(r)e 17 dr refers to the content of
the unit cell located at position R,. If one can assume
that the disorder terms are not spatially correlated
between two different unit cells, one can use the decou-
pling approximation that had been introduced in
various contexts [10,12—14]

2

e
V:mt

N N
S (F@F (@) TR R) - (3.6)

=1 j=1

R

I(q)

and the intensity reads:

2

1(q) = 3= NKF(@)*S(@) + (I F(@)) ~ KF(@)l’]
= 1= N(F(@PIB@S(a) + 1 Bla)
with
_KF(a)f
O = rRy G0

On this expression, one recovers the main important gen-
eral result that the influence of disorder is twofold [10]. It
gives rise to diffuse scattering in between the Bragg
peaks (term (1—B(q))) and accordingly the intensities
of the Bragg peaks are decreased by a factor B(q).

In the case of a displacement disorder over the lattice
nodes, the factor B(q) is decreasing following an expo-
nential law known as the Debye-Waller term:

Blq) = e W7,

where <u3> is the mean square amplitude of the displace-
ment in the g vector direction. This expression can be
simplified by assuming that the distribution is isotro-
pic [10]. Then B(q) = e (@)/3) for a three-dimensional
lattice, and B(q) = e~ (7“*/2) for a two-dimensional lat-
tice (like a two-dimensional hexagonal phase), where (u?)
is the isotropic mean square amplitude of the displace-
ment. Note that for bi-continuous cubic phases,
expressions including the g vector direction dependence

(3.8)
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Figure 2. Three-dimensional packing of spheres: bee (Im3m),
fee (Fm3m) and hep (P6g/mmc). All sites are identical in
these structures.

are available [15]. The values of (u*) have to be small
and more precisely, by analogy with solid state theory,
one can apply the Lindemann criterion for the melting
of a solid, for which melting arises when (u?) /d=
0.1-0.2, where d is the typical interatomic distance
[16]. For a mesophase, d can be replaced by the typical
distance between particles.

4. SPHERES PACKING AND TCP PACKING

Several mesophases consist of a three-dimensional pack-
ing of spherical-like particles. These particles display
various natures such as LC dendrimers, micelles of sur-
factant molecules, micelles of block-copolymers and
solid nanoparticles with organic chains grafted on
their surface. The different, observed three-dimensional
packings can be classified into two categories: spherical
packing (bce, fec and hep; figure 2 and table 1) and tep
(figure 3 and table 1). In the first category, all the par-
ticles are identical and have a spherical symmetry. In
contrast, in a tcp packing, the particles are not all iden-
tical in the packing. They are located on lattice points
with different symmetry (Z=12, 14, 15, 16 nearest
neighbours; figure 3) and are able to deform into spher-
oidal shapes because of their soft nature. Very often,
one particular system can exhibit several of these pack-
ings upon concentration or temperature—for example,
non-ionic surfactants in water [2,17,18] or dendrimers
[3]. The global understanding of this behaviour is
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Figure 3. Tcp packing. (a) local tetrahedral close packing
configuration. (b) the different sites Z=12 (blue), Z= 14
(red), Z=15 (green) and Z=16 (yellow). (c¢) The three
phases observed experimentally in soft matter systems:
Pm3n, Fd3m and P/,/mnm.

based on the interaction potential between the particles
and on the crystallization phenomena. The occurrence
of fcc or hep packing is related to the crystallization
of spheres interacting via a hard-sphere potential and
to the famous Kepler’s conjecture in 1611. As recalled
in figure 2, both structures consist of the dense packing
of spheres with 12 nearest neighbours (Z=12), and
they have the same compacity of 0.74, but differ only
in the packing sequence, ABC for fcc and AB for hep.
The Kepler’s conjecture claims that both the fcc and
hep packings exhibit the largest possible compacity for
the packing of identical spheres in three dimensions
[19]. Surprisingly, a first proof of this conjecture has
been given only very recently by the mathematician
Thomas C. Hales, and is still nowadays under verifica-
tion using extensive numerical calculations [20].
Recent numerical simulations using a hard-sphere
potential find a very small entropy difference (107 kg
per sphere) in favour of the fcc packing versus the hep
one [21,22]. However, there are several observations of
the hep packing in soft matter systems [2,23,24] and
in mesoporous materials [25], indicating that it could
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also be thermodynamically stable. As the bce packing
exhibit a smaller compacity of 0.68 (instead 0.74 for
fee/hep), its occurrence may at first sight be surprising.
In fact, this packing occurs in the presence of a more
long-range potential in addition to the hard-sphere
potential [26—28]. A physical interpretation has been
proposed by Kamien & Ziherl [29] in the case of dendri-
mers in terms of an additional repulsive potential driven
by the conformational entropy of the chains located at
the surface of the particles. This interpretation is, in
fact, quite general and can be extended for many kind
of particles where long enough chains are present on
their surface. For example, for block-copolymer micelles
with a shell made of EO chains, fcc packing is formed
for short EO chains and bcc for longer ones [27].

For SAS, the fee, hep and bee packings give rise to a
simple expression for the Fj;; coefficients (equation
(2.9)), assuming that all particles are identical and
have a spherical symmetry [14]:

Fu = ApFs(qui) fun,

where Fg(q) is the form factor of a particle with a spherical
symmetry and any density profile (sphere, core/shell . .. )

(4.1)

and Ap is a contrast term. fr; = > e 9™ is the struc-
n

ture factor inside the unit cell that depends on the
lattice.* For sphere packing, both direct and inverse
methods can be easily applied, and models with dis-
order terms are available [14]. In the case of hep, a
comparison of both methods confirmed the spherical
shape of the micelles in this packing [23].

The tcp packings constitute a fascinating family of
structures. In mesophases, thanks essentially to SAS
experiments combined with reconstruction methods,
three of them have been discovered so far (figure 3): the
Pm3n, Fd3m [30] and, more recently, the P/,/mnm
phase [5,6,31]. Using purely geometrical arguments and
the concept of geometrical frustration, Charvolin &
Sadoc [32] have shown that tcp packings in mesophases
are strongly related not only to the Franck and Kasper
phases of metals and metallic alloys, but also to the struc-
ture of soap froths. It is remarkable that the Pm3n phase
has the same structure as one crystalline phase tungsten
and the P4/mnm phase as uranium [33]. In a geometri-
cal approach, a tcp packing results from the compromise
between a global constrain to achieve a periodic structure
and a local minimum, the tetrahedral packing of four par-
ticles, which corresponds locally to a maximum density
for spheres packing (figure 3). This compromise arises
because it is not possible to form a periodic packing
with regular tetrahedrons in three dimensions [34].

Then the particles are arranged locally in a tetra-
hedral configuration, but are not identical in the sense
that they occupy sites with different symmetries, cor-
responding to different numbers of nearest neighbours
(Z=12,14,15,16...) (figure 3). The related geometri-
cal problem with the domain of soap froths, which was
brought up by Kelvin (1887), is to find the periodic

soap froth with cells of identical volume that minimizes
=14 (=) for a bec lattice, ifhkl: 1+ (=" 4+ (—1)F*!

_‘.1)l+h for a fCC lattice and ﬁl,kl: 672”7 h+ 2k)/367m-l/2+6721#( h +k)/3
e /2 for an hep lattice [2]. Values are given for example in Forster
et al. [14].
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the total area of the cells. Indeed, the minimization of
the area corresponds locally to the Plateau’s laws
(1873) for soap films with a tetrahedral symmetry of
the junctions of the films as depicted in figure 3. The
minimization of this area is equivalent to the maximiza-
tion of the density for spheres packing. Weaire &
Phelan [35] have shown that the Pm3n phase (with
two types of cells) is a better solution to the Kelvin’s
problem than the packing of Kelvin’s polyhedra [36].
For mesophases, Ziherl & Kamien [29,37] gave a phys-
ical interpretation of the minimisation of the total
area in the Pm3n phase by the maximization of the
entropy of the chains located at the surface of the
supra-molecular units. They were also able to compare
the relative stability of the bee, fcc and Pm3dn phases,
using the combination of an hard-sphere potential
with a repulsive soft shoulder potential [37].

In the case of soft deformable particles, their shape
and size happen to modify slightly from a pure spherical
symmetry depending on the site symmetry (Z= 12, 14,
15,16 ...). In figure 3, the sites are depicted with differ-
ent colours but spherical balls are used to simplify the
representation. Inverse methods with SAS allow us to
directly visualize differences in the shape and sizes
depending on the symmetry of the site [3,30]. These
methods are more suited to describe tcp packings than
direct methods, which are in fact less used in this situ-
ation. This is because the form factor of each particle in
the unit cell is different depending on its position, and
cannot be factorized like in the case of spheres packing
as shown in equation (4.1). For the Fd3m structure,
there is a significant difference in the size of the two
types of sites (Z=12 and Z=16) that are both
almost spherical [4,30]. In the Pm3n structure (coexis-
tence of Z=12 and Z=14), the Z= 14 sites adopt
slightly elongated shapes as discussed in detail in
Balagurusamy et al. [3]. In porous materials with a Pm
3n structure, the main cavities have two different sizes
[38]. Moreover, additionnal pores may form between
adjacent cavities and the whole structure can be
described based on a new Infinite Periodic Minimal Sur-
face (IPMS) by applying again a global criterium of
aera minimization [39]. The P4,/mnm structure con-
tains 30 particles per unit cell (Z=12, Z=14 and
Z=15), and the reconstructions evidence spheroidal
shapes for all of them, with small deformations from
spherical symmetry [5,6]. Note that in the latter case,
a characteristic feature is that the strongest Bragg
reflections (table 1) have quite high Miller indices
(410, 350, 202, 212 ...) because of the large number
(30) of particles in the unit cell. From the analogy
with the Franck and Kasper phases, other tcp phases
are still to be discovered in soft matter systems and
mesoporous materials [40]. In this sense, there is also
a structural link between tcp phases and the quasi-
crystalline phases recently discovered in thermotropic
dendrimers [5,33].

5. TWO-DIMENSIONAL
HEXAGONAL PHASE

Two-dimensional hexagonal phases are very common in
soft matter systems and nano-structured materials. For
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porous nano-structured materials, it has been shown
that Bragg peaks intensity measurements with SAS
are very useful to determine their pore size [41]. For
this phase, the expressions of the intensity given in §2
have to be slightly modified because the lattice has
two dimensions instead of three. In the following,
using a simple model, we derive these expressions by
assuming that the two-dimensional order is a true
long-range order, and not a quasi-two-dimensional
order like in the more sophisticated para-crystal
model [14].

A two-dimensional hexagonal phase consists of the
two-dimensional packing of very long particles having a
cylindrical symmetry. A two-dimensional hexagonal lat-
tice (electronic supplementary material, figure S1) and
the macroscopic length L along the perpendicular direc-
tion 7z to the lattice describe this structure. The
electron density p(r) is a two-dimensional periodic func-
tion in the hexagonal plane and is constant along 2z
Equation (2.5), given previously in the three-dimensional
case, changes in the following way:

. 2
|M®FZEG£&E£@>H%V

(QZL/2)
X L(qp2 a7N{l)L<qp2 aNb>a

where Vo= Sc L is the unit cell volume, S¢ is the area of
the two-dimensional unit cell defined by the basis vectors
(a,b), N= N,N, is the total number of two-dimensional
unit cells and r= rp+ ze, q= qp+ q.€,,

(5.1)

()47,
Sc

me=j (5.2)

Note that with this definition, F(gp) has the
dimension [L™'] but p(r) is still defined as the three-
dimensional electron density ([L™°]). The expression
for the electron density reconstruction then reads (see
equation (3.4))

1 Dl btk
p(r) = p, +{(Ap) + — Z Fhke+1277(hw+ky) (53)
C hk#00
with
Fu= | plre i, (5.4)
Sc

The expressions for the intensity are derived essen-
tially in the same way as in the three-dimensional case
(equation (2.8); figure 1). The integrated intensity
I (gw) at a Bragg peak gy = 2m(ha” + kb*) is
performed in a three-dimensional reciprocal volume
Vi (@= q.a* + ¢,b* + ¢.e,). As the length L is large,
the extension of a Bragg peak along 2z is small. The
integration gives

in re2 2
Bialaw) = 7= | 1A(au+ a)lda
tor J v,

N 2 2 3 L
— L 2IF et 2.
th%\ hi|” (277) S
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For a powder sample, equations (2.10) and (2.11))
becomes

N 277 9 L
Ilnt . 2 F - 56
powder (@) = o =5 k| o] S (5.6)
and
N 27 L )
Lorwaer (9) =V SC%;thFhH L(q, gu), (5.7)

where my,;, is the multiplicity of the hk Bragg reflection.

Like in the three-dimensional case, a ¢~ > dependence
applies for a powder sample. This behaviour can be
derived in a slightly different way [14,42—44] as the pro-
duct of a ¢ ' contribution in the hexagonal plane
(orientation average of the two-dimensional lattice)
and a ¢~ dependence of a form factor along 2 z. Assum-
ing that the particles packed on the two-dimensional
lattice have a cylindrical symmetry, one can introduce
their cross section form factor Fcg(g), in a similar way
as for sphere packing (equation (4.1)):

_ig.. 2J1(qR
Flap)=8p| e omar,~ap(mr) 2280 _spreso
disk qR
and
N 2772 L
Ipowder(q) =35 re Ap |FCS )|2 Z mhk’L(Qa qhk)'
Vtot S Tk

(5.8)

Similar to spheres packing, both direct and inverse
methods are available for two-dimensional hexagonal
phases. Contribution of disorder [14,42,43] can also be
included as introduced in §3.2. In figure 4, a comparison
of both methods is given in the case of the formation
of a two-dimensional hexagonal hybrid material
(SBA-15). On the basis of the Bragg peaks evolution
upon time (figure 4a), the variations of the electron
density are modelled either by a core/shell form factor
[43,45] or by performing a two-dimensional electron
density reconstruction [46]. The time-resolved forma-
tion of a dense silica wall in-between the cylindrical
micelles is evidenced with both methods.

6. BI-CONTINUOUS AND TRI-
CONTINUOUS PHASES

In bi-continuous (figure 5) and tri-continuous cubic
(figure 6) phases, the structural units are not individual
particles (such as spheres or cylindrical particles) but
continuous three-dimensional periodic interfaces and
their description require the use of the crystallography
of surfaces [34]. To our knowledge, only three different
bi-continuous phases has been observed. Their space-
groups are (Ia3d, Pn3m, Im3m; table 1), corresponding
respectively to the three Infinite Periodic Minimal
Surfaces (IPMS) G, D and P surfaces. Only one tri-
continuous phase [8] of space-group Im3m has been
discovered. We can underline here again that the knowl-
edge of the space-group is not sufficient for the structure
identification, as the space-group Im3m corresponds to
three different mesophases (table 1): bee sphere packing,
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Figure 4. Time-resolved formation of a two-dimensional
hexagonal nano-structured silica material (SBA-15). (a) Evol-
ution of the (10), (11), (20) and (21) Bragg peaks (powder
pattern). (b) Density profile obtained by modeling these exper-
imental data using a cylindrical core/shell model (higher
electron density in black) [45]. (¢) Two-dimensional electron den-
sity reconstruction (higher electron density in white) from
reference [46]. The formation upon time of a dense silica wall in-
between the cylindrical micelles is evidenced with both methods.

P-surface bi-continuous cubic phase and the tri-continu-
ous cubic phase. In the latter case, a characteristic
feature is that the strongest Bragg reflections are the
821 and 400, indicating that many different structural
units are present in the unit cell.

6.1. Bi-continuous Ia3d

Since the pioneer work by Luzzati & Spegt [7] who dis-
covered this type of structure in the case of the Ia3d
space-group about 40 years ago, inverse as well as
direct methods have been developed based on the use
of the Bragg peaks intensities. We will focus here only
on this space-group although similar expressions for
SAS can be derived for the two others bi-continuous
phases (D and P surfaces).

The main feature in the case of the Ia3d space-group is
that it gives rise to two strong Bragg reflections, the 211
and the 220 (figure 1 and table 1). Performing an electron
density reconstruction based only on the two terms Fy,;
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Figure 5. The cubic unit cell for the Ia3d bi-continuous phase for the rods model and the G-surface model. Using the G-surface
model, different methods can be used [14] to take into account the thickness of the film L (a) a linear profile along the normal at
each point of the surface [47] (b) a convolution by an infinitely thin shell [48] (¢) a lattice method with the calculation of the
distance to the G-surface [49] (d) the iso-density surfaces using the nodal surfaces approximation [50].

and Fag reproduces well the bi-continuous structure, as
shown in electronic supplementary material, figure S2.
This is a good illustration of the efficiency of inverse
methods to elucidate new structures. Further refinement
of the structure can be done by including the other
measured Bragg reflections. To solve the phase problem,
comparison with electron microscopy images were used
for both lipids phases [30] and mesoporous materials [51,52].

The alternative way is to model completely the
Bragg intensities using the structure factor of the G-sur-
face. Another possibilty is to calculate the structure
factor of the two networks (rods model in figure 5),
adding a cylindrical molecular form factor on each rod
[7], but this method is less satisfying because it involves
one more adjustable parameter, €, a cut-off on the rods
length (figure 5). Using the G-surface model, the struc-
ture is described essentially by a film of thickness L and
an electron density p;, which is centred on the G-surface
and separates the two subspaces of density p, with an
associated contrast Ap=|p;—po|. Starting from
equation (2.9), we get

Fry = J p(r)e 4w dr = J Ape 9 Tdr  (6.1)
Ve Viiim
and, in the limit of an infinitely thin film:
Fy = ApLJ e Amlhathytle) g g — ApLanh(,’;l (6.2)
Ac
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with

1

thk:l — _J e—in(hx-&-ky-&-lz)dS. (6.3)
G

a2A

The f§, coefficients are the structure factors of the
G-surface and Ag = 3.091a” is the area of the G-surface
in the cubic unit cell. We calculated the G-surface struc-
ture factors £, using the exact G-surface IPMS [48]
and their values are given in electronic supplementary
material, table S1 along with more recent calculations
[15,47]. Using the approximation of the G-surface
by Von Schnering & Nesper [53] by a nodal surface
of equation

sin(27rz) cos(2my) + sin(2my) cos(27z)
+ sin(27z) cos(27z) = 0, (6.4)
the calculation of the structure factors is much sim-
plified, and the values (electronic supplementary
material, table S1) are close enough to those of the
G-surface to be used instead.

To take into account the thickness of the film, L,
we introduced a simple method where the points on
the G-surface are convoluted in real space by an infi-
nitely thin spherical shell of radius R=L/2 (figure 5)
[48]. The main advantage of this method is that the
form factor of this spherical shell (47R?(sin(qR)/qR))
appears simply as a product in the expression of Fjy
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Figure 6. The Im3m tri-continuous cubic phase [§].
(a) Powder pattern. (b) Network model derived from the
electron density reconstruction. The two identical networks
are drawn in yellow and violet and the third one in magenta.

because of the spherical symmetry of the shell:

Fyy = nsPsJ 671‘1’1“""er e 2mlhathky+ls) 4 g
shell Ag
sin (thlR
— nspydarp L) 0 Largg, (6.5)
Qnkl

where ng is the two-dimensional number density of the
shells on the G-surface, and pg the two-dimensional
electron density on a shell. The product ng - pg is related
to the contrast Ap of the film (nsAgpsdmR? = Ap Vi)
and Vg, can be calculated using the Gauss—Bonnet
relation ( Vi, = 2RAq — (327/3) R®) [48]. Taking into
account the thickness L = 2R, the final expression reads

Viiim sin( gru R)

Frg=A a2fG
hkl 1Y Ag G R fhkl
16w R? sin(gnuR)
= Ap2R(1-——= 2r¢ (6.6
P ( 3 3.091a2> o it (6:6)

This model is valid only for sufficiently small values of R
with respect to the mean curvature radius of the G-surface,
typically for an R/a ratio less than 0.25 [48]. In the
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intensity expression, a disorder term can be introduced
using the Debye—Waller expression (refer to §3.2). More
refined models are available in the literature, but without
a simple factorization of a spherical form factor. Garstecki
& Holyst [15,54—57], Harper et al. [47], Enlow et al. [49]
took into account the thickness either by a segment of
length L oriented at each point along the normal to the
G-surface, or using a lattice model (figure 5). Using parallel
nodal surfaces (see equation (6.4) and figure 5), Solovyov
et al. [50] obtained a very precise modelization of a meso-
porous la3d phase based on more than 25 Bragg
reflections. It is found that the thickness of the silica
region is almost constant and homogoenous, with a slightly
higher density (10%) at the flat points of the G-surface.

6.2. Tri-continuous Im3m

Until now, the tri-continuous Im3m phase has been
observed only with thermotropic compounds [8,9,58].
However, we believe that mesophase formation again
probably results from the segregation between two
molecular entities (aliphatic chains and polar cores for
these thermotropic compounds) like for the previously
mentioned structures. One then expects that new
examples of this phase will be discovered in other systems
such as lyotropic systems or nano-structured materials.
For such complicated topology, the use of a reconstruc-
tion method was necessary to elucidate its structure
(figure 6) [8,59]. On the basis of the three main Bragg
peaks (321, 400 and 420), the reconstruction evidences
three interwoven regions in the structure, proving that
it is tri-continuous. A network model has been proposed
to visualize these three regions, as shown in figure 6. It
consists of three networks. Only two of them are identical
(drawn in yellow and violet in figure 6b), as the third one
(drawn in magenta in figure 6b), located in between the
two identical ones, is of a different type. A slightly differ-
ent model that is also based on three networks has been
recently proposed, and it is still in agreement with a tri-
continuous structure [60]. For this phase, the challenges
remaining are: (i) a visualization based on transmission
electron microscopy studies to confirm the SAS results
and (i) a deeper understanding of its structural relation-
ships with the Ia3d bi-continuous phase. Indeed, a phase
transition between these two cubic phases has been
observed in several thermotropic systems [8,60].

7. CONCLUSION

This paper provides a summary of the available
structural models for different three-dimensional meso-
phases. Such complex structures all result from the
packing of supra-molecular units having two incompati-
ble molecular blocks and are encountered nowadays in
various fields. For example, a recent application of
these types of structures is to use them to obtain tun-
able optical properties, in synthetic nano-structured
materials or in biological systems like butterflies wings
[61]. Here, we focus on the use of SAS to establish struc-
tural models, and introduce two types of methods: the
inverse and the direct ones. For sphere packing and
two-dimensional hexagonal phases, structural models
are easier to derive because there is a straightforward
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factorization between a form factor and a structure
factor in the SAS intensity expression. Then, more
elaborated models including disorder terms may be
even used for these phases. To investigate tcp packings,
inverse methods are preferred because the particles
in the unit cell have different form factors. For bi-
continuous cubic phases, both methods are available
in order to incorporate the film thickness but direct
methods are better suited. We propose a simple model
based on the convolution in the direct space of the
IPMS by a spherical shell that leads to a factorization
of its form factor in reciprocal space.

In the near future, two main developments are
expected in the structural analysis of mesophases. The
first is to include disorder terms of different kinds in the
structural models. For example, there is a need to develop
models for substitution disorder between different types
of particles dealing with more and more elaborated
multi-component nano-structured materials. A second
challenge will be to introduce quantitatively the inter-
action potentials between soft deformable entities and
to relate them to the mesophase structures, to ultimately
predict the phase diagrams. One possible approach may
be to measure these interaction potentials in concentrated
solutions during mesophase formation using SAS.
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