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Riemann’s minimal surfaces, a one-parameter family of minimal surfaces, describe a bicon-
tinuous lamellar system with pores connecting alternating layers. We demonstrate
explicitly that Riemann’s minimal surfaces are composed of a nonlinear sum of two oppositely
handed helicoids.
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1. INTRODUCTION

The connection between statistical mechanics and the
calculus of variations is both powerful as well as pro-
found. Because geometry and elasticity intimately
commingle in soft materials, the resulting equations of
equilibrium are often described or approximated by
purely geometrical considerations; interfaces, in par-
ticular, classically adopt the morphology of constant
mean curvature surfaces, typically minimal surfaces.
For example, the classic soap film problem boils down
to minimizing surface area subject to prescribed bound-
ary conditions. Smectic liquid crystals, materials having
uniformly spaced layers with only fluid-like order within
each layer, introduce an additional layer of complexity
to this classic problem. Although the individual layers
minimize their free energies when they are minimal sur-
faces, maintaining uniform spacing introduces a degree
of frustration that is not generically compatible with
imposed boundary conditions. This frustration motiv-
ates the search for simpler descriptions of complicated
layer geometries.

Isolating the topological excitations proves extremely
powerful in the study of ordered media. Many key phys-
ical properties may be described entirely by their
topological defects. Indeed, in the two-dimensional
XY model, it is possible to study the energetics and
phase transitions entirely in terms of topological vari-
ables. Likewise, topological defects in smectics may
play a similar role in determining physical properties
and, indeed, in some descriptions [1,2] they are the prin-
cipal players in the melting of the smectic phase into the
nematic phase.
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An explicit deconstruction of surfaces into their
topological constituents provides a unique and visual
language with which to describe the properties of
many diverse systems. Moreover, the effects of surface
curvature and topological defects are inextricably
linked. While it is simple to see how a single topological
defect in a surface or family of surfaces induces curva-
ture into its host, the converse problem is not nearly
as transparent. Similarly, the addition of further defects
into an already curved surface is not merely a super-
position, nor are the interactions of a finite number of
defects linear. However, the topology of the surfaces
themselves provides a framework for studying the col-
lective effects of curvature and topological defects.
A deep theorem in differential geometry states that all
minimal surfaces are locally constructed out of pieces
of helicoids and catenoids [3].

Much like the case of minimal surfaces, many smectic
textures can be built up by an appropriate combination
of a topological defect known as a screw dislocation.
From the point of view of topology, screw dislocations
are line defects that connect the layers into a ‘parking
garage’ structure much like a helicoid. In fact, the
layers themselves have no mean curvature, although
the defect core may be more complex. We have found
it useful to construct smectic textures by viewing the
layers as the Riemann surface of a meromorphic func-
tion on the plane encoding the two-dimensional
arrangement of three-dimensional line defects [4–6].
The one-dimensional periodicity arises from the mul-
tiple sheets formed by logarithmic branch points.
Again, great simplification occurs in those configur-
ations that can be represented in this way: the
gradient terms of the free energy specify harmonic
solutions, which are highly amenable to this Riemann
surface description.

Lattices of passages and pores often appear in both
membranes and bicontinuous systems [7,8]. They also
play a role in descriptions of the melting transition
from a lamellar phase, in which the layers are flat, to
This journal is q 2012 The Royal Society
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Figure 1. Riemann’s minimal surfaces are a complete, one-parameter family of minimal surfaces foliated by circles. Owing to
their morphology, they are models for a bicontinuous phase in which a network of pores connects neighbouring regions.
Because Riemann’s minimal surfaces have an infinite number of planar ends, they are particularly well suited to model smectic
liquid crystals.
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a sponge phase, in which the layers are intertwined in a
complex and random fashion [9]. In smectics, this mor-
phology is created by a pair of oppositely handed screw
dislocations [10]. Because Riemann’s minimal surfaces
are constructed from a pair of oppositely handed heli-
coids [3], it shall serve as our model for a system of
pores in a smectic. In order to calculate the stability
of this smectic phase, the exact locations of the screw
dislocations must be known. The morphology of the dis-
location cores will also allow us to study the crossover
between locally helicoidal morphology and a network
of pores.

In the following, we will review the free energy
functional of the smectic liquid crystal, introduce our
construction for the inclusion of topological defects in
a phase field construction and discuss a new manifest
decomposition of Riemann’s minimal surfaces into a
pair of helicoids
2. SMECTIC FREE ENERGY, SMECTIC
TOPOLOGY AND MINIMAL SURFACES

As smectics are one-dimensional crystals of two-
dimensional layers of liquid with equilibrium spacing
d ¼ 2p=qsm, it is apt to describe them with a complex
order parameter cðxÞ ¼ jc0ðxÞj expð�iqsmFðxÞÞ. The
magnitude of the order parameter, jc0ðxÞj, determines
whether or not smectic order is present. However, all
subsequent calculations occur deep within the smec-
tic phase, where c0ðxÞ ¼ c0 is constant away from
defect cores which we treat as cylindrical punctures.
The phase of the smectic order parameter defines the
smectic layers; this may be seen by considering
the mass–density wave representation of the smectic,
where layers are defined by level sets of the phase field
FðxÞ ¼ nd; n [ Z .

In addition to the standard membrane curvature
energy terms caused by the fluid nature of the smectic
layers, smectics are also penalized if the layer spacing
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deviates from the equilibrium value. Therefore, the con-
ventional form of the rotationally invariant, nonlinear
smectic free energy is given by

Fsm ¼ B
ð

d3xf½ðrFÞ2 � 1�2 þ l2ðr �NÞ2g; ð2:1Þ

where B is the bulk modulus, l is the penetration depth
for splay and N ¼ rF=jrFj is the unit normal vector
for the layers [11, 12]. An additional term coming from
the Gaussian curvature may be neglected due to the
Gauss–Bonnet theorem.

In smectics, the simplest case of a topological defect—
the screw dislocation—joins together an infinite number
of flat layers along a straight line, taking the form
of a helicoid, F ¼ z � tan�1ðy=xÞ ¼ z � Im½logðx þ iyÞ�.
The compression energy diverges along the line
fx ¼ 0; y ¼ 0; z [ Rg [12,13]. To prevent this divergent
contribution, the smectic locally melts along the defect
line, saving us from a topological conundrum at the
cost of introducing a new set of boundary condi-
tions into the problem. While exact solutions to the
Euler–Lagrange equations often prove elusive, surfaces
approximating the real layer structure are easily
obtained, thanks to the zoo of minimal surfaces. Choos-
ing a minimal surface with the right topology as our
starting point, the locations where the compression
energy diverges are known and we can identify the
defects. Using one-parameter families of minimal sur-
faces as variational solutions gives us a handle on the
energetics of these systems.

Merely specifying the zeroes and poles in a phase
field completely defines the topology of the resulting
surface. For regular arrangements of defects in two-
dimensions, elliptic functions are the building blocks
of the textures. The properties of elliptic functions
vastly simplify both the analytic and numeric calcu-
lations of the energy. A simple example is afforded by
Scherk’s first surface [14], with the multi-valued
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height function

hðx; yÞ ¼ � sec
a

2

� �
tan�1 tanh½ðx=2Þ sina�

tan½y sinða=2Þ�

� �
;

¼ � sec
a

2

� �
arg sin sin

a

2

� �
y þ ix cos

a

2

� �� �h i
:

ð2:2Þ

The last equality expresses the height function as the
argument of a trigonometric function [4].

Because Riemann’s minimal surfaces have an infinite
number of planar ends, their boundary conditions and
asymptotic behaviour make them extremely appealing
to model the interaction between defects in a smectic.
In the following, we will provide a precise decomposition
of the one-parameter family of Riemann’s minimal sur-
faces into a pair of oppositely charged helicoids. As with
the decomposition of Scherk’s first surface into defects
[4], this allows us to consider the defects as the principle
players. The particular closed-form expression for Rie-
mann’s minimal surfaces reveals an explicit
parametrization the cores of the defects. Enforcing the
smectic boundary condition—flat, equally spaced
layers at infinity—while maintaining the topological
defects necessitates curvature in the dislocation cores.
3. RIEMANN’S MINIMAL SURFACES

Riemann’s minimal surfaces are a complete, embedded
one-parameter family of minimal surfaces, shown in
figure 1 and electronic supplementary material 1
[15,16]. Riemann’s minimal surfaces are foliated by cir-
cles and, thus, may be described by a phase field of the
following form

F ¼ ½x � aðzÞ�2 þ ½y � bðzÞ�2 � R2ðzÞ: ð3:1Þ

A minimal surface, by definition, must satisfy the
condition: H ¼ 1

2r �N ¼ 0 for the unit layer normal N.
1We use the standard Glaisher convention for notation pq(z, m)¼pr(z,
m)/qr(z, m), where p, q, and r can be any of the following s, c, d,
or n and ss¼cc¼dd¼nn¼1, [18, 19]. For example, cs(z, m)¼cn(z,
m)/sn(z, m).
3.1. Weierstrass elliptic functions

Following Nitsche [17], the phase field must satisfy

Fz

R2ðzÞ

� �
z
þ 2

R2ðzÞ ¼ 0; ð3:2Þ

from which it follows that R2ðzÞ satisfies

½ðR2ðzÞÞ0�2 ¼ 4½ða2 þ b2ÞR6ðzÞ þ 2cR4ðzÞ
� R2ðzÞ�: ð3:3Þ

Similarly, a0ðzÞ ¼ aR2ðzÞ and b0ðzÞ ¼ bR2ðzÞ. By
considering solutions of the form R2ðzÞ ¼ Af ðzÞ þ B;
equation (3.3) becomes the familiar equation for the
Weierstrass ‘-function, ½‘0ðzÞ�2 ¼ 4‘3ðzÞ � g2‘ðzÞ�
g3 ¼ 4½‘ðzÞ � e1�½‘ðzÞ � e2�½‘ðzÞ � e3�, where e1 þ e2þ
e3 ¼ 0: We obtain the following solution for R2ðzÞ:

R2ðzÞ ¼ ‘ðz; fg2; g3gÞ � 2c=3
a2 þ b2 ; ð3:4Þ

where g2 ¼ 4ða2 þ b2 þ 4
3c

2Þ and g3 ¼ �8
3cða2 þ b2þ 8

9c
2Þ

are the Weierstrass invariants. For reference, the half-
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period values are

e1¼ ‘
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2

� �
¼ � c
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þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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2
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2

� �
¼ 2

3
c
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v3

2

� �
¼ � c

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p

9>>>>>=
>>>>>;

ð3:5Þ

for c , 0. Without loss of generality, we set a ¼ 0; as
this merely fixes the free rotations about the z-axis.
3.2. Jacobi elliptic functions

It behoves us to work with Jacobi elliptic functions
for the remainder of this paper. Jacobi elliptic functions
are doubly periodic with real period 2K(m) and imagin-
ary period 4 iKð1�mÞ; where m is the square of the

elliptic modulus and KðmÞ ¼
Ð p=2
0 dt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2ðtÞ

p
is the complete elliptic integral of the first kind. To con-
vert between the two equivalent representations of
elliptic functions, Weierstrass and Jacobi, we use
the identity

‘ðzÞ ¼ e3 þ ðe1 � e3Þns2ðz ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 � e3
p

;mÞ; ð3:6Þ

where m ¼ ðe2 � e3Þ=ðe1 � e3Þ.1 Therefore, in terms of
Jacobi functions,

R2ðzÞ ¼ e3 � e2 þ ðe1 � e3Þns2ðz ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 � e3
p

;mÞ
b2 ;

¼ e1 � e3

b2 ðns2ðsz;mÞ �mÞ

¼ s2

b2
ds2ðsz;mÞ;

ð3:7Þ

where s2 ¼ e1 � e3 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � c2
p

¼ b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1�mÞ

p
, and

we have used the identity dn2ðz;mÞ þm sn2ðz;mÞ ¼ 1:
The integral defining the centre of the circles is thenð

dz ds2ðz;mÞ ¼ zð1�mÞ � cnðz;mÞ dnðz;mÞ
snðz;mÞ

� E½amðz;mÞ;m�;
ð3:8Þ

where Eðz;mÞ ¼
Ð z
0 dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2 z
p

is the incomplete
elliptic integral of the second kind. Note that the integral
E½amðz;mÞ;m� is composed of a linear part,
zEðmÞ=KðmÞ; and a periodic part, Z ½amðz;mÞ;m�. In
terms of the Jacobi elliptic functions, the phase field is

F ¼ x2 þ
n

y � s

b
½~zð1�mÞ � Eðamð~z;mÞ;mÞ:

þcsð~z;mÞdnð~z;mÞ�
o2
� s2

b2 ds2ð~z;mÞ ¼ 0; ð3:9Þ

where ~z ¼ sz. Because sz is merely a rescaling of the
z-axis, we have the freedom to choose the constant to be
s ¼ 2KðmÞ=d to ensure that the periodicity of the phase
field matches the ideal spacing of the smectic layers d.
The final parameter, b ¼ 4KðmÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1�mÞ

p
=d2, may

now be expressed in terms of the elliptic modulus.
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Figure 2. The elliptic modulus parametrizes the distance
between the two helicoids. The maximum, minimum and aver-
age separations are denoted by the dashed, dashed-dotted and
solid lines, respectively.
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The resulting surface is now a one-parameter family of
surfaces, depending on m [ ½0; 1�.

As there are an infinite number of phase fields
that describe the same surface, determining the appro-
priate representation of the phase field for each given
application requires careful consideration. First, we
demonstrate that Riemann’s minimal surfaces are com-
posed topologically of two screw dislocations of opposite
handedness, and, second, we find a form of the phase
field for Riemann’s minimal surfaces that satisfies the
boundary conditions of a smectic liquid crystal.

Expanding the square in y in the phase field, we
obtain

F ¼ x2 þ ½y � zð~z;mÞ�2 � h2ð~z;mÞ

þ 2
s

b
½y � zð~z;mÞ� csð~z;mÞ dnð~z;mÞ ¼ 0;

ð3:10Þ

where we define zðz;mÞ ¼ ðs=bÞ½zð1�mÞ � Eðam
ðz;mÞ;mÞ�, and h2ðz;mÞ ¼ ðs2=b2Þ½ds2ðz;mÞ�
cs2ðz;mÞdn2ðz;mÞ� ¼ ðs2=b2Þ dn2ðz;mÞ. After some
algebra, we find the equivalent phase field,

F ¼ 1þ ½y � zð~z;mÞ�2

x2 � h2ð~z;mÞ �
y � zð~z;mÞ
x þ hð~z;mÞ �

y � zð~z;mÞ
x � hð~z;mÞ

� �

� scsð~z;mÞdnð~z;mÞ
bhð~z;mÞ ¼ 0: ð3:11Þ

This provides a relation between y, ~z and x,

y � zð~z;mÞ
x þ hð~z;mÞ �

y � zð~z;mÞ
x � hð~z;mÞ

	 


� 1þ y � zð~z;mÞ
x þ hð~z;mÞ

y � zð~z;mÞ
x � hð~z;mÞ

	 
�1

¼ scð~z;mÞ;

ð3:12Þ

where we note that the definition of scðz;mÞ ¼
sinðamðz;mÞÞ=cosðamðz;mÞÞ. Taking the arctangent
of both sides and rearranging the terms yields the
phase field,

F ¼ amðsz;mÞ þ tan�1 y � zðsz;mÞ
x � hðsz;mÞ

� �

� tan�1 y � zðsz;mÞ
x þ hðsz;mÞ

� �
¼ 0;

ð3:13Þ

which is clearly a nonlinear sum of two helicoids of
opposite handedness. The cores of the defects are
located at x ¼+hðsz;mÞ; y ¼ zðsz;mÞ, where
zðsz;mÞ consists of a linear component with a periodic
term superimposed upon it, and hðsz;mÞ is a perio-
dic function with maximum at hð0;mÞ ¼ s=b and
minimum at hðKðmÞ;mÞ ¼ ðs=bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m
p

:
Because we want to have flat evenly spaced layers far

from the defects, the phase field must be normalized
such that the compression energy vanishes at infi-
nity, i.e. limx;y!1ðrFÞ2 ¼ 1. Because the derivative
@zamðz;mÞ ¼ dnðz;mÞ is not independent of z, this
phase field does not satisfy this boundary condition.
One final manipulation, based on the identity
Fðamðz;mÞ;mÞ ¼ z, where Fðz;mÞ ¼

Ð z
0 dtð1�m

sin2 tÞ�1=2 is the incomplete elliptic integral of the first
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kind, gives the phase field representation of Riemann’s
minimal surfaces,

F ¼ z þ 1
s

F tan�1 y � zðsz;mÞ
x � hðsz;mÞ

	 
�

� tan�1 y � zðsz;mÞ
x þ hðsz;mÞ

	 

;m
�
¼ 0:

ð3:14Þ

Because the argument of the elliptic integral is a
superposition of two opposite screw dislocations, far
from both defect cores, equation (3.14) becomes
F � z þ constant. This is our main result.
4. PORES AND DEFECT CORES

The entire one-parameter family of Riemann’s minimal
surfaces is parametrized by the elliptic modulus,
m [ ½0; 1�. As it sweeps through all allowed values, the
morphology of the surface, and simultaneously the
shape of the defects, changes. In the limit that m ! 0;
the defect cores are straight and infinitely far apart. How-
ever, as m increases, the distance of closest approach
between the two defect cores decreases. The elliptic mod-
ulus is a proxy for the distance between the two helicoids,
where the maximum, minimum and average separation of
the defects are, respectively, ‘max ¼ 2=ðs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1�mÞÞ

p
¼

d=ðKðmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1�mÞÞ

p
, ‘min¼2=ðs ffiffiffiffiffi

m
p Þ¼d=ðKðmÞ ffiffiffiffiffim

p Þ;
and ‘avg¼2p=ðds2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1�mÞÞ

p
¼pd=ðK2ðmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1�mÞ

p
Þ;

shown in figure 2. If the layers are to remain flat along the
boundary at infinity, then the cores necessarily bend.
Conversely, two straight screw dislocations in a smectic
will force the layers to bend so that H = 0. The ampli-
tude of the distortion of the cores also must increase as
m increases. Nevertheless, the topological character of
straight screw dislocations is preserved even though the
cores of the dislocations possess curvature. The line inte-
gral of the director field around a closed loop encircling a
defect,

Þ
N . dl ¼+d, remains constant regardless of the

position or orientation of the core.
Alternatively, we might have used the construction

F via foliation of circles which implies that layers flatten
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Figure 3. Two of Riemann’s minimal surfaces are shown here for
parameter values (a) m ¼ 0.075 and (b) m ¼ 0.925. The com-
plete evolution of Riemann’s minimal surfaces from m ¼ 0.07
to m ¼ 0.95 is shown in electronic supplementary material 2.
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Figure 4. The results of the numeric integration of the free
energy functional for Riemann’s minimal surfaces for varying
values of the elliptic modulus m and the cutoff energy e0 are
plotted along with the fit in equation (5.1).
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when the radius approaches infinity and that adjoining
layers are connected by necks. By varying the surface
parameter through the range m [ ½0; 1�, the family of
Riemann’s minimal surfaces transforms between these
two morphologies, as seen in figure 3.
5. ENERGETICS

Comparing the energetic cost of Riemann’s minimal
surfaces with that of other smectic textures determines
their relative stabilities. To illustrate how we do this, we
first consider the case of a single screw dislocation. For
such a comparison to be valid, all of the divergences
must be treated identically. While it is commonplace
to cutoff the integration in cylindrical regions, where
varying the radius determines the functional form of
the divergence, the curved nature of the defects pre-
cluded straightforward implementation of this
method. Instead, we opt for a more physically motiv-
ated cutoff: the defect core is identified with the
volume in which the energy density exceeds a critical
value e0. This cutoff captures the fact that the real
smectic melts when the local energy density exceeds
the condensation energy for forming a smectic. The
single dislocation, Fscrew ¼ z � ð1=pÞ tan�1ðy=xÞ, has
compression energy density fscrew ¼ ½ðrFscrewÞ2 � 1�2 ¼
1=½p4ðx2 þ y2Þ2� ¼ ðprÞ�4. The energy density exceeds
e0 for r , r0 ¼ 1=ðpe1=4

0 Þ; corresponding to a free
energy per unit length of Fscrew ¼ 1=ðp4Þ

Ð 2p
0 du

Ð1

r0
r dr r�4 ¼ ffiffiffiffiffi

e0
p

=p.
In order to calculate the free energy of Riemann’s

minimal surfaces, we numerically integrated
F ¼

Ð
dVfcompuðe0 � fcompÞ, where fcomp is the com-

pression energy density ðB=2Þð1�rF2Þ2 and uðxÞ is
the Heaviside theta function, defined to be 1 when
x . 0 and 0 when x , 0. The resulting energies
depend on both the elliptic modulus m and the free
energy cutoff e0 As with the single screw dislocation,
we expect the energy to scale as the square root of the
cutoff and, indeed, for fixed elliptic modulus, the
energy fits Fmðe0Þ ¼ Aþ B

ffiffiffiffiffi
e0
p

; where the m-depen-
dence of the parameters is AðmÞ ¼ a1 m=ð1�mÞ and
BðmÞ ¼ b1 þ b2 m=ð1�mÞ: Thus, the free energy for
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Riemann’s minimal surfaces is fit by

Fðm; e0Þ ¼ a
mffiffiffiffiffiffiffiffiffiffiffiffiffi

1�m
p þ ffiffiffiffiffi

e0
p

bþ c
m

1�m

� �
; ð5:1Þ

for parameter values a ¼ 21.7622+ 0.0300, b ¼
0.6319+ 0.0009 and c ¼ 0.1387+ 0.0003. Although
the dependence on the cutoff is the same as the single
screw dislocation, there is no justification for the func-
tional dependence on the elliptic modulus. Because
the elliptic functions are simplified at the extremal
values of the elliptic modulus, any functional fit must
be linear near m ¼ 0 and divergent at m ¼ 1. The func-
tional form of the divergence was obtained from a log–
log plot. The fit, shown in figure 4, is quite good. It
would be interesting to understand the success of this
fit. Note that the constant proportional to

ffiffiffiffiffi
e0
p

is
close to 2=p � 0:6366, giving the contribution from
two non-interacting dislocations. The m dependence
becomes a 1=r2 energetic interaction between the
defects for large separations r.
6. DISCUSSION

Nowhere is the ‘duality’ between the two topological
descriptions of Riemann’s minimal surfaces more
important than in the energetics. By choosing the heli-
coidal description of the phase field, the divergences in
the energetics lie along the defect cores. Here, the smec-
tic layers are flat and uniformly spaced at infinity.
Conversely, a smectic containing a pore will have curva-
ture singularities down the centre of the pore and at
infinity, reminiscent of the focal lines in the focal
conic texture.

This simple example highlights the importance of
topological decomposition of minimal surfaces in study-
ing complex systems in nature. Enumerating all
topological defects in a surface simultaneously identifies
all energetic singularities. This technique will help
explain a variety of phenomena—in particular, triply
periodic minimal surfaces which appear in bicontinuous
cubic phases of systems ranging from mitochondrial
membranes to the dark conglomerate phase of bent
core liquid crystals to binary metallic alloys. The
network of defects recovered from a topological
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decomposition should explain both their extraordinary
stability and complex phase diagram. By tuning the
interfacial preference for negative Gaussian curvature,
the cubic phases continuously transform into one
another following the progression Schwarz P surface
to diamond surface to gyroid. Yet simple curvature con-
siderations cannot explain this series of surfaces.
Although these surfaces are topologically distinct,
tracking the evolution of the lattice of their defects
may elucidate the means by which these surfaces
smoothly change topology [20].
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525–547. (doi:10.1051/jphys:01972003305-6052500)

11 Kamien, R. D. & Santangelo, C. D. 2006 Smectic liquid
crystals: materials with one-dimensional, periodic order.
Geom. Dedicata 120, 229–240. (doi:10.1007/s10711-006-
9075-y)

12 Chaikin, P. M. & Lubensky, T. C. 1995 Principles of con-
densed matter physics. Cambridge, UK: Cambridge
University Press.

13 de Gennes, P. & Prost, J. 1993 The physics of liquid
crystals, 2nd edn. Oxford, UK: Oxford University Press.

14 Scherk, H. F. 1835 Bemerkungen über die kleinste
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