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Transcriptional regulation is a critical mediator of many nor-
mal cellular processes, aswell as disease progression. Transcrip-
tion factors (TFs) often co-localize at cis-regulatory elements on
the DNA, form protein complexes, and collaboratively regulate
gene expression. Machine learning and Bayesian approaches
have been used to identify TF modules in a one-dimensional
context. However, recent studies using high throughput tech-
nologies have shown that TF interactions should also be consid-
ered in three-dimensional nuclear space. Here, we describe
methods for identifying TF modules and discuss how moving
fromaone-dimensional to a three-dimensional paradigm, along
with integrated experimental and computational approaches,
can lead to a better understanding of TF association networks.

Transcriptional regulation is a critical step in transmission of
information from genotype (i.e. DNA) to phenotype (e.g.
expression of proteins and noncoding RNAs ormicroRNAs). A
large number of proteins, namely transcription factors (TFs),2
play an essential role in gene regulatory networks by binding to
short DNA sequences called cis-regulatory elements (CREs),
which include promoters, enhancers, repressors, and insulators
(1). In many cases, multiple TFs function as a regulatory com-
plex (hereafter referred to as a TF module) at a CRE. The con-
cept of cooperative regulation by TFs bound near each other in
the genome has been recognized for decades. For example, the
enhancer located upstream of the interferon-� gene (IFNB1)
has served as a wonderful example of cooperative regulation (2,
3). Another example of TF modules is the regulatory region
upstream of theDrosophila gene eve. Expression of the eve gene
is modulated by different combinations of multiple TFs that
bind to the upstream CRE (4). Although the identification of

modules composed of TFs bound to adjacent genomic sites is
increasing, due in part to ChIP-seq analysis of a large set of TFs
by the ENCODEConsortium,3 it has recently become clear that
cooperative regulation can be achieved bymeans other than the
interaction ofTFs boundnext to each other on the genome. TFs
can also be brought into close spatial proximity with other TFs
bound to a regulatory element located a great distance away via
the three-dimensional conformation of a chromosome. In
fact, three-dimensional genomic organization, which brings
together two distant loci, has been shown to be involved in both
gene regulation and nuclear compartmentalization (5–8). The
regulatory effects of a TF bound to a CRE can be either active or
repressive, often switching from one to the other depending on
other interacting factors. Therefore, a detailed understanding
of the association of TFs with other TFs bound at adjacent or
distal sites is required to comprehend the complex molecular
mechanisms involved in transcriptional regulation of the
genome. Also, elucidating cell type-specific TF modules may
help to understand the mechanisms driving cell differentiation
and disease progression. New experimental techniques facili-
tated by high throughput sequencing allow investigators to
more globally address questions concerning the relationship
between three-dimensional chromatin organization and TF
modules. However, it is a remarkably complex task to extend
the analysis of TF modules from a one-dimensional to a three-
dimensional scale, requiring tremendous efforts from both
experimental and computational biologists, as well as effective
communication and collaboration among these specialists. In
this minireview, we focus on the experimental and computa-
tional methods involved in the identification of TF modules,
concluding with a suggested pathway by which investigators
can identify both one- and three-dimensional TF modules.

Experimental Methods

Profiling TF-binding Sites (TFBSs)—Although a variety of
methods have been developed to investigate TF binding
throughout the genome (9), the technique of chromatin immu-
noprecipitation (ChIP) is the most common. This technique,
which was developed during the 1980s and 1990s, has been
modified extensively for the analysis of site-specific factors and
histones (10–17). The steps in a ChIP experiment include 1)
cross-linking TFs to the genome, 2) shearing DNA (usually by
sonication) to fragments ranging from 100 to 500 bp in length,
3) enriching for TF-DNA complexes using target TF-specific
antibodies, 4) removing proteins by reversing the cross-links,
and 5) purifying the enriched DNA fragments for further anal-
yses (Fig. 1A). When ChIP was first developed, a polymerase
chain reaction (PCR) assay would be performed to determine
whether the TF bound to a specific genomic position. Although
this assay is still used to study single loci, the sequencing of the
human genome (18–20) and the development of high through-
put technologies (21) have enabled genome-wide profiling of
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TFBSs. ChIP-chip, a high throughput technique that hybridizes
the enriched DNA fragments to microarrays (22–25), was first
used to survey TFBSs genome-wide. ChIP-seq (26–31), a new
technology that combinesChIP andmassively parallel sequenc-
ing (on platforms such as the Illumina Genome Analyzer and
HiSeq machines, the ABI SOLiD system, and the Roche 454
system), was first developed in 2007 and has rapidly proved to
have several advantages such as the complete coverage of the
unique portions of the genome along with high resolution and
sensitivity.
Identifying Chromatin Interactions—Although the afore-

mentioned techniques provide a detailed map of TFBSs, they
are not sufficient to identify TFmodules coordinated by higher
order chromatin organization. In the past, co-localization
methods such as fluorescent in situ hybridization (FISH) have
been used to investigate three-dimensional chromatin struc-
tures (32). However, the higher resolution of the chromosome
conformation capture (3C) technique (33) has greatly improved
our ability to examine the effects of chromatin conformation on
transcriptional regulation. The 3C assay can detect pairs of
genomic loci that are in close proximity in the three-dimen-
sional space of the nucleus. In a 3C experiment, formaldehyde is
used to cross-link non-adjacent regions of chromatin that are
spatially close. The DNA is then digested with a restriction
enzyme, and the fragments within the cross-linked complexes
are joined by ligation. This is followed by cross-link reversal and
PCRusing primers specific for twodifferent genomic regions. A

high signal for the hybrid DNA sequence indicates a high liga-
tion rate between the two genomic loci, which is likely pro-
duced by their close proximity and high interaction frequency
(Fig. 1B). Several high throughput variations on the 3C assay
have been developed that allow a larger scale screening of chro-
matin interactions. For example, chromosome conformation
capture-on-chip (4C) (34, 35) detects many genomic regions
interacting with one particular locus using a microarray con-
taining a set of specifically designed probes. After the cross-link
reversal step of 3C, a second enzyme restriction digestion step is
performed to shorten the hybrid fragments, and then the small
hybrid fragments are circularized and subjected to inverse PCR.
To identify the interacting regions for the locus of interest
(which is called the bait), specific primers within the bait region
of the circularized hybrid fragment are designed such that they
face the portion of the circularized fragment that is derived
from the interacting region.After amplification, the products of
inverse PCR are hybridized to the custom microarray. The
major obstacle for wide application of the 4C assay is that it can
detect only regions interacting with one chosen genomic locus
per experiment. Another 3C-based large-scale DNA interac-
tion profiling method is chromosome conformation capture
carbon copy (5C) (36). Similar to 4C, 5C allows detection of
many potential chromatin interactions, but a multiplex liga-
tion-mediated amplification (LMA) step distinguishes it from
4C. The universal primers of LMA are designed to fit near the
restriction enzyme cutting sites and have a specific orientation

FIGURE 1. Experimental techniques to investigate TFBSs and chromatin interactions. A, schematic representation of major steps in one-dimensional
ChIP-based high throughput methods used to identify TFBSs. Briefly, cells are treated with formaldehyde to cross-link the TFs to genomic binding sites, the
genomic DNA is sheared, and bound fragments are selected by immunoprecipitation using an antibody to a TF of interest. The cross-links are then reversed,
and the fragments are purified and applied to microarrays (ChIP-chip) or sequenced (ChIP-seq). B, assays used to study three-dimensional chromatin structure.
ChIA-PET is similar to ChIP in that fragments bound to a TF of interest are immunoprecipitated. However, unlike ChIP assays, fragments brought into close
proximity by DNA looping are ligated prior to the immunoprecipitation step. Hi-C is similar to ChIA-PET in that fragments in close proximity are ligated.
However, Hi-C does not rely on immunoprecipitation by an antibody to a TF but rather uses biotin labeling of the ligation sites, followed by avidin-based
purification. The fragments are then subjected to paired-end sequencing. The 3C, 4C, and 5C assays also detect pairs of genomic loci that are in close proximity
in the three-dimensional space of the nucleus. Formaldehyde is used to cross-link spatially close chromatin regions, the DNA is digested with a restriction
enzyme, and fragments within the cross-linked complexes are joined by ligation. In 3C, the joined regions are analyzed using PCR. In 4C, a second enzyme
restriction digestion step is performed to shorten the hybrid fragments, which are circularized and subjected to inverse PCR; the products of inverse PCR are
hybridized to a custom microarray. In 5C, a LMA step allows the ligation junctions of all the hybrid fragments in the 3C library to be analyzed using microarrays
or next-generation sequencing. Note that this figure shows greatly simplified versions of the different technologies; for detailed descriptions, please see the
original papers.
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so that the amplification products in the 5C library theoretically
contain the ligation junctions of all the hybrid fragments in the
3C library. The 5C library is analyzed using microarrays or
next-generation sequencing. Both 4C and 5C involve multiplex
primers or probe designs, which substantially increase the cost
and decrease the applicability of the assay. Two newly devel-
oped next-generation sequencing-based techniques, ChIA-
PET (37, 38) and Hi-C (39), are more suitable for unbiased
identification of chromatin interactions across the entire
genome. ChIA-PET incorporates enrichment of cross-linked
complexes that contain a target protein using antibody-based
immunoprecipitation before cross-link reversal; thus, it has
been used mainly to interrogate interactomes of a specific TF
such as estrogen receptor-� (ER-�) (37) or CCCTC-binding
factor (CTCF) (38). On the other hand, Hi-C uses biotin label-
ing of the ligation sites, which are then purified using avidin. In
contrast toChIA-PET,Hi-C canmap the location of all possible
interacting loci in the genome in an unbiased manner, but it
does not provide information as to which TFs are involved in
formation of the different interactions. However, by combining
other experimental and computational assays with Hi-C (as
described below), one can link TFs to sets of interacting loci,
allowing the identification of three-dimensional TF modules.

Computational Methods

Detecting TFBSs—In a ChIP-seq experiment, millions of
short DNA sequence tags are aligned with a reference genome,
and binding sites of the target protein are identified as genomic
regions that are enriched within the set of sequenced tags.
However, not all enriched regions correspond to binding sites,
and therefore, computational methods have been developed to
identify true binding sites. Model-based analysis of ChIP-seq
(MACS) (40), PeakSeq (41), QuEST (17), site identification
from short sequence reads (SISSRs) (42), Sole-Search (43, 44),
and other peak identification programs (45–48) are available
for ChIP-seq data analysis, and each of these programs applies a
different algorithm (see Ref. 49 for a review of these tools). For
example, because only the end of a ChIP fragment is sequenced,
the MACS algorithm begins by shifting the sequenced tags
toward the binding site for a certain number of base pairs and
then locates the binding site by calculating the summit within a
peak region. Instead of tag shifting, PeakSeq utilizes a strategy
in which tags are extended to better represent the precipitated
fragments. QuEST identifies binding sites using a tag enrich-
ment profile of a peak region. SISSRs screens binding sites in a
certain window by a threshold of tag counts on both forward
and reverse strands that is calculated based on a Poisson distri-
bution. Sole-Search extends the tags to represent the length of
the precipitated fragments and allows the identification of both
narrow peaks and longer binding regions based on prior knowl-
edge of the factor being studied. Another recentmethod applies
a mixture model to provide higher resolution of TFBS localiza-
tion and the ability to distinguish closely positionedTFBSs (50).
wBELT uses a bin-based enrichment threshold to identify
TFBSs and applies tag shifting and statistical methods to define
a false discovery rate (FDR); this software has been integrated
into a user-friendly web-based application called W-ChIPeaks
(51).

Identifying TF Modules from One-dimensional Omics Data—
Accurate identification of individual TFBSs can be achieved
using ChIP-seq and ChIP-chip. However, as discussed above,
TFs usually do not function alone. Cooperating factors can
influence the specificity and affinity of TF binding and can sig-
nificantly alter the function of a bound TF, greatly influencing
gene regulation. For example, the serum response factor (SRF)
activates distinct sets of genes via interaction with different
cofactors upon serum stimulation (52, 53). By interacting with
different cofactors, the Mcm1 protein can either promote or
repress transcription of a group of genes (54). Thus, to com-
pletely understand the function of a TF, it is important to char-
acterize the TF at the level of interacting modules. Many com-
putational approaches have been developed to search for TF
modules, most of which are based on the fact that TFs bind to a
specific sequence of DNA called a motif. A motif can be repre-
sented by a position weightmatrix (PWM), which is a probabil-
itymatrix that indicates the chance of each position of themotif
being a certain nucleotide; motifs for many TFs are collected in
the TRANSFAC data base (56). A high concurrence of motifs
for two different TFs within a relatively short region of DNA
may indicate a potential TF module. One example of a compu-
tational approach to predict TF modules is CisModule (55),
which applies Bayesian inference and uses a two-layer hierar-
chical mixture model, in which the first layer represents the
mixture of modules and the second layer represents the mix-
ture of motifs in the modules. Parameters, including the prod-
uct multinomial parameters for each motif, the width of each
motif, the probability of a module start, and the probability of a
motif start, are updatedwith each iteration. Studies have shown
that methods that take advantage of both the TRANSFAC TF
motif data base (56) and sequence conservation information
withinmultiple organisms (57–60) generally outperform other
algorithms in terms of the accuracy of prediction of TF binding.
More recently, integrated computational and experimental
genomics approaches have been combined to identify one-di-
mensional TFmodules fromChIP-chip andChIP-seq data (61).
In these approaches, the binding sites of a TF are first identified
using peak detection software. Then, regions adjacent to a set of
high confidenceTFBSs are searched for putativemotifs of other
TFs whose PWMs have been characterized in the TRANSFAC
data base (56). One such method called ChIPModules employs
a classification and regression tree model to generate TF mod-
ules based on the co-occurrence rate of the PWMs. Using this
method, E2F1 target genes were classified into distinct groups
regulated by five differentmodules. ChIP-chip analysis demon-
strated that one predicted cofactor, activating enhancer bind-
ing protein 2�, did in fact form binding modules with E2F1.
Another example of this type of method is hypergeometric
optimization of motif enrichment (HOMER) (62), which
includes a set of programs for de novomotif discovery. A recent
study using HOMER found that PU.1 co-localizes with distinct
sets of TFs in macrophages versus B cells (62). These findings
demonstrated that different TF modules are indeed lineage-
specific and responsible for the development of characteristic
features of macrophages and B cells. Cistrome is another tool
suite that includes a de novo motif discovery algorithm and
allows cofactor identification through co-localization analysis
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of TF motifs (63). A recent study utilized Cistrome and epige-
netic information to define CREs and predict TFBSs with high
accuracy (64). Although this method was applied primarily to
predict TFBSs, it could also increase the accuracy of predicting
cell type-specific TF modules by eliminating false positive
regions within closed chromatin. Studies using programs such
as ChIPModules, HOMER, and Cistrome clearly demonstrate
that searching for motifs in regions located near TFBSs can
identify putative collaborating TFs. However, to find TF asso-
ciations that occur through higher order chromatin structure,
one must also integrate chromatin interaction data.
Identifying Chromatin Interactions—Among the chromatin

interaction profiling methods, the Hi-C technique has the
potential to identify a whole genome interactome in an unbi-
asedmanner without relying on known protein interactions. In
the original description of the Hi-C assay (39), a probability
matrix at 1-Mb scale was used tomodel the data. However, this
method identified only low resolution interacting loci and is
thus not suitable for analysis of the fine structure of the chro-
matin. To increase the resolution and better utilize the great
resources of Hi-C data, a more recent method utilized a mix-
ture Poisson regression model (MPRM) to increase the resolu-
tion of the identified interacting loci to 20 kb (65). There are
three major types of hybrid fragments in the Hi-C library: 1)
proximate ligation, formed by the joining of closely positioned
DNA fragments; 2) random ligation, formed by the random
interaction of two “floating” fragments; and 3) self-ligation,
formedwhen the two ends of a single fragment are joined. In the
MPRM, the self-ligation fragments are easily discounted by
their distinctive characteristics, but the proximate ligation
events and random ligation events are considered as two inde-
pendent Poisson distributions; thus, the overall ligation events
can be represented by a latent class model with two hidden
variables. An expectation maximization algorithm is used to
estimate the hidden variables, and a FDR is calculated based on
the cumulative distribution function of the Poisson distribu-
tion. The MPRM identified 96,137 interacting loci with a FDR
of 5.76%. Consistent a the previous study (39), the majority of
the identified interactionswere intrachromosomal andwithin a
distance of 1 million bp and occurred close to CREs marked by
histone depletion and flanked by H3K4me1 (65). Because of
sequencing depth limitations in the existing data, it was esti-
mated that the identified interacting loci represent only �25%
of the complete set of interacting loci in K562 cells. These anal-
yses suggest that the future Hi-C analysis of human cells should
be derived from sequence information of at least 100 million
proximate ligation hybrid fragments. Another method devel-
oped to explore Hi-C data is based on a probabilistic model,
which takes into account several systematic biases that reside in
the Hi-C protocol (66). These biases include spurious ligation
fragments, the size of the enzyme-digestedDNA fragments, the
ligation efficiency, the CpG content of the ligation sites, and the
mappability of the sequenced tags. This method also showed a
high interaction rate of nucleosome-depleted regions and
active promoters. Furthermore, this study demonstrated that
the genome can be divided into active and inactive domains
based on the connection intensity between CREs in those
domains. As experimental techniques such as Hi-C become

more commonly used, there will be an urgent demand for opti-
mized methodologies to analyze the derived data. Perhaps by
combining the advantages of the above-mentioned approaches,
new methods with high resolution that appropriately consider
system biases can provide a robust reconstruction of the chro-
matin structure.
Identifying TF Modules from Three-dimensional Omics

Data—As described above, 3C has been used to study looping
between defined genomic regions such as the �-globin locus
control region (LCR) and DNase I-hypersensitive sites
upstream or downstream of the locus (67). In another study,
expression of UBE2Cwas shown to be regulated by FoxA1- and
MED1-mediated chromatin interactions between the UBE2C
promoter and enhancer (68). In breast cancer cells, the 3C assay
was used to demonstrate that ER-� drives chromatin looping at
a cluster of genes on genomic region 16p11.2 (69). In these
cases, specific TFs were analyzed at specific loci. Because very
few genome-wide chromatin interactions studies have been
published, there are only a few examples in which TF binding
data have been integrated with large-scale genomic structure
information. However, a recent study (70) integrated Hi-C
information with CTCF ChIP-chip and ChIP-seq data and
found that strong interchromosomal interactions are highly
correlated with CTCF-binding sites, suggesting that CTCF
plays an important role in the organization of the human
genome. This study served as a proof of principle that it is pos-
sible to identify chromosomal hubs that are associated with a
specific TF. The extensive ChIP-seq data that are now available
from the ENCODE Consortium provide investigators with the
opportunity to identify associations of interacting loci with TF
binding, chromatin modifications, and open chromatin. A
recent study used 5C to comprehensively interrogate long-
range looping interactions between genes and distal elements
in the 1% of the human genome representing the ENCODE
Pilot regions.4 These 5C maps of ENCODE regions in
GM12878, K562, HeLa, and human embryonic stem cells
(hESCs) identify thousands of long-range interactions and pro-
vide new insights into the cell-type specificity of chromatin
looping. We have used data from the ENCODE Consortium to
develop a TF interaction network using integrated genome-
wide Hi-C data, epigenomic profiles, open chromatin, and TF
binding data (65). In this study, the Apriori algorithm (71) was
used to search for the association of TFs bound at the two ends
of sets of interacting loci, e.g. if TF1 was bound to a set of loci
and if binding of TF2 was statistically enriched in the genomic
regions interacting with those loci, this suggested a potential
association of TF1 and TF2. By incorporating ChIP-seq for 45
different TFs, the analysis showed 1) a high concurrence of
CTCF and RAD21 at the ends of interacting loci, which is con-
sistent with their similar binding preference and with previous
reports (72); 2) that, consistent with previous studies, E2F4 and
RNA polymerase II are highly linked (73); and 3) that c-Jun,
GATA1, GATA2, INI1, and BRG1 are closely linked, which
suggests interactions between chromatin modifiers and cell
type-specific TFs.Wenote that this type of detailedTFnetwork

4 J. Dekker, personal communication.
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analysis is possible only if the genome-wide experimental data
sets for chromatin interactions and TF binding are available for
the same cell line. To date, Hi-C data are available only for K562
and GM06990 cells (39). Although Hi-C data from additional
cell lines will become more readily available due to reduced
sequencing costs, it will be a longer period before hundreds of
TFs are characterized by ChIP-seq in all cell types. The
ENCODEConsortium is producing largeChIP-seq data sets for
numerous commonly used cell lines. However, most of these
cell lines are derived from cancer cells. The analysis of primary
cells and/or specific subpopulations of cells from different tis-
sues will be problematic. Although it is possible to obtain
enoughmaterial from primary cells for Hi-C, current ChIP-seq
technologies use large numbers of cells, and thus, it is difficult
to obtain enough primary cells for hundreds of ChIP-seq exper-
iments. In this case, searching for putative TFBSs using motif
analysis and the TRANSFAC data base (56) can serve as an
alternative method to integrate chromatin structure and TF
information. This approach has been used to correlate CTCF
motifs with Hi-C data (70). However, it is critical to keep in
mind that binding of TFs to the genome is highly influenced by
certain histone modifications; a consensus motif may not be
bound by a TF if the chromatin is in a closed confirmation (i.e.
it is marked by H3K27me3 or H3K9me3). For example, ER-�
was shown to bind to consensus motifs that are in open chro-
matin and marked by the histone modification H3K4me1 (64).
Thus, if motifs are used to predict TF binding, it is imperative
that epigenomic information be included to identify regions
that are biologically relevant. Fortunately, relatively small
amounts of chromatin are needed for epigenetic analyses,
which can be easily performedonprimary cells (RoadmapEpig-
enomics Project). Putative motifs can then be identified within
interacting loci that fall within regions of open chromatin and
are marked by H3K4me1 or H3K27ac. A TF association net-
work can be predicted using methods such as the Apriori algo-
rithm, a Bayesian approach, neural networks, etc. We note that
a derived network using only motif information will be more
complex than a network produced using experimentally deter-
mined TFBSs. Therefore, it is essential that putative TF associ-
ations be validated by downstream experimental approaches.

Pathway for Identification of Three-dimensional TF
Modules

High throughput techniques such as ChIP-seq, ChIP-chip,
ChIP-PET, ChIA-PET, andHi-C can provide detailed informa-
tion of genome-wide binding of TFs, histonemodifications, and
higher order organization of the chromatin. Integration of
these different types of data has greatly facilitated our under-
standing of TF associations and has brought our view of tran-
scriptional regulation from a linear paradigm to a three-dimen-
sional model. Although such studies are in their infancy, it is
clear that elucidating the relationship between TFs and chro-
matin interactions is essential to understand the complexity of
the underlying biology of transcriptional regulation. Fig. 2 illus-
trates a possible workflow for a genome-wide identification of
three-dimensional TF modules. In this pathway, epigenetic
profiling to identify sites of DNA methylation, modified his-
tones, and open chromatin is performed to segment the
genome into different epigenomic states (Step 1). Next, the
Hi-C method is used to identify all the interacting loci in
the genome (Step 2). Then, the clustering of interacting loci
based on epigenetic status is performed to identify distinct sets
of interacting chromatin loci (Step 3). TF binding data, either
predicted (Step 4A) or experimentally determined (Step 4B), are
integrated with the chromatin structure information (Step 5),
and computational methods such as the Apriori algorithm,
Bayesian approaches, or neural networks are used to develop
TF modules and association networks (Step 6). Finally, experi-
mental validation of the predicted TF associations can be per-
formed (Step 7). We also note that although moving from a
one-dimensional to a three-dimensional model of gene regula-
tion has been amajor advance in the field, it is critical to realize
that a complete understanding of transcription requires thatwe
take into account changes caused by drug treatments, environ-
ment challenges, and time (74–80). There is increasing evi-
dence suggesting a dynamic model of nuclear organization and
gene regulation. For example, studies have shown that the
interaction of TFswith chromatin can change in a cyclicalman-
ner after treatment with hormone, and there is an intensive
chromatin reorganization induced by estrogen treatment of
Matrigel-derived endothelial cells (69). These observations
support a new transcriptional regulatory paradigm in which

FIGURE 2. Pathway to identify one- and three-dimensional TF modules. The steps in identifying TF modules include the following: step 1, perform
epigenomic profiling (histone ChIP-seq) and identify open chromatin (DNase-seq) in the cell type of interest; step 2, identify interacting chromosomal loci in the
same cell type using the Hi-C method; step 3, use the epigenomic data to cluster the interacting chromosomal loci into distinct sets; step 4, either predict TF
binding using a data base of TF consensus motifs (4A) or identify bound TFs using experimental ChIP-seq data (4B); step 5, integrate the chromatin structure
information with the TF binding information; step 6, create one-dimensional (1D) and three-dimensional (3D) TF modules and TF association networks using
computational methods such as the Apriori algorithm, a Bayesian approach, or a neural network; step 7, experimentally validate TF associations via methods
such as 3C, fluorescent in situ hybridization (FISH), co-immunoprecipitation (Co-IP), immunohistochemistry (IHC), and immunofluorescence (IF).
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sets of associatedTFs serve as a driving force for highly dynamic
formations and dissociations of chromatin interactions, result-
ing in a profound impact on transcription. Thus, we look for-
ward to the future when a series of three-dimensional TF net-
works can be combined to provide a four-dimensional motion
picture of gene regulation and chromatin organization.
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