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Summary
With genomic data skyrocketing, their biological interpretation remains a serious challenge.
Diverse computational methods address this problem by pointing to the existence of recurrent
patterns among sequence, structure, and function. These patterns emerge naturally from
evolutionary variation, natural selection, and divergence—the defining features of biological
systems—and they identify molecular events and shapes that underlie specificity of function and
allosteric communication. Here we review these methods, and the patterns they identify in case
studies and in proteome-wide applications, to infer and rationally redesign function.
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INTRODUCTION
Proteins remain difficult to characterize functionally despite the exponential growth in
experimental data on sequence, structure, and function. There are many reasons for this
persistent challenge. Proteins have not a single molecular function but rather multiple
features that cooperatively sustain their biological fitness. The details and parameters of
these features, e.g. folding, dynamics, cellular targeting, molecular interactions, catalytic
activity, allosteric control, post-translational modifications, and degradation, to name a few,
are often vague for a lack of laboratory assays to measure them accurately, on a large scale,
and in their relevant cellular context. As a consequence, as of March 2012, fewer than 0.1%
of the 21 million protein sequences from 3173 completely sequenced genomes 1 had
experimentally tested functions, and only two-thirds had at least one automated
computationally inferred annotation 2–4. The number of genes without known function is
37% in eukaryotes, 24% in humans, 33% in the far simpler and much studied E. coli, and
40% in other bacteria 2, 5. Although most of the 4225 E. coli genes were recently assigned
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putative annotations of functional associations, they were not assigned biochemical
function 6. Given concerns that some of these annotations may not be accurate 7, the
problem of translating sequence into function, and more broadly of translating genotype into
phenotype, remains daunting.

Computational methods have long sought to fill this role. A remarkable early success was to
realize that sequence and structure diverge smoothly: the root mean square deviation of
protein backbones increases exponentially with the sequence divergence of evolutionarily
related proteins, or homologs 8. This elegant observation is robust 9, and extends to other
functional features besides folding 10 so that, in practice, it justifies homology-based
predictions of structure and of function 11, arguably the two most widespread computational
applications in biology. Other basic evolutionary principles are emerging from high
throughput and systems biology 7. Protein mutation rate and protein expression are inversely
correlated 8, biological networks obey power-laws and are scale-free 12; and the
evolutionary rates of orthologs follow a Gaussian spread 13. Despite their statistical power,
because these principles involve ensemble averages over whole sequences, structures,
families, genomes and networks, as well as very long time-scales, they carry limited
information on the direct role of individual sequence positions to the function of a given
protein.

Single residue variations may profoundly impact function, and explain why homology-based
function prediction can lead to incorrect annotations: although alike in sequence and
structure, two homologs may harbor differences at one or just a few residues with
disproportionate impact on function 14. The identification of such key residues is therefore
essential to distinguish meaningful variations of function. This review therefore focuses on
methods to identify functionally relevant evolutionary patterns among sequence, structure,
and function. Such patterns emerge naturally from random variations and natural selection;
they identify molecular events and shapes that determine function and specificity; and they
can be approached by focusing on sequences, on structures, and on evolutionary
classification. In the second part of the review, the focus will shift to the combination of
these techniques in a unifying Evolutionary Trace framework.

Throughout the review, we will refer to two popular functional classification systems. Gene
Ontology (GO) 4 provides well-defined terms for the molecular function, cellular
component, and biological process of a gene product, along with evidence codes that specify
the basis for the annotation and therefore its reliability. Enzyme Commission classification
designates enzymatic function into four (EC) numbers 15, indicating the mechanism of the
enzyme, the type of bond, the catalyzed reaction, and the substrate, respectively.

SEQUENCE-BASED PATTERNS
The simplest and most widespread evolutionary pattern for defining function is homology
between proteins or domains. The rationale is that homology implies that proteins share a
common ancestry and hence the function of that common ancestor. Once it is recognized by
similarity searches with BLAST or PSI-BLAST 16, function is transferred between close
homologs. A concern is that these homologs may have already evolved distinct functions.
Thus homology-based annotation errors are not uncommon: divergence of activity has been
observed even between enzymes with as much as 70% sequence identity 17. To compound
this problem, these errors may in turn propagate across databases 7. To reduce incorrect
annotations, multiple techniques, including GOtcha 18, ESG 19, and GOPred 20, tally the GO
terms of all of the most significant sequence similarity matches and identify those with the
best statistics. For example, GOtcha weighs this tally by the significance of each PSI-
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BLAST match to a database of proteins with GO annotations, to generate a probability that
the query protein performs a particular function.

Other methods go beyond whole sequence comparison to focus on alignment columns with
significant conservation 21, 22. The results are generalized profiles to infer structural or
functional similarities. Pfam 23 is a widely used database of Hidden Markov Model profiles
generated by HMMER 24 applied to the Uniprot database 2. To enhance specificity, Pfam-A
uses a smaller set of almost 12,000 sequences representative of individual families that were
hand-curated with functional annotations from literature references; to achieve sensitivity,
Pfam-B uses a larger set of nearly 140,000 families that were clustered automatically and
without dedicated annotation or reference. While Pfam and methods such as Prosite 25 and
Interpro 26 focus primarily on the entire protein domain, other sources, such as the ELM
database 27, focus instead on smaller motifs.

Even more refined searches focus on specific residues that together define a functional
signature. Transfer of function based on these signatures can increase annotation specificity,
i.e. lower false positives, by recognizing functionally inconsistent differences among key
residues. Several sequence motif-based algorithms were designed specifically for this task,
including Confunc 28, DME 29, and EFICAz2 30. All rely on discovering discriminatory
sequence fragments shared by proteins with identical function and not others. ConFunc
applies GO terms to partition homologs into multiple subsets. The sequences of each subset
are then aligned to identify conserved residues. A GO term can then be transferred to a new
homolog if it shares this residue signature. Controls suggest 24% greater accuracy of
annotation compared to BLAST for homologs with less than 35% sequence identity.
Likewise, DME and EFICAz2 use conservation to key in on functional residues specific to
given enzyme functions.

Together these studies show that comparative sequence analyses identify evolutionary
patterns at different levels of resolution, from whole sequence to profiles to motifs, that are
all relevant to structure and function and useful to transfer annotations among proteins.

STRUCTURE-BASED PATTERNS
Structural information adds another dimension to the search for functionally relevant
similarities among proteins. First, global structure alignments will detect homologies that
elude sequence searches 8. Additionally, spatial correlation among key residues can reveal
highly specific three-dimensional (3D) functional features 31. Some structural comparisons
treat the structure as a rigid body, as in DALI 32 and TM-align 33, while others tolerate
flexibility, as in TOPS++FATCAT 34. A challenge for these structural alignment is the lack
of a universally accepted definition of structural similarity 35. In order to address this,
CATH 36 and SCOP 37 created manually curated protein structure classification codes based
on both domain and evolutionary similarities. These classifications enable functional
inference of protein structure in many cases, but overall, and for the same reasons that a few
amino acid prove determinant of function in sequence comparisons, the structure-to-function
relationship over protein domains is not one-to-one 38.

This motivated searches for specific structural regions resembling previously characterized
pockets for catalysis and ligand-binding or surface regions for macromolecular
interactions 39. In a control set of 332 ligand-binding proteins, ConCavity 40 correctly
predicted the binding site in 80% of cases by searching jointly for the local conservation of
sequence and structural topology. Similar methods 41, 42 are listed in Table 1. FINDSITE 43

and 3DLigandSite 44 extend these ideas to homology models and detect the functional
determinants of a ligand binding site. FINDSITE specifically creates homology models of
the query, structurally aligns these to determine a likely binding site, and then suggests
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ligands and other GO functional annotations. In controls with less than 35% sequence
identity to the nearest target protein, FINDSITE reached 67% accuracy. A related method,
pevoSOAR 45, annotates structures for enzymatic function with 80% accuracy in limited
controls. Together these studies show that patterns of local structural similarities add
important information for functional inference.

Further following the logic of sequence comparisons, structural searches can also focus on
just the few residues that mediate the most essential aspects of catalysis or binding. The
example of the Ser-His-Asp catalytic triad of serine proteases illustrates that only a few
amino acids in a well-defined structural conformation are sufficient to annotate function in
structures 46. This suggests a general strategy in which a small but functionally essential
structural motif, called a 3D template, is matched geometrically in other protein structures.
A matched protein may then potentially perform the function associated with the
template 47. Several methods, including FunClust 48, GASPS 49, SuMo 50, PAR-3D 51, and
PINTS 52 follow this strategy. They typically rely on a source of structural motifs that are
functionally relevant, such as The Catalytic Site Atlas 53 database, which compiles templates
for enzyme activity taken from the experimental literature. To identify enzymatic templates
more generally, FLORA defines them in terms of recurrent structural patterns in the
superimposed structures of enzyme homologs 54.

PHYLOGENOMIC PATTERNS
Molecular function may also be inferred from phylogenomic classifications. Starting with an
alignment of homologs and an associated phylogenetic tree, annotations are transferred
within branches following the topology of the tree 55. Typically, uncharacterized proteins
can inherit the annotation of the ortholog subfamily to which they belong. GeMMA 56, SCI-
PHY 57, PROTONET 58, and SIFTER 59, 60 reflect these ideas. The phylogenetic tree of
PROTONET 58 has nearly 10 million sequences, and a user can retrieve the evolutionary
tree relevant to a query protein of their choice, and navigate its branches to search for
functional information. In a more automated approach, SIFTER models protein evolution to
propagate GO annotations within the tree 59, 60. This is a slow process, but limiting the
number of possible combinations of molecular functions for individual proteins significantly
raises efficiency without loss of prediction accuracy 60.

Because paralogs arise from gene duplication and usually evolve different functions, it is
important to distinguish them from orthologs. Algorithms that detect orthology often rely on
tree reconciliation approaches. Typically, a phylogenetic tree of homologs is compared to a
speciation tree, allowing paralogs and orthologs to be identified by inferring the order of
events for gene loss and duplication. TreeFam 61 provides ortholog and paralog assignments
based on this approach, as well as phylogenetic trees for individual proteins for mammal
families. PhylomeDB 62 uses a different species-overlap algorithm, which compares the
species identity of closely related branches to decide whether their parental node is a
duplication or a speciation. It provides orthology predictions, alignments, and phylogenetic
trees for human, the Saccharomyces cerevisiae, and Escherichia coli.

SYNTHESIS THROUGH EVOLUTIONARY TRACE PATTERNS
It is possible to integrate the diverse evolutionary patterns seen in sequences, motifs,
templates, and phylogenies through Evolutionary Trace (ET) analysis 63. This approach
applies proteome-wide and has been extensively validated in experimental case studies. It
yields tools to map functional sites in proteins, identify their key determinants, guide protein
redesign studies, and extract 3D functional motifs with which to annotate protein function in
novel structures. In view of this variety of applications, ET patterns arise from a surprisingly
basic classification procedure.
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In order to discover which residues are important to structure and function, ET
systematically ranks amino acid positions by their phylogenetic patterns of variation.
Starting with a protein family alignment and the corresponding evolutionary divergence tree,
ET ranks residue positions better, or worse, depending on whether the substitutions in their
alignment column correlate with larger, or smaller, tree divergences (Figure 1). Thus, by
definition, variations of top-ranked ET residues entail big evolutionary steps, suggesting that
they contribute importantly to structure and function. Variations of poorly-ranked residues,
by contrast, entail small evolutionary steps and suggest at best a limited influence on
structure and function. Thus, by systematizing these comparisons between alignment and
tree, ET ranks residue positions relative to each other by the size of their phylogenetic
variations. This procedure mimics the laboratory strategy of measuring with assays which
substitutions disrupt function, replacing assays and mutations in the wet lab with
divergences and variations, respectively, in silico 63.

A series of technical studies show that the ET rank of evolutionary importance reveals
structurally and functionally relevant patterns (Table 2). First, top-ranked ET residues
cluster spatially in protein structure 63–65. Second, this clustering is widespread in the
structural genome and greater than expected by chance as measured with a z-score to yield
an overall measure of structural clustering of important residues (Figure 2). When no
structure is available, sequence-based quality measures can also assess the significance of
ET patterns 66. Third, these clusters overlap with functional sites as shown in 37 of 38
proteins with known ligand binding sites, and so can yield insights into the regions of a
protein that mediate function most directly 64, 67. Fourth, the ET link between sequence and
structure is such that better clustering z-score strongly correlates with more accurate
functional sites discovery 67, as shown in 50 diverse proteins by varying the input
parameters of ET and observing correlations mostly above 0.7 68. Mapping evolutionarily
important residues to the structure has also been useful in other studies. Spatial clustering of
important residues formed presumed functional sites useful for protein-protein docking 69

and the prediction of catalytic residues 70. Thus phylogenetic patterns of residue variations
in sequences are linked to a clustering bias in structures that reveals functional sites. As
discussed next, one may then interrogate a novel structure with ET to identify its functional
sites and its residue determinants. In a variety of prospective experimental case studies, this
guided the design of separation-of-function mutations; the rewiring of functional specificity,
such as the discovery and reprogramming of an allosteric pathway; and the design of peptide
inhibitors. On a structural proteomic scale, top-ranked ET residues enable large-scale
function prediction.

CASE STUDIES: EVOLUTIONARY PATTERNS AND FUNCTIONAL
REDESIGN

Selective separation of function mutations helped clarify in the eukaryotic Ku70/80
heterodimer how different and antagonistic functions co-exist in the same complex, and
suggested a long-sought interaction site with the gene repressor LexA in the prokaryotic
protein RecA. The former study identified two structurally distant clusters of top-ranked ET
residues that suggested distinct functional sites in Ku70/80. Targeted mutations to one of the
clusters disrupted end-joining but not telomere-maintenance, and mutations of the other
cluster did the reverse. Thus double-strand break DNA repair and telomere maintenance
segregate to opposite ends of the Ku structure which explains how both functions may be
performed without risking end to end chromosome fusion 71. Likewise, in RecA, ET
revealed a number of new functional sites that were then mutated. These mutations disrupted
either DNA repair by recombination, or LexA interaction, but not both. Thus, even though
RecA is a heavily mutagenized, classic example for homologous DNA repair, ET patterns of
evolutionary importance revealed previously unrecognized functional regions including the
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potential trigger of LexA-mediated error prone DNA repair—one of the root causes of
antibiotic resistance 72.

ET patterns typically identify functional sites on protein surfaces, but they can also suggest
internal mechanisms. An ET study mapped key functional residues in the seven-helical
transmembrane core of G protein-coupled receptors (GPCR) and suggested that distinct
internal functional modules couple allosterically the binding of extracellular ligands to
intracellular signaling through G proteins or β-arrestin-mediated internalization. Consistent
with predictions, mutations of top-ranked ET residues in each module variously inhibited
ligand binding, caused constitutive activity 73, and could even block G protein signaling
while leaving β-arrestin signaling intact 74. More recently, a difference analysis of ET
applied solely to bioamine receptors and applied to all rhodopsin-related receptors suggested
a set of residues uniquely important to bioamine function. Single point mutations then
transferred these putative bioamine specificity determinants from the 5HT-2A serotonin
receptor into the D2R dopamine receptor and, as a result, increased serotonin signaling and
decreased dopamine signaling independent of changes in binding affinity 75. These
mutations, located deep in the GPCR transmembrane core, show that the GPCR allosteric
pathway can encode signaling response specificity independently of binding, demonstrating
the concept of allosteric specificity, and that this specificity code can be traced back and
rekeyed, at least in part, by swapping top-ranked ET residues between paralogs.

Besides point mutations, ET patterns have been moved whole into a new scaffold to create
functional mimetics. A clusters of ET residues suggested a novel binding site on surface
exposed helices of G protein-coupled receptor kinases (GRK), proteins that phosphorylate
the intracellular loops of GPCRs to regulate their activity 67. This site was then mimicked
with peptides designed to keep the evolutionarily important residues intact, while less
important amino acids were substituted in order to stabilize a helical structure. Some of
these peptides inhibited GPCR phosphorylation by 80% 67. Together these studies show that
in diverse proteins and in diverse types of experimental manipulation, top-ranked ET
residues consistently identify the key determinants of functional sites. They should therefore
be useful for 3D functional motifs to annotate function in novel protein structures.

ETA FUNCTIONAL ANNOTATION
In order to annotate function of novel protein structures solved by structural genomics, ET
Annotation (ETA) follows the 3D motifs strategies reviewed above. Uniquely, this approach
repeatedly exploits ET patterns to select motifs and to filter acceptable matches. ETA
applies ET ranks to the structure of an unknown protein, the query, to identify six best
clustering, top-ranked ET residues at or near a protein structure’s surface: the 3D template.
Simple geometric matches of such templates to protein structures of known function, the
targets, often prove too non-specific to suggest identical functions accurately. However,
false positives can be reduced dramatically by requiring that the matched sites in the target
be composed of top-ranked residues 76; that a 3D template from the target reciprocally
match the query 77; and that a plurality of targets concur in suggesting the same function 76.
If so, this functional annotation may be reliably transferred to the query in high throughput
fashion, with 92% accuracy for enzymes at three-digit EC numbers; and 94% accuracy for
non-enzymes at the third GO depth level in over a thousand Structural Genomics protein
controls 78. These studies confirm, on a large scale, that phylogenetic residue variation
patterns convey highly specific structure-function information.

A recent extension of ETA exploits graph-based semi-supervised learning to improve
function annotation specificity and coverage. The approach ties all-against-all ETA matches
among all known protein structures into a network, in which nodes represent protein
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structures and links indicate ETA 3D structural template matches between proteins 79.
Labels that indicate function are then diffused globally following the topology of this
network. Although all labels reach nearly all nodes, only a fraction does so with any
statistical significance. This global analysis improves accuracy by 6% (to 96% accuracy) at
65% coverage over all four EC numbers compared to ETA, and it also performs favorably
against other methods 54. As further validation, a novel and nontrivial ETA network
annotation was experimentally confirmed as a carboxylesterase (EC 3.1.1.1) in a
vancomycin resistant strain of Staphylococcus aureus 79. This annotation was based on
matches to three structures with sequence identities ranging between 11 and 13%. These
data show that global comparison of phylogenetic variations patterns of 6 residues, in a well-
defined structural arrangement, uncovers accurate and specific functional information,
including the resolution of substrate specificity, far into the twilight zone of protein
sequence similarity.

CONCLUSIONS
The relationship between sequence, structure and function is part of the broad effort to
understand how genotype is linked to phenotype. Some approaches rely on biophysical
modeling and others are purely experimental. However, because genotype information is
constantly in flux and a gene’s survival depends on the fitness that it encodes, evolutionary
analysis is another central approach to understand how genotype relates to phenotype. The
exponential dependence of deviations in structure and function as a result of deviations in
sequence among homologs suggests that evolution proceeds smoothly following regular
processes over long time periods. A challenge is to complement these statistical observations
of evolutionary regularity with equally precise molecular level patterns that help to recover
biological meaning from high throughput sequence, structure, and function data. This review
shows that different approaches that compare sequences and structures, motifs and
templates, correlations and phylogenetic classification are able to identify general patterns
that contain precise information on molecular function.

Many of the benefits of each of these approaches are naturally contained in Evolutionary
Trace analysis. This approach scores sequence positions by their relative evolutionary
impact, as judged from the size of the evolutionary steps associated with their variations.
Thus, residues are ranked by how well their own evolution correlated with the evolution of
all other sequence positions, represented by the phylogenetic tree. Critically, residues with
variations that correlate with root divergences are more important and have remarkable
structural and functional properties: they cluster structurally; these clusters map functional
sites; clustering quality correlates with functional site prediction; experimental mutations at
top-ranked residues control function and specificity; and their mimicry enable the transfer of
function to a peptide, or to other protein structures on a proteomic scale in silico. Thus top-
ranked ET residues embody features in the sequence, in the structure, in the protein function,
and in the phylogeny that are reproducible as general across the proteome. This suggests that
they capture basic patterns linking genotype to phenotype during evolution. To fully support
this view, however, it remains to reframe evolutionary trace analysis in a formal and
extensible framework to make explicit the genotype to phenotype relationship. Such a
relationship might then, in turn, help clarify the impact of missense mutations on protein
function.
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Highlights

Evolutionary patterns in sequences, structures, and phylogenomic classifications can
predict some aspects of protein function.

These patterns can be global in nature, such as in folds and profiles, or local, such as
in motifs and templates.

The Evolutionary Trace (ET) integrates in a single framework the analysis of these
different types of functionally relevant patterns.

ET residues cluster in structures and map out catalytic sites, binding interfaces and
allosteric pathways and their specificity determinants.
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Figure 1.
Evolutionary approaches to characterize protein function rely on both global or local
patterns. These include global sequence similarity (Homology) and local residue
conservation (Motifs), or global structural similarity (Fold Recognition) and local structural
similarity (3D Templates). Another pattern is evolutionary classification (Phylogenomics).
The Evolutionary Trace (ET) combines these approaches by defining key structural or
functional positions based on whether their evolutionary variations couple to small (blue,
where the breaks between rectangles indicate residue variations), or large evolutionary
divergences (red). Top-ranked positions typically map out functional sites to guide targeted
mutations or extract functional motifs, such as for 3D templates. Proteome-wide 3D
template matches between structures give rise to a proteomic network that can be analyzed
for global function prediction.
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Figure 2.
Distribution of the statistical clustering z-score of ET residues in 10417 proteins from the
PDB90. This z-score is the difference between the observed and the expected random
clustering pattern in units of standard deviation. A z-score can be obtained at any ET
coverage of a protein. This histogram shows the maximum clustering z-score between 0% to
50% coverage, which is representative of z-scores over most of this interval. The high
values (94% with z-score > 2) show that evolutionarily important residues cluster together in
the protein, as a general rule.
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Table 1

Common methods to characterize proteins and the main evolutionary pattern they rely on (See text for
citations)

Method Website Comments

Gene Ontology http://www.geneontology.org Standard representation of gene and gene
product attributes

Enzyme Nomenclature http://www.chem.qmul.ac.uk/iubmb/enzyme Enzyme classification

BLAST/PSI-BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi Sequence comparison

Gotcha http://www.compbio.dundee.ac.uk/Software/GOtcha/gotcha.html Assigns GO terms based on sequence
comparison

ESG http://kiharalab.org/web/esg.php Assigns GO terms based on sequence
comparison

GOPred http://kinaz.fen.bilkent.edu.tr/gopred Assigns GO terms based on sequence
comparison

Pfam http://pfam.sanger.ac.uk Database of protein families and their
MSA

HMMER http://hmmer.janelia.org Sequence comparison based on hidden
markov models

Prosite http://prosite.expasy.org Database of protein domains, families and
functional sites

Interpro http://www.ebi.ac.uk/interpro Database of protein functional signatures

ELM http://elm.eu.org/links.html Resource to investigate functional sites in
eukaryotic proteins

ConFunc http://www.sbg.bio.ic.ac.uk/~confunc Assigns GO terms based on sequence
comparison

DME http://adios.tau.ac.il/DME11.html Assigns full EC number based on
sequence comparison

Eficaz2 http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.html Assigns full EC number based on
sequence comparison

Dali http://ekhidna.biocenter.helsinki.fi/dali_server 3D protein structure comparison

TM-align http://zhanglab.ccmb.med.umich.edu/TM-align 3D protein structure comparison

TOPS++FATCAT http://fatcat.burnham.org/TOPS 3D protein structure comparison

CATH http://www.cathdb.info Protein domain structure classification

SCOP http://scop.mrc-lmb.cam.ac.uk/scop Protein domain structure classification

ConCavity http://compbio.cs.princeton.edu/concavity Predicts ligand binding sites from protein
structure

FTSite http://ftsite.bu.edu Predicts ligand binding sites from protein
structure

LIGSITEcsc http://projects.biotec.tu-dresden.de/pocket Predicts ligand binding sites from protein
structure

3DLigandSite http://www.sbg.bio.ic.ac.uk/~3dligandsite/ A threading-based method to predict
ligand binding site

FINDSITE http://cssb.biology.gatech.edu/skolnick/files/FINDSITE A threading-based method to predict
binding site, ligand, and function

pevoSOAR http://sts.bioengr.uic.edu/pevosoar Assigns up to four digit EC numbers
based on local structure similarities

Catalytic Site Atlas http://www.ebi.ac.uk/thornton-srv/databases/CSA Database of known and predicted
catalytic residues in the protein structures

FunClust http://pdbfun.uniroma2.it/funclust Identifies local functional motifs in the
protein structures
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Method Website Comments

GASPSdb http://gaspsdb.rbvi.ucsf.edu Database of 3D motifs generated by
GASPS algorithm

SuMo http://sumo-pbil.ibcp.fr/cgi-bin/sumo-welcome 3D structure comparison based on local
structure similarity

Par-3D http://sunserver.cdfd.org.in:8080/protease/PAR_3D/index.html Detects active site residues using 3D
templates

PINTS http://www.russelllab.org/cgi-bin/tools/pints.pl 3D structure comparison based on non-
sequential local motifs

Flora http://www.mcsg.anl.gov/ Assigns three digit EC numbers based on
local structural similarities

GeMMA http://www.biochem.ucl.ac.uk/cgi-bin/dlee/GeMMA Provides classification based on
phylogenetic analysis

SCI-PHY http://phylogenomics.berkeley.edu/ Provides classification based on
phylogenetic analysis

PROTONET http://www.protonet.cs.huji.ac.il Classifies protein sequences based on
phylogenetic analysis

SIFTER http://sifter.berkeley.edu Assigns GO terms based on phylogenetic
analysis

PhylomeDB http://phylomedb.org/ Database of phylogenetic trees with
ortholog assignments

TreeFam http://www.treefam.org/ Database of phylogenetic trees with
ortholog assignments

ET http://mammoth.bcm.tmc.edu/ETserver.html Ranks amino acids based on phylgenetic
analysis

ETA http://mammoth.bcm.tmc.edu/eta Assigns three digit EC numbers and GO
terms based on local structural
similarities
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Table 2

Recurrent observations regarding ET residues suggest general rules of proteome evolution which link
sequence, structure and function

PROTEOMIC RULES

1 Amino acids may be ranked by evolutionary importance

2 Top-ranked residues cluster in the protein structure

3 Clusters predict functional sites

4 Clustering quality correlates with prediction quality

5 Maximizing clusters improves the quality of predictions
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