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Abstract
Two distinct mechanisms for filtering noise in an input signal are identified in a class of adaptive
sensory networks. We find that the high-frequency noise is filtered by the output degradation
process through time-averaging; while the low-frequency noise is damped by adaptation through
negative feedback. Both filtering processes themselves introduce intrinsic noises, which are found
to be unfiltered and can thus amount to a significant internal noise floor even without signaling.
These results are applied to E. coli chemotaxis. We show unambiguously that the molecular
mechanism for the Berg-Purcell time-averaging scheme is the dephosphorylation of the response
regulator CheY-P, not the receptor adaptation process as previously suggested. The high-
frequency noise due to the stochastic ligand binding-unbinding events and the random ligand
molecule diffusion is averaged by the CheY-P dephosphorylation process to a negligible level in
E. coli. We identify a previously unstudied noise source caused by the random motion of the cell
in a ligand gradient. We show that this random walk induced signal noise has a divergent low-
frequency component, which is only rendered finite by the receptor adaptation process. For
gradients within the E. coli sensing range, this dominant external noise can be comparable to the
significant intrinsic noise in the system. The dependence of the response and its fluctuations on the
key time scales of the system are studied systematically. We show that the chemotaxis pathway
may have evolved to optimize gradient sensing, strong response, and noise control in different
time scales.
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1 Introduction and summary
A main function of biological sensory systems is to detect minute signals in fluctuating
environments. One key task of the underlying signaling pathways (networks) is then to
mitigate the effects of external noise. However, the network itself can introduce noise due to
the finite number of biomolecules involved in the intracellular signaling processes. Both the
intrinsic stochasticity of the signaling networks and the noise in the input can contribute to
large fluctuations in the output of the system. Therefore, correctly identifying the dominant
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sources of noise and deciphering the cellular strategy in noise filtering are critical in
understanding the proper functioning of biological sensory systems.

In their now classical work [1], Berg & Purcell proposed a time-averaging scheme for
filtering noise from the stochastic ligand receptor binding process. The key idea was that if
the noise correlation time is τs, the output variance can be reduced by averaging the signal
over a longer timescale τ〈s〉 according to σ2 ∝ τs/τ〈s〉. There has been much recent progress
in rigorous derivations of the correlation time τs of the diffusion and binding noise for
different systems [2–6]. However, the molecular origin of the Berg-Purcell time averaging
mechanism remains unclear. No connection has been established between τ〈s〉, the dynamics
of the pathway and its many time scales. Often, an ad hoc value of τ〈s〉, usually the longest
time scale of the system, is used without justification [1,2]. One goal of this paper is to
understand and clarify the molecular origin of the Berg-Purcell time-averaging mechanism
based on rigorous analysis of the stochastic dynamics for a class of adaptive sensory
systems.

Most sensory signaling systems, such as bacterial chemotaxis, adapt [7–9] through feedback
control [10] to maintain a high sensitivity over a wide range of backgrounds [11]. A step
stimulus (input) triggers a fast change of the output (response) followed by a slow recovery
(adaptation) to its pre-stimulus level. Given adaptation’s long timescale and its stabilizing
effect, a natural question is whether it also serves as a noise filter. More specifically,
whether the adaptation time serves as the averaging time τ〈s〉. This is indeed assumed to be
the case by several previous studies, particularly for E. coli chemotaxis [4,12]. Here, we
show unambiguously that the Berg-Purcell averaging time is not the adaptation time. In fact,
τ〈s〉 is the response time that is controlled by the signal degradation process. This is the first
result of this paper.

The time-averaging mechanism works well in filtering high-frequency noise with correlation
time shorter than the response time. Indeed, for E. coli chemotaxis, the noises due to the
stochastic ligand receptor binding-unbinding process and the random ligand diffusion,
considered by Berg & Purcell originally [1] and followed by other more recent studies [1–6],
have short time scales (~ 10−5s for ligand diffusion and ~ 10−6s for ligand binding) and are
rendered irrelevant by averaging over a relatively long response time (τ〈s〉 ~ 0.1s). For E.
coli chemotaxis the dominant signal fluctuation, we find, comes from the random motion of
the cell. In a ligand gradient, this random motion introduces an unbounded low-frequency
fluctuation in the input signal. Such random walk induced signal noise has not been studied
before, even in recent works regarding chemotaxis noise in a ligand gradient [4]. Here, we
show that random walk noise is not filtered by the time-averaging mechanism. Instead, this
low-frequency noise is suppressed by the receptor adaptation process by a mechanism
general to adaptive networks which we call feedback control. The frequency (or time)
dependence in the filtering function in the case of feedback control is opposite to that of the
time-averaging mechanism. This is the second result of this paper.

However, these intracellular biochemical noise filtering mechanisms, time-averaging
through output degradation and feedback control through receptor adaptation, also introduce
fluctuations in the output themselves due to the finite number of molecules involved in these
processes. Here, we derive the expressions of these intrinsic noises from the stochastic
pathway dynamics. We show that both these intrinsic noises are not filtered (suppressed) by
the pathway itself and can thus contribute to a significant intrinsic noise floor even in the
absence of any signal. This is the third result of this paper.

Finally, we verify these analytical results by simulating the propagation of signal noise in
the nonlinear E. coli chemotaxis pathway dynamics for bacterial cells moving in an
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attractant gradient. Using biologically relevant parameters, we show that the random-walk
induced noise is the main source of signal noise, while the ligand diffusion and binding
noises are irrelevant. We also systematically study the dependence of the response and its
fluctuation (due to both extrinsic and intrinsic noises) on the two key time scales (response
time and adaptation time). Form our analysis, we argue that the chemotaxis pathway has
evolved to optimize gradient sensing, strong response, and noise control in different time
scales.

2 Two noise filtering strategies of adaptive signaling networks
We study noise in a class of three-node enzymatic-like networks (Fig. 1A, see [13,14]) that
abstracts the E. coli chemotaxis pathway (Fig. 1B). We will then show that the results can be
further generalized to other related adaptive signaling network topologies shown in Fig. 1C–
F.

In Fig. 1A, the signal s is sensed by the fast “activity” node a, which controls the output y.
The “memory” m, which depends on a, carries out adaptation by feeding back to control the
activity a. The noisy dynamics of this adaptive network can be described by the Langevin
equations:

(1)

where η represents different noise sources: ηa, ηm and ηy are the internal white noises
caused by the stochastic biochemical reactions; the spectrum of the signal noise ηs depends
on its origin as described later.

The interactions among the nodes are characterized in Eq. (1) by the functions f, whose
exact forms can be obtained from the detailed kinetics of the system. The network topology
(Fig. 1A) constrains these interactions in the following way. The feedback mechanism
requires fa,mfm,a < 0; the stability of the system requires fa,a ≤ 0, fy,y ≤ 0 and fm,m ≤ 0; and
accurate adaptation is achieved by choosing fm,m = 0 [15]. With these constrains, Eq. 1
generally defines an adaptive system with response rate ωy = |fy,y| and adaptation rate ωm = |
fa,mfm,a/fa,a|. The rate for relaxation of a is ωa ≡ |fa,a|. Here ωx stands for derivative with
respect to x. Also, for each characteristic frequency (rate) ωx we define a characteristic time
as τx ≡ 1/ωx.

There are two types of signal related noise. The first is caused by the stochasticity of the
discrete signal sensing events such as ligand binding-unbinding, which was considered
originally by Berg and Purcell [1]. This ligand binding noise exists even for constant signals.
The second signal noise is caused by the random temporal variations of the external signal,
e. g., air pressure fluctuations for ear hair cells, the diffusion of ligand around a
chemoreceptor, or fluctuations in attractant concentration sensed by a bacterium due to the
cell’s random motion up an attractant concentration gradient. This latter case will be studied
in detail in the next section. In general, we model the signal noise ηs as exponentially

correlated with strength  and correlation time τs.

For relatively small noise, Eq. 1 can be linearized around its steady state and the transfer
function for each of the noise sources can be determined analytically in frequency (ω) space.
For example, for signal noise one has δŷ (ω) = χ(ω)η̂s(ω), where
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(2)

is the transfer function for small signals as first derived in [13]. Here, we have assumed that
the relaxation of node a is much faster than the other nodes, i.e., τa ≪ τy, τm. As is a
constant dependent on the specific forms of the interaction functions. The output y in a
single cell fluctuates due to both external signal noise and intrinsic pathway noise. The
strength of the output fluctuation can be characterized by its variance, which can be

calculated by . Summing up contributions from all the noise
sources, we obtain a compact expression of the total variance for the output y:

(3)

where each contribution, originating from a separate node in the network, has been written

in the form of a dimensionless noise amplitude, defined as  with Ax the
corresponding transfer function amplitude; multiplying the ratio of the characteristic time of
the node τx over a node-specific averaging-time τ〈x〉 which depends on the key timescales of
the system. The times for the signal noise and the internal noises are

(4)

Eq. (3) presents a comprehensive picture of the different sources of noise in the system and
their contributions to the output variance. The forms of the averaging times reveal the
underlying mechanisms for filtering different forms of noise. From the explicit expression of
the signal averaging time τ〈s〉 (Eq. 4), two distinct noise filtering mechanisms and their
responsible underlying biochemical processes are revealed.

1. Time averaging: For high-frequency signal noise (τs ≪ τy, τm) one has τ〈s〉 ≈ τy(1
+ τy/τm) ≈ τy. The last approximation is justified since in most adaptive sensory
systems the initial response to a signal is much faster than the adaptation τy ≪ τm
(examples in [8,9] all substantially more than ten fold). Therefore, we have

(5)

which follows exactly the Berg-Purcell time-averaging scheme. More importantly,
through the rigorous derivation of the time-averaging scheme, its underlying
molecular mechanism is revealed. From Eq. 5, the averaging time is τy, the
response time, which is essentially the decay time of the output. Our finding here
unambiguously shows that the underlying mechanism for averaging high-frequency
noise is the output degradation process. The slow adaptation dynamics does not
play any role in time-averaging, contrary to what was proposed before [4,12]. For
E. Coli, we will see that output degradation is slow enough as to render irrelevant
ligand diffusion and binding noise.
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2. Feedback control: For low-frequency signal noise (τs ≫ τm, τy) one has

, which is no longer an averaging time. Indeed, the
output variance takes the form

(6)

fundamentally different from the Berg-Purcell scheme.  is now inversely
proportional to τs and proportional to τm: faster adaptation leads to smaller output
fluctuation. This noise filtering mechanism, which we call adaptive noise control, is
carried out by the adaptation process and it only applies when adaptation is faster
than the correlation time of the noise. Later, we will show how this mechanism
controls the effects of signal noise caused by the random walk (run-tumble) motion
of E. coli cells.

In addition to the noise introduced by the signal s, each internal node of the network (a, m
and y) contributes to the output fluctuation due to the intrinsic stochasticity of the
intracellular biochemical reactions. The time-averaging picture (Eq. 3) is useful to
characterize internal noises. As the read-out of the signal s by a is fast, τ〈a〉 ~ τy ≫ τa, and
the activity noise is heavily damped. The noise from the adaptation node m goes as ~ (1 +
τy/τm)−1, which is almost unfiltered since τm ≫ τy in sensory systems. The noise from the
output node is always unfiltered, as τ〈y〉 = τy. These two unfiltered internal noise sources,
which exist even in the absence of the external signal, constitute the noise floor of the
signaling network. Their absolute and relative strengths depend on the details of the system,
and will be discussed later in the case of E. coli chemotaxis.

So far we have focused on the network of Fig. 1A, which is an abstraction of the E. coli
chemotaxis pathway (Fig. 1B). We now proceed to extend our results to other adaptive
topologies (Fig. 1C–F). It has recently been shown by parameter sweeping that one class of
three-node enzymatic-like networks that can exhibit robust and accurate adaptation is the E.
coli chemotaxis network shown in Fig. 1A (see also Fig. 1C in [14]). Another network
topology that enables accurate adaptation is shown in Fig. 1C, which was called Incoherent
Feedforward Loop with a Proportioner Node (IFFLP) in [14]. For the chemotaxis topology,
the condition for accurate adaptation is simply fm,m = 0 as shown before, whereas the IFFLP
network requires a more stringent condition fy,mfm,a = fy,afm,m. If this condition for perfect
adaptation is satisfied in the IFFLP network, it is not hard to show that the transfer function
χ(ω) has the same form as that of the chemotaxis network (Eq. 2) with the general property
χ(ω = 0) = 0 [16]. The only difference is that the adaptation and response rates for the
IFFLP network are given by ωm = |fm,m| and ωy = |fy,y| respectively. Since the transfer
function determines the signal filtering properties of the system, the two noise filtering
strategies here described hold exactly for the alternative IFFLP topology.

In general, any adaptive three-node topology that exhibits accurate adaptation will do so by
satisfying either the condition of the IFFLP network or that of the chemotaxis network [14].
For example the Yeast osmosensing and the olfactory adaptation topologies (Figs. 1D&E)
have to satisfy the chemotaxis condition (fm,m = 0) to exhibit accurate adaptation. On the
other hand, the topology in Fig. 1F exhibits accurate adaptation if it satisfies the IFFLP
condition (fy,mfm,a = fy,afm,m). When any of these topologies satisfies the adequate condition
and exhibits perfect adaptation, the transfer function has the form of the chemotaxis transfer
function (Eq. 2). As a consequence, the two noise filtering strategies found in this paper hold
true for any three-node topology that exhibits accurate adaptation.
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3 E. coli chemotaxis: noise, filtering, and design trade-offs
We now apply the general results of the previous section to the case of E. coli chemotaxis
pathway (see Fig. 1B), where the interaction functions and the noise strengths can
determined based on the underlying biochemical reactions. In the following we present a
simple model for bacterial chemotaxis following the recent work by Tu, Shimizu and Berg
[13] before addressing the noise effects in the system.

The signal an E. coli cell senses depends logarithmically on the ligand concentration [L]
through: s = ln((1 + [L]/Ki)/(1 + [L]/Ka)), with characteristic dissociation constants Ki and
Ka for inactive and active receptors respectively (Ki ≈ 18μM and Ka ≈ 3000μM for MeAsp
as considered in this paper). The kinase activity of the chemoreceptor complex is given by a,
and m is the methylation level of the chemoreceptor. The output y is the number of CheY-P
molecules. Recently, a coarse-grained model of the chemotaxis pathway was proposed [13]
and verified experimentally [17], with the interaction functions given by:

(7)

with ωa = 50Hz, and E(m, s) = N[α(m − m0) − s] the free energy of a N-receptors cluster
with N = 6, α = 2, and m0 = 1;

(8)

has a root at a0 = 1/3 and a negative slope which results in an adaptation time of τm = 10s;
and

(9)

with  = 600 independent receptor units with a phosphate transfer rate k = 3 × 10−3Hz from
CheA-P to the pool of yT = 104 CheY molecules, and a CheY-P decay rate assisted by the
phosphatase CheZ of ωz = 1.3Hz which results in a response time of τy = 0.5s.

The noise strengths can be obtained by summing the rates in the master equation underlying
the Langevin dynamics [18]. For the activity switching dynamics, the noise is binomial and

its strength is given as . For the methylation/demethylation processes,

 because the adaptation dynamics depends only on the activity. The
fluctuation of the number of CheY-P molecules in a cell is determined the two Poisson
processes, CheY phosphorylation and CheY-P dephosphorylation, which have the same rate

in steady state. Thus, we have .

By using both the general analytical results from last section and direct simulations of the
Langevin equation (Eq. (1)), we have studied the contributions to CheY-P level fluctuation
from different noise sources (external and internal). Different noise contributions and their
dependence on the two key time scales of the system τm and τz are summarized in Figure
2&3.

We first consider the high-frequency signal noise which arises from two independent
sources: the diffusion of ligand molecules around the receptors, and the stochasticity of the
binding and unbinding of these ligand molecules to the receptors. These noises have been
the focus of most previous works [1–4]. The diffusion of ligand molecules is a noisy
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process. Hence the number of ligand molecules near a cluster of N receptors of size l
fluctuates, creating a signal noise ηd. Following [19] it is not hard to show that the spectrum
of the ligand diffusion noise can be approximately characterized by the strength

 and the correlation time , where the ligand
diffusion constant D ≈ 103μm2/s is used for MeAsp, and l ≈ 0.01μm is used for receptor Tar
[1,20]. Additionally, even if the number of molecules around a receptor were constant, the
binding (and unbinding) of the ligand molecule to a receptor is a random process, which
generates what we call binding noise ηb. Using a simple two-state kinetic model we can

obtain the noise strength , and the correlation time of the

binding noise . The strengths of binding and diffusion noise depend
on the ligand concentration (as also does the binding time), and are larger for low
concentrations. Here we consider a small value of ligand concentration [L] = Ki, so that the
effect of these commonly studied noises is not underestimated. For MeAsp binding with Tar
cluster (N = 6), we have τb ~ 10−6s at [L] = Ki = 18μM.

According to our analysis, these high-frequency noises are averaged over the response time
τy, but not the adaptation time τm. These general predictions (solid lines in Fig. 2) are
confirmed by direct simulations (symbols in Fig. 2) of the non-linear pathway dynamics
using multiplicative noise (Eqs. 7–9). As shown in Fig. 2A, the contributions to the output
fluctuation from the ligand diffusion noise (light blue symbols and line) and ligand binding
noise (purple symbols and line) decrease with the dephosphorylation time τz. But, they are
independent of τm as shown in Fig. 2B. Given that the averaging time is much longer than
the ligand binding and diffusion times τy = 0.5s ≫ τd,b, the effects of the ligand binding and
diffusion noises are negligible in E. coli chemotaxis, orders of magnitude smaller than the
internal noise floor (red symbols and lines in Fig. 3). Hence, these high-frequency noises are
unlikely the limiting factors for sensing accuracy in E. coli as usually assumed [4,12]. This
holds even for an individual receptor with smaller dissociation constant. For example, N = 1
and Ki = 1μM would result in a longer binding time τb ~ 10−4s, which is still much shorter
than τy. However, in other systems such as in eukaryotic chemotaxis, the binding time can
be comparable to the response time τb ~ τy [21,22], so the ligand binding-unbinding noise
(ηb) there can be significant. The ligand diffusion noise ηd can also be more relevant for
systems with relatively large receptors, which leads to a longer correlation time τd of ligand
diffusion noise.

As we have shown above, the effect of the high-frequency signal noise due to ligand binding
and diffusion on the output fluctuation is negligible. The dominant source of signal noise is
the low-frequency signal fluctuation that originates from the random motion of the cell in a
ligand gradient. Here, we choose to characterize this previously unstudied signal noise in an
exponential gradient where the cell moves with a constant drift velocity [25] and the average
CheY-P level in a cell remains constant [13] so that the random-walk induced CheY-P
fluctuation can be characterized more conveniently. Quantitatively, in an exponential
attractant gradient [L] = [L]0erx which lies in the high sensitivity range Ki ≪ [L] ≪ Ka, a
cell moves in a biased random walk with a constant drift velocity vd plus a random-walk

velocity ηv with correlation time τv, variance  and the spectrum 
[23–25]. The random displacement (position) ηx = ∫ ηvdt of the cell due to its random walk
leads to a signal fluctuation ηrw = rηx, which diverges as ηrw ~ ω−1 at low frequency ω →
0. This strong signal fluctuation at low frequency is attenuated by the transfer function
which goes as χ ~ iω at ω → 0 due to adaptation’s additional role as a low-frequency noise
controller. As a result, the random-walk induced output variance remains finite:
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(10)

The feedback control of the random-walk induced signal noise is evident from the above
expression. In Eq. 10, (rσvτv)2 is the signal variance during one random-walk step. The
variance of the signal increases linearly with time ~ t/τv due to the random-walk nature of
the cell motion. For t ≥ τm, the increase in signal variation is stopped by the adaptation
process, and the variation of the output saturates to be proportional to τm/τv.

Direct simulations of Eq. 1 using the pathway interactions (Eqs. 7–9) and random-walk
induced signal noise confirm this analysis. As shown in Fig. 2A&B (blue symbols and
lines), the effects of the random-walk induced noise are independent of τz, but increase with
τm, exactly as predicted from Eq. (10). Depending on the ligand concentration gradient, the
effects of this random-walk noise can be quite significant. For a exponential gradient r =
1mm−1, the drift velocity is vd ≈ 2μm/s [24], and the cell velocity fluctuation can be
estimated from a pathway-based simulation [25] σv ≈ 9μm/s and τv ≈ 0.5s. From Eq. (10),
the resulting relative output fluctuation is σY,rw/y ~ 10−1, which is much larger than the
ligand binding and diffusion noise (see Fig. 2A&B), and comparable to the internal noise
(see Fig. 3). The cell’s rotational diffusion also contributes to this noise. However, this
contribution [12,26] is relatively small because the rotational diffusion time τrd ~ 10s is
much longer than τv ≈ 0.5s.

The internal noises have been analyzed quantitatively for E. coli chemotaxis to compare
with the signal noise (Fig. 3). Both internal noise filtering processes, adaptation (node m)
and output degradation (node y), contribute significantly to the total intrinsic noise. The
adaptation process causes a larger output fluctuation σY,m/y ~ 10−1, because its timescale is
much longer than the response time τm ≫ τy. Note that a low-frequency noise of this
magnitude is required to explain the observed 1/f noise in the switching dynamics [27,28]. It
was shown in [28] that increasing the amount of the methyltransferase CheR reduces the
output noise. This observation was explained in [29] by the possible ultra-sensitive
dependence of kinase activity a on CheR, which in our model translates to a change in the
prefactor Cm of the adaptation induced noise. However, our study reveals an additional
mechanism: increasing CheR reduces the adaptation time τm, and therefore the noise is
averaged by τy more effectively as shown in Fig. 3B. The other main intrinsic noise source
is the output node y, and its contribution to σY is smaller σY,y/y ~ 10−2. Since the underlying
molecular process is CheY-P de-phosphorylation, this intrinsic noise is a Poisson-type noise,
its strength only depends on the number of molecules (CheY-P level). This analytical result,
as seen in Fig. 3A, is consistent with the experimental observation that over-expressing
CheZ and CheY together keeps the output variance constant [30].

The topology of a biological network and the choices of the key biochemical constants
determine its functions. For the chemotaxis network, different functions can be identified in
different frequency regimes of the transfer function χ(ω) as shown in Fig. 4A. At low
frequencies (ω < ωm) random-walk noise is controlled and the gradient of the signal is
computed (see [13,17]). At very high frequencies (ω > ωy) ligand diffusion and binding
noise are averaged out. With ωm ≪ ωy, there is also an intermediate region ωy < ω < ωm,
wherein the responses to external signal are kept fast and strong as shown in Fig. 4B. The E.
coli chemotaxis network may have evolved to optimize these critical functions in different
frequency regimes. The general trade-offs of changing ωm and ωy become clear from our
analysis. Reducing ωm increases the sensitivity for gradient sensing since the CheY-P

change in response to an exponential ligand gradient is  [13,17]. But smaller ωm
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reduces the range of gradient sensing (see Fig. 4A, and [13,17]), and reduces the low-
frequency noise control ability which is crucial for suppressing the random-walk induced
noise. Reducing ωy enhances the cell’s ability in filtering high-frequency noise. On the other
hand, increasing ωy increases the response speed and response strength. As shown in Fig.
4B, the response (CheY-P level) to a step change in ligand concentration exhibits a peaked
response ΔyP at a time τP. The dependence of the peak response ΔyP and the peak time τP
on the output degradation rate ωy can be analytically derived, and are plotted in the inset of
Fig. 4B. As one can see, increasing ωy reduces the peak time and increases the peak height.
Interestingly, at ωy for the wild-type E. coli cells (indicated by the arrow in inset of Fig. 4B),
both |ΔyP| and τP are near their optimum values.

4 Conclusions and Discussions
That noise can be a limiting factor for the correct behavior of a cell is an idea that dates back
to Berg & Purcell[1], who first proposed the time-averaging mechanism to reduce the effect
of ligand diffusion noise in receptors. Their work has recently been extended and made more
rigorous by several groups [2,5,3]. However, the exact molecular nature of the time-
averaging mechanism remained unclear. Here, by studying the dynamics of a typical
adaptive signaling network, we show unambiguously that the time-averaging mechanism for
the high-frequency ligand binding and diffusion noise is the output decay process, not the
receptor adaptation as previously suggested[4,12]. This result is common to all adaptive
sensory systems, independent of the network topology.

For the particular case of E. coli chemotaxis, various aspects of noise in the signaling
pathway have been studied recently[4,31]. We discuss some of these works in light of our
findings in this paper. In [31], a signal-to-noise ratio study was carried out, with the “signal”
taken to be the response to a white noise [32]. This unrealistic assumption of the signal leads
to the conclusion that information is best encoded at high frequencies [31]. However, it is
well known that the chemotaxis pathway enables cells to detect deterministic changes (e.g.,
gradients) in chemo-effector concentration instead of random signals. As shown in this
paper (see Fig. 4A), the useful information resides at both low-frequency regime (ω < ωm)
for ligand gradients and intermediate-frequency regime (ωm < ω < ωz) for ligand step
change. The noises caused by ligand binding and diffusion do have high frequencies, but
they do not contain any useful information. At the output (CheY-P) level, these high-
frequency components in the input are filtered out effectively by the Berg-Purcell time-
averaging mechanism. In another recent study [4], lig-and binding and diffusion noises were
studied in a linear ligand gradient. This study claimed that the adaptation time is the noise-
averaging time, probably because it considered the unrealistic case of having response time
and adaptation time being the same. Moreover, because the tumble and run motion of the E.
coli cell was not considered in [4], it did not identify the signal noise from the random walk
of the cell in a ligand gradient. However, as shown here, the randomness of the E. coli
motion is in fact the dominant source of signal noise in a ligand gradient, and the signal
noises caused by ligand diffusion and ligand binding considered before [3,4,12] are much
smaller in comparison (Fig. 2). This dominant random-walk induced signal noise has a
divergent low-frequency spectrum, which is fundamentally different from the simple white
noise considered in previous studies [4,32]. We show that this previously un-characterized
random-walk induced signal noise is controlled by receptor adaptation, whose general role
in filtering low-frequency noise is revealed in our study.

For all adaptive networks, the low-frequency noise is controlled by adaptation, while the
high-frequency noise is filtered by time-averaging. The characteristics of these two noise
filtering strategies are fundamentally different. Time averaging works better for longer
response times (Fig. 2A), but feedback control works better for shorter adaptation times
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(Fig. 2B). However, the effectiveness in noise filtering, e.g., by reducing the adaptation time
and increasing the response time, comes at the expense of the systems’s ability to respond
and sense. For instance, reducing the adaptation time gives a weaker response for gradient-
sensing [13], and increasing the response time gives a weaker and slower response to a step
change in input. These tradeoffs, partly identified in previous works [12], are balanced in
bacterial chemotaxis so that all the desired functionalities of the pathway come into play in
different frequency domains as shown in Fig. 4A. At low frequencies ω < ωm, adaptation
allows gradient sensing and is also crucial in controlling the divergent random-walk induced
signal noise. The speed and strength of step responses remains optimum for a range of
intermediate frequencies (ωm < ω < ωy). The high-frequency (ω > ωy) noise, such as the
ligand binding and diffusion noise, are heavily suppressed by the Berg-Purcell time-
averaging mechanism through output degradation.
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Fig. 1.
Adaptive signaling networks capable of accurate adaptation: A. An illustration of a 3-nodes
network capable of achieving perfect adaptation to step changes in the external signal s (red
circle). The signaling nodes (blue circles) are the readout a, the memory m and the output
node y. This is an abstraction of the E. coli chemotaxis pathway. B. Signal transduction
pathway for chemotaxis in E. coli. C–F. Different topologies which can achieve accurate
adaptation: C. Integrative Feed-Forward Loop with a Proportioner node (IFFLP) topology,
identified in [14] as the main alternative network to the chemotaxis topology in Fig. 1A. All
other networks have connections between m and a as well as between y and m. D. Topology
of the olfactory sensing pathway in mammalian neurons. E. Topology identified in [9] for
yeast osmotic shock response. F. Adaptive topology that exhibits two negative feedbacks
coupled to the same memory node.
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Fig. 2.
Dependence of the three sources of signal noise on the output decay time (τz) and the
adaptation time (τm). Results from direct simulations of Eq. 1 (symbols) and linear analysis
(lines) are shown (see Eqs. 7, 8 & 9 for interactions and text for parameters used). Arrows
indicate wild-type values of τz or τm. The dependence of ligand binding noise (purple),
ligand diffusion noise (light blue), and random-walk noise (dark blue) on A. τz and B. τm.
The ligand binding and diffusion noise drop much more than random walk noise when τz
increases, while random walk noise drops much more than ligand diffusion noise when τm
decreases. Because of their very short timescales, the effects of ligand binding and diffusion
noise are much smaller than that of the random-walk noise, which is the dominant source of
signal noise.
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Fig. 3.
The dependence of the total internal noise floor (red) and the total signal noise (black) on A.
the output decay time τz and B. the adaptation time τm. The total signal noise is the sum of
the three signal noises from Figure 2. The total internal noise has contributions from both
receptor adaptation and signal degradation. The total signal noise, dominated by the random-
walk induced noise, is comparable to the internal noise. At low τm ~ τz adaptation noise
starts being reduced by time averaging and the internal noise drops. Deviations between
simulations (symbols) and linear analysis (lines) come from strong nonlinear effects when
τz/τy ≫ 1.
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Fig. 4.
The transfer function and response characteristics of adaptive networks. A. Three regimes
can be identified in the transfer function (solid line) for E. coli chemotaxis. Gradient sensing
and adaptive noise control is performed at low frequencies (ω < ωm); the response
amplitude to a step stimulus is strong for intermediate frequencies (ωm < ω < ωy); and
inputs with very high frequencies (ω > ωy) are filtered by time-averaging. Arrows indicate
wild-type values of ωy and ωm. B. Output response |Δy| to a small step change in the input.
For ωy = 20ωm as in E. coli chemotaxis, the response is fast and strong (solid line). For ωy =
2ωm as in eukaryotic chemotaxis, the response is slower and weaker (dot-dashed line).
Inset. Dependence of the peaking time τP (dotted line) and peak height |ΔyP| (dashed line)
on ωy. At ωy for the wild-type E. coli cells (indicated by the arrow), both |ΔyP| and τP are
near their optimum values.
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