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Abstract

With ever-increasing available data, predicting individuals’ preferences and helping them locate the most relevant
information has become a pressing need. Understanding and predicting preferences is also important from a fundamental
point of view, as part of what has been called a ‘‘new’’ computational social science. Here, we propose a novel approach
based on stochastic block models, which have been developed by sociologists as plausible models of complex networks of
social interactions. Our model is in the spirit of predicting individuals’ preferences based on the preferences of others but,
rather than fitting a particular model, we rely on a Bayesian approach that samples over the ensemble of all possible
models. We show that our approach is considerably more accurate than leading recommender algorithms, with major
relative improvements between 38% and 99% over industry-level algorithms. Besides, our approach sheds light on decision-
making processes by identifying groups of individuals that have consistently similar preferences, and enabling the analysis
of the characteristics of those groups.
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Copyright: � 2012 Guimerà et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a James S. McDonnell Foundation Research Award (RG and MSP), grants PIRG-GA-2010-277166 (RG) and PIRG-GA-2010-
268342 (MSP) from the European Union, and grants FIS2010-18639 (RG and MSP), FIS2006-01485 (MOSAICO) (EM) and FIS2010-22047-C05-04 (EM) from the
Spanish Ministerio de Economı́a y Competitividad. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: roger.guimera@urv.cat

Introduction

Humans generate information at an unprecedented pace, with

some estimates suggesting that in a year we now produce on the

order of 1021 bytes of data, millions of times the amount of

information in all the books ever written [1]. In this context,

predicting individuals’ preferences and helping them locate the

most relevant information has become a pressing need. This

explains the outburst, during the last years, of research on

recommender systems, which aim to identify items (movies or

books, for example) that are potentially interesting to a given

individual [2–4].

However, understanding and ultimately predicting human

preferences and behaviors is also important from a fundamental

point of view. Indeed, the digital traces that we leave with all sorts

of everyday activities (shopping, communicating with others,

traveling) are ushering in a new kind of computational social

science [5,6], which aims to shed light on human mobility [7,8],

activity patterns [9], decision-making processes [10], social

influence [11–13], and the impact of all these in collective human

behavior [14,15].

Existing recommender systems are good at solving the practical

problem of providing quick estimates of individuals’ preferences,

but they often emphasize computational performance over other

important questions such as whether the algorithms are mathe-

matically well-grounded or whether the implicit models and

assumptions are easy to interpret (and therefore to modify and fine

tune). In contrast, algorithms that are based on plausible, easily-

interpretable assumptions and that are based on solid mathemat-

ical grounds are useful in themselves and, arguably, hold the most

potential to advance in the solution of the problem at the

fundamental and practical levels. Here we present one such

approach and show that it performs better than state-of-the-art

recommender systems.

In particular, we focus on what is called collaborative filtering

[16], namely making predictions about preferences based on

preferences previously expressed by users. The underlying

assumption in virtually all collaborative filtering approaches is

that similar people have similar ‘‘interactions’’ with similar

items. This consideration is usually taken into account

heuristically. For example, in memory-based methods [16],

one tries to identify users that are similar to the one for which

we seek a prediction; or items that are similar to the target

item. From these ‘‘neighbors’’ one then obtains a weighted

average. In matrix factorization approaches [17], one assumes

that each user and item can be characterized by a low-

dimensional ‘‘feature vector,’’ and that the rating of an item by

a user is the product of their feature vectors.

In contrast, we base our predictions in a family of models [18–

21] that have been developed and are widely used by sociologists

as plausible models of complex social networks, that is, of how

social actors establish relationships (friendship relationships with
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each other, or membership relationships with institutions, for

example). In this family of models, social actors are divided into

groups and relationships between two actors are established

depending solely on the groups to which they belong. Because of

their simplicity and their explanatory power, these models are

increasingly being studied as general models of complex (not

necessarily social) networks [22–24].

In the context of predicting human preferences, block models

assume that users and items can be simultaneously classified into

categories, and that the category of the user and the category of

the item fully determine the rating. Therefore, the model is

extremely easy to interpret. Additionally, our algorithm is

mathematically sound because it uses a Bayesian approach that

deals rigorously with the uncertainty associated with the models

that could potentially account for observed users’ ratings. Indeed,

our approach averages over the ensemble of all possible groupings

of users and items, exploiting the formal analogies that exist

between statistical inference and statistical physics [25].

Finally, our algorithm sheds light on the factors determining

preferences because it allows one to study the groupings that have

the most explanatory power or that accurately account for certain

features of the users’ ratings.

Bayesian Predictions Based on the Ensemble of
Stochastic Block Models

Consider the observed ratings RO, whose element rO
ui represents

the rating of user u on item i (Fig. 1). Note that not all elements in

this ‘‘matrix’’ are defined, since only some pairs (u,i) are actually

observed; we call O the set of observed (u,i) pairs. Like in

collaborative filtering approaches [2,3], we assume that these

observations are all the information that the algorithm can use to

make predictions about unobserved ratings (in other words, we do

not use any information about users or items other than past

ratings). Our problem is then to estimate the probability

p(rui~rDRO) that the unobserved rating of item i by user u is

rui~r, given the observation RO.

Let’s assume that the observed ratings can be explained by one

of the models in a family M of generative models. Then,

p(rui~rDRO)~

ð
M

dM p(rui~rDM)p(M DRO) , ð1Þ

where p(rui~rDM) is the probability that rui~r if the ratings

where actually generated using model M, and p(M DRO) is the

plausibility of model M given the observation. Using Bayes

theorem Eq. (1) becomes

p(rui~rDRO)~

Ð
M dM p(rui~rDM)p(RODM)p(M)Ð

M dM ’p(RODM ’)p(M ’)
, ð2Þ

where p(RODM) is the probability that model M gives rise to RO

among all possible ratings (or the likelihood of the model), and

p(M) is the a priori probability that model M is the correct one (or

prior). This equation is formally equivalent to those derived in the

context of network inference [22] and, more broadly, to those used

in Bayesian model averaging [26].

Although Eq. (2) is the correct probabilistic treatment of RO for

inference of unobserved ratings, in practice predictions will only be

accurate if the models in M (or at least some of them) correctly

describe how users actually rate items. Additionally, the models

need to be simple enough that they are analytically or

computationally tractable.

We consider the family MSBM of stochastic block models [19–

22]. In a stochastic block model, users and items are partitioned

into groups and the probability that a user rates an item with

rui~r depends, exclusively, on the groups su and si to which the

user and the item belong, that is

p(rui~rDM)~qr(su,si)[½0,1� , ð3Þ

with
P

r qr(su,si)~1.

Consider the case in which ratings can take K different values

r[f1, . . . ,Kg (we use the labels 1, . . . ,K for simplicity, but the only

requirement is that there are K non-overlapping classes, which do

not need to be ordinals). Under the assumption of no prior

knowledge about the models (p(M)~const:), one can partially

integrate Eq. (2) (see Methods) to obtain

pSBM(rui~rDRO)~

1

Z

X
PU [PU
PI [PI

nr
susi

z1

nsusi
zK

 !
e{H(PU ,PI ) , ð4Þ

where the sum is over all possible partitions of users and items into

groups (PU and PI , respectively), nr
susi

is the number of r-ratings

observed from users in group su to items in group si, and

nsusi
~
PK

k~1 nk
susi

is the total number of observed ratings from

users in su to items in si. The ‘‘Hamiltonian’’ H(PU ,PI ), which

weights the contribution of each partition, depends only on the

partition

H(PU ,PI )~
X
a,b

ln nabzK{1
� �

!{
XK

k~1

ln nk
ab

� �
!

" #
ð5Þ

and Z~
P

e{H is the partition function.

Although carrying out the exhaustive summation over all

partitions in Eq. (4) is unfeasible, one can estimate

pSBM (rui~rDRO) using Metropolis sampling [22,25,27]. Given

these probabilities, our prediction for a given rating is the one that

maximizes the probability

r�ui~ arg max
r

pSBM(rui~rDRO) : ð6Þ

Benchmark Algorithms
To test how accurately our stochastic block model (SBM)

algorithm predicts human preferences, we compare its perfor-

mance to that of some of the most accurate algorithms in the

literature of collaborative filtering recommender systems (see

Methods for details) [4]. First, we consider a matrix factorization

method [17] based on singular value decomposition (SVD) [28],

which uses stochastic gradient descent to minimize the deviations

between model predictions and observed ratings [17]. We use two

implementations of this algorithm: our own implementation

(SVD1) as well as a highly optimized implementation provided

by LensKit framework (SVD2) [4]. Second, we consider an

algorithm based on the similarity between items [4,29], and again

use the LensKit implementation (Item-Item). Additionally, we

consider a baseline naive recommender, where the rating of an

Block Models for Predicting Human Preferences
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item by a user is simply the average rating of the item by all users

that have rated it before [4].

Results

Performance Comparison on Model Ratings
To investigate how our approach performs compared to the

benchmark algorithms, and in what situations it works better or

worse, we start by generating model dichotomous like/dislike

ratings as follows. First, each item i is assigned an intrinsic quality

Qi[½0,1�. Additionally, items and users are partitioned into groups,

and each user u has an a priori preference P(su,si)[½0,1� for item i,

where su and si are the user and item groups, respectively. Then,

the probability that u rates i with r~1 (‘‘like’’, as opposed to r~0,

‘‘dislike’’) is

p(rui~1)~Q
(1{a)
i P(su,si)

a , ð7Þ

where a[½0,1� is a parameter that enables us to interpolate between

a situation in which the intrinsic quality of the item is the only

relevant factor (a~0) and a situation in which a priori preferences

are the only relevant factor (a~1).

In Fig. 2, we show the performance of the different algorithms

when applied to model ratings. When the intrinsic quality is the

dominant factor in user ratings (av0:5), all algorithms perform

similarly well. Of note, in the limiting case where intrinsic quality

is the only relevant factor (a~0), the naive recommender is the

optimal predictor and does indeed perform slightly better than the

others.

Conversely, when a priori preferences start playing a significant

role (aw0:5) algorithms start to differ in their performance. As

expected, the naive recommender performs poorly in this regime

Figure 1. Predicting preferences using stochastic block models. (A) Users A–H rate movies a–h as indicated by the colors of the links. (B-C)
Matrix representation of the ratings; patterned gray elements represent unobserved ratings. Different partitions of the nodes into groups (indicated
by the dashed lines) provide different explanations for the observed ratings. The partition in (B) has much explanatory power (lowH) because ratings
in each pair of user-item groups are very homogeneous. For example, it seems plausible that C would rate item a with a 2, given that all users in the
fC,D,Gg group give a 2 to all items in group fa,b,gg. Conversely, the partition in (C) has very little explanatory power. According to Eq. 4, the
predictions of (B) contribute much more than those of (C) to the inference of unobserved ratings.
doi:10.1371/journal.pone.0044620.g001

Figure 2. Algorithm comparison for model ratings. We show the
prediction accuracy (that is, the fraction of correct rating predictions) as
a function of the parameter a that measures the importance of a priori
preferences as opposed to intrinsic item quality (see text for details).
The black line represents the optimal prediction accuracy, which would
be obtained if the algorithms were able to estimate exactly the
probability of each rating. For all the simulations we use: nu~100 users
organized in 5 groups; ni~100 items organized in 5 groups; P(su,si)
uniformly distributed in ½0,1�; 4,000 observed ratings; and 1,000 ratings
in the test set.
doi:10.1371/journal.pone.0044620.g002
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and becomes totally uninformative when a~1. The performances

of the other algorithms are closer, but SBM is significantly and

consistently the most accurate.

Of course, for a~1 model ratings are generated according to a

block model, so the SBM approach is expected to work best.

However, it is worth pointing out that at least for these model

ratings, the most advanced collaborative filtering approaches are

never the most accurate, regardless of the value of a–either they

perform slightly worse than the naive recommender, or they

perform significantly worse than the SBM. Since these collabora-

tive filtering approaches are known to be much more accurate in

real data than the naive approach (indeed, they are consistently

the most accurate among collaborative filtering methods in the

literature [4]), our results on model ratings suggest that the SBM

algorithm has the potential to provide good estimates on real data.

Additionally, our approach also seems to be the most robust

because it never provides estimates that are significantly worse

than those produced by any other algorithm.

Performance Comparison on the MovieLens Dataset
The MovieLens dataset is one of the gold-standards for testing

collaborative filtering algorithms [4]. It contains 100,000 real

ratings (r[f1,2,3,4,5g) from 943 users on 1,682 movies, which

were collected through the MovieLens web site (movielens.um-

n.edu) during the seven-month period from September 19th, 1997

through April 22nd, 1998. For purposes of validation, the dataset

is organized in five different splits, each containing a training set

RO with 80,000 ratings and a test set with 20,000 ratings.

As we show in Fig. 3, our algorithm is the most accurate for all

and each of the test sets, both in terms of the classification

accuracy (that is, the fraction of predictions that are exactly

correct) and in terms of the mean absolute error (the mean of the

absolute value of the difference between the predicted and the real

ratings).

To fully appreciate the importance of our improvement over

existing algorithms, it is worth noting that, in terms of classification

accuracy, the average improvement of the SBM approach over the

best recommender (the Item-Item algorithm) represents a

38%+3% of the improvement of the best recommender over

the baseline (naive recommender). The improvement of SBM over

SVD, relative to the improvement of SVD over the baseline, is

99%+6%. These are major improvements, especially when

compared to the differences that could be attributed to

implementation details, which are small as shown by the difference

in performance between SVD1 and SVD2 (Fig. 3).

Characteristics of Sampled Partitions
As we have pointed out before, our approach offers the

opportunity to study the collections of groupings that have the

most explanatory power, namely, those that the Metropolis

sampler visits. The MovieLens dataset includes some demographic

information about users (such as gender and age) as well as some

characteristics of the movies (such as genre). We use this

information to assess whether the groupings we sample are indeed

correlated with these user and movie characteristics, even when

the stochastic block model does not take this information into

account.

In particular, we study the co-classification of users [30], that is,

the probability that two users belong to the same group

pSBM(su1
~su2

DRO)~
1

Z

X
PU [PU
PI [PI

d(su1
,su2

)e{H(PU ,PI ) : ð8Þ

We then plot the probability that a pair of users have the same

gender and their average age difference as a function of their co-

classification probability (Fig. 4A). We observe that user co-

classification is strongly correlated with both demographic

properties. For example, a pair of users that are very unlikely to

belong to the same group have the same gender 58% of the times,

whereas pairs of nodes that are almost surely in the same group

have the same gender 83% of the times.

Similarly, we plot the genre overlap (see Methods) between two

movies as a function of their co-classification probability (Fig. 4B).

Again, we observe a strong correlation, which indicates that the

Figure 3. Algorithm comparison for real ratings from the
MovieLens dataset. Each test set corresponds to a split of the
100,000 ratings in the complete dataset into 80,000 observed ratings
and 20,000 test ratings. (A) Classification accuracy is the fraction of 1–5
ratings that are exactly predicted by each algorithm. (B) Mean absolute
error is the mean absolute deviation of the prediction from the actual
rating.
doi:10.1371/journal.pone.0044620.g003
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stochastic block model correctly picks groups that are related to

movie content, even without having access to such information.

Discussion

We have shown that a Bayesian approach based on the block

structure of social networks gives predictions of human preferences

that are significantly and considerably more accurate than leading

collaborative filtering recommender algorithms.

Like any other approach, ours has shortcomings. In particular,

it is worth noting that the gain in accuracy comes at the expense of

computational cost–Metropolis sampling of the user and item

partition space is computationally demanding. Although we are

able to run the algorithm on the MovieLens dataset with

approximately 1,000 users and items and 100,000 ratings,

handling even one order of magnitude more might be challenging.

Besides parallelizing the sampling process (which is straightfor-

ward), we think that two approaches could significantly reduce the

computational cost: (i) finding analytical approximations to Eq. (4),

or even an exact series expansion in terms of the ratings matrix; (ii)

implementing a believe propagation algorithm [23,31] to replace

Monte Carlo sampling.

In any case, we consider that the advantages of our approach

outweigh its shortcomings. Not only does our algorithm provide

better predictions, but also has some desirable features: it is

mathematically rigorous, it is based on plausible social models, and

it sheds light on decision-making processes.

With respect to mathematical rigor, the Bayesian approach is

the complete and correct probabilistic treatment of the observa-

tions. As a result, we obtain an estimate of the whole probability

distribution for each rating p(rui~rDRO). From this, we can choose

how to make predictions (the most likely rating, the mean, the

median, an others). In contrast, recommender systems like those

based on matrix factorization give predictions that, in general, are

not feasible ratings (for example, r�ui~0:65 when rui[f0,1g) or that

may even be outside the rating range (for example, r�ui~1:2 when

rui[f0,1g). Additionally, these algorithms assume that ratings are

linearly spaced in the ‘‘psychological scale’’ of users (that is, that

the difference between rui~5 and rui~4 is the same as between

rui~2 and rui~1), which is known not to be true [4].

Finally, our approach is based on models that were originally

defined and are widely used to explain how social agents establish

relationships, and is therefore in a better position to illuminate

which social and psychological factors determine human prefer-

ences. As an interesting byproduct of this, we note that it is

possible to use our approach to infer demographic properties from

ratings alone, a subject that is of much current interest [32].

Methods

Derivation of the Rating Equations
Here, we show how we derive the expressions for the probability

of a given rating (Eq. (4)) starting from the general Bayesian

formulation of the problem (Eq. (2)). In a stochastic block model,

users and items are partitioned into groups and the probability

that a user rates an item with rui~r depends, exclusively, on the

groups su and si to which the user and the item belong, that is

p(rui~rDM)~qr(su,si)[½0,1� , ð9Þ

with
P

r qr(su,si)~1. Other than this normalization constraint,

qr(su,si) can take any value between 0 and 1.

As in the main text, we consider the case in which ratings can

take K different values r[f1, . . . ,Kg. In this case, a model

M~(PU ,PI ,fQ1, . . . ,QKg) is completely specified by a partition

PU of the users, a partition PI of the items, and K matrices Qr,

r~1, . . . ,K , whose elements are qr(a,b). Then the likelihood of a

model is

p(RODM)~ P
a[PU

P
b[PI

P
K

i~1
qi(a,b)

ni
ab , ð10Þ

where ni
ab is the number of i-ratings observed from users in group

a to items in group b.

Putting together Eqs. (2), (9) and (10), and under the assumption

of no prior knowledge about the models (p(M)~const:), we have

p rui~rjRO
� �

~
1

Z

X
PU [pU
PI [pI

ð
dQqr su,sið Þ P

a[PU

P
b[PI

P
K

i~1
qi a,bð Þ

ni
ab

; ð11Þ

where the integral is over all qi(a,b) within the subspace that

satisfies the normalization constraints
P

i qi(a,b)~1. These

integrals factorize and one is left with only two types of integrals

to solve. For a~su, b~si and i~r we have (without loss of

Figure 4. Characteristics of sampled partitions. We calculate how
often each pair of users (A) or movies (B) are co-classified in the same
group in the sampled partitions. (A) Probability that a pair of users have
the same gender (circles), and their age difference (squares), as a
function of their co-classification frequency. (B) Overlap between the
genres of a pair of movies (see Methods) as a function of their co-
classification frequency.
doi:10.1371/journal.pone.0044620.g004
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generality we consider the case r~1 and, for clarity, we drop the

dependence of qi on a and b)

ð1

0

dq1 qn1z1
1

ð1{q1

0

dq2 qn2

2 � � �
ð1{q1{...{qK{2

0

dqK{1 qnK{1

K{1

(1{q1{ . . . {qK{1)nK

~
(n1z1)!n2! . . . nK !

(n1zn2z . . . znKzK)!
:

For all other terms we have

ð1

0

dq1 qn1

1

ð1{q1

0

dq2 qn2

2 � � �
ð1{q1{...{qK{2

0

dqK{1 qnK{1

K{1

(1{q1{ . . . {qK{1)nK

~
n1!n2! . . . nK !

(n1zn2z . . . znKzK{1)!
:

Using these expressions in Eq. (11), one obtains Eq. (4).

Sampling of the Partition Space
Uniformly sampling the space of users’ and movies’ partitions is

necessary to get accurate estimates of rui (Eq. (4)). The simplest

way to sample users (or movies) partitions is by considering a

random initial partition and then attempting moves of individual

users from their current group to a new group, which is selected

uniformly at random. However, this approach has the shortcom-

ing of implicitly considering groups as distinguishable–for exam-

ple, if node A is alone in group 1 and we move it to an empty

group, the partition has not changed but the algorithm considers it

as different.

In fact, when there are as many potential user groups as there

are users, considering groups as distinguishable has the effect of

over-counting partitions by a factor (Nu{ku)!=Nu!, where Nu is

the number of users and ku is the number of non-empty user

groups in the partition.

Since, as we have said, sampling over partitions with

distinguishable groups is easiest to implement, in practice we use

a modified Hamiltonian that ‘‘penalizes’’ partitions that are

otherwise over-counted

H0(Pu,Pm)~H(Pu,Pm)

{ log (Nu{ku)!½ �

{ log (Nm{km)!½ � , ð12Þ

where H(Pu,Pm) is given by Eq. (5).

Note that the additional terms in Eq. (12) are not a priori

penalties to avoid over-fitting by models with many groups, but

rather corrections to a sampling process that would otherwise be

biased. The over-fitting problem, which is common to other

approaches to inference of block models [23], is automatically

solved by our marginalization over the qr probabilities.

For infinitely long samplings of the space of partitions, the

correction in Eq. (12) exactly cancels the over-counting of certain

partitions that our sampling method causes. For finite sampling

times, one cannot be sure that the whole partition space is

uniformly sampled. To minimize this potential problem, we run

short, parallel and independent sampling processes in different

regions of the partition space, as opposed to a single long sampling

process. This slightly improves our predictions of model and real

ratings (although the improvement is small compared to the

difference between our algorithm and other algorithms’ perfor-

mance).

Benchmark Algorithms
In the naive recommender (Naive), the rating of user u for item i

is simply the average rating of i by all users:

rN
ui~

P
u’[Ui

ru’i

DUi D
, ð13Þ

where Ui is the set of users that rated item i and DUi D is the number

of users in that set.

The matrix factorization method based on singular value

decomposition (SVD) works as follows [17]. The matrix of ratings

R (with a number of rows nu that coincides with the number of

users, and a number of columns ni that coincides with the number

of items) can be decomposed, using singular value decomposition,

into

R~P Q , ð14Þ

where P is a nu|ni matrix and Q is a ni|ni matrix.

If we denote the rows of matrix P as pT
u and the columns of Q as

qi, then individual ratings satisfy rui~pT
u qi. For the purpose of

making recommendations, it is convenient to pose the decompo-

sition problem as an optimization one; indeed, one can prove that

P and Q are the solution of

fpu,qig~ arg min
~ppu,~qqi

X
u,i

(rui{~ppT
u ~qqi)

2 : ð15Þ

In practice, to estimate unobserverd ratings one needs to take

into consideration a number of important issues. First, SVD

factorization can have a prohibitive computational cost because

we typically deal with large nu and ni, so the problem has to be

dimensionally reduced. Second, only some user-item pairs are

observed (namely, those (u,i)[RO). And third, users and items can

have rating biases (for example, some users rate items higher than

others, and some items are systematically highly rated).

Ultimately, unobserved ratings r�ui are estimated using

r�ui~p�Tu q�i zmzbuzbi , ð16Þ

where bu and bi are the biases of users and items respectively and m

is the average rating in RO. The vectors p�u and q�i are dimensional

reductions of the original pu and qi, and have length Kvnu,ni.

They are obtained by solving the optimization problem
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fp�u,q�i g~ arg min
~ppu,~qqi

X
(u,i)[RO

rui{~ppT
u ~qqi{m{bu{bi

� �2

zl
X
u,i

E~ppuE
2zE~qqiE

2
� �

: ð17Þ

As Funks originally proposed [17] we solve this problem

numerically using the stochastic gradient descent algorithm [33].

In our implementation of the algorithm (SVD1), we use K~200.

In the LensKit implementation of the algorithm (SVD2) we set

K~50 and a learning rate of 0.002 as suggested in Ref. [4].

Finally, the algorithm based on the similarity between items

(Item-Item) works as follows [29]. One starts by defining a

similarity between items, which in our case is the cosine between

the item rating vectors (conveniently adjusted to remove user

biases towards higher or lower ratings [29]). The predicted rating

rui is the similarity-weighted average of the K closest neighbors of i

that user u has rated. Once more, we use the default, optimized

implementation of the algorithm in LensKit [4] (K~50).

Movie Genre Overlap
Each movie i in the MovieLens dataset is labeled with one or

more genres Gi. We define the genre overlap oi1,i2 between two

movies as the Jaccard index of the corresponding genre sets

oi1,i2
~

DGi1
\Gi2

D
DGi1

|Gi2
D

, ð18Þ

that is, the ratio between the number of genres shared by the two

movies and the total number of genres with which they are

labelled.
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