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Abstract
The number of overweight and obese individuals has dramatically increased in the US and other
developed nations during the past 30 years. While type II diabetes and cardiovascular disease are
well recognized co-morbid conditions associated with obesity, recent reports have demonstrated a
greater severity of illness in obese patients due to influenza during the 2009 H1N1 pandemic.
Consistent with these reports, diet-induced obesity has been shown to impair anti-viral host
defense in murine models of influenza infection. However, the impact of obesity on the risk of
community-acquired and nosocomial pneumonia in human patients is not clear. Relatively few
studies have evaluated the influence of diet-induced obesity in murine models of bacterial
infections of the respiratory tract. Obese leptin deficient humans and leptin and leptin-receptor
deficient mice exhibit greater susceptibility to respiratory infections suggesting a requirement for
leptin in the pulmonary innate and adaptive immune response to infection. In contrast to these
studies, we have observed that obese leptin receptor signaling mutant mice are resistant to
pneumococcal pneumonia highlighting the complex interaction between leptin receptor signaling
and immune function. Given the increased prevalence of obesity and poor responsiveness of obese
individuals to vaccination against influenza, the development of novel immunization strategies for
this population is warranted. Additional clinical and animal studies are needed to clarify the
relationship between increased adiposity and susceptibility to community-acquired and
nosocomial pneumonia.

Introduction
The prevalence of obesity among adults living in the US has increased to alarming levels
with 34% obese (BMI≥30) and 68% overweight (BMI=25-29.9) 1. Moreover, 46-54% of
hospitalized patients are overweight, 32% are obese, and 5% are extremely obese with a
BMI (BMI≥40) 2. Similar trends have been observed in other developed nations raising
global concerns about the chronic health consequences of obesity 3. While type II diabetes,
cardiovascular disease, and non-alcoholic fatty liver disease are well known co-morbid
conditions associated with obesity, the evidence that excess white adipose tissue suppresses
pulmonary host defense against infection is emerging 4-7. The recent observation that the
obese were uniquely susceptible to and suffered more severe outcomes from the 2009 H1N1
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influenza pandemic underscores the need to elucidate the effects of obesity on innate and
adaptive immune responses against respiratory infections 8. This review will examine the
evidence that obesity contributes to a greater severity of respiratory infections in humans
and in animal models and will also discuss potential mechanisms underlying these
responses.

I. Co-morbid conditions associated with obesity compromise pulmonary
host defense

Obesity is a complex condition that is characterized by excess white adipose tissue and is
often accompanied by other co-morbid conditions, such as gastroesophageal reflux disease
(GERD) and type II diabetes, known to compromise host defense against infection 9. Both
GERD and type II diabetes, even in the absence of excess adiposity, have been shown to
compromise host defense by impairing innate and adaptive immunity 10-11.

Obesity and gastroesophageal reflux disease (GERD)
Obesity is associated with larger gastric volumes and the accumulation of visceral adipose
tissue known to increase gastric pressure. The combination of these factors compromise
lower esophageal sphincter closure. As a consequence, reflux of gastric fluid occurs and this
fluid can be aspirated into the respiratory tract resulting in pneumonia 12. GERD is common
in patients with abdominal obesity who are at a greater risk for aspiration pneumonia 10.
Positioning these patients in a semi-upright position during sleep and hospitalization can
decrease symptoms associated with GERD and aspiration pneumonia 13-14. It is also
important to note that GERD is very common among those recovering from bariatric surgery
and these patients should be monitored for reflux to prevent aspiration pneumonia 15-16.

Host defense and diabetes
Type II diabetes is fairly common among those who are overweight or obese and this
condition is a well established risk factor for infectious disease for many reasons 17.
Diabetes is known to delay wound healing, impair host defense against skin and cutaneous
infections, and is associated with nosocomial infections and infectious complications of
surgery 17. Interestingly, a recent study by O'Brien et al. demonstrated impaired wound
healing in obese hyperglycemic mice after infection with the influenza virus 18. It is also an
important risk factor for pneumonia and influenza 11 and contributes to a higher risk of
death from community-acquired pneumonia 19.

Adipose tissue inflammation, nutrient excess, and immune suppression
The accumulation of adipose tissue during obesity may attenuate pulmonary host defense
through metabolic disturbances that often accompany this condition. Adipose plays an
important role in storing excess calories in the form of triacylglycerol (TAG). In addition to
serving as a buffer for dietary TAG, adipose tissue is an endocrine gland. As this tissue
expands, its ability to buffer dietary lipids declines resulting in elevated blood TAG and free
fatty acids (FFA). As a consequence, these lipids increase in the peripheral circulation and
accumulate in ectopic sites such as skeletal muscle, the liver, and islets of the pancreas
which leads to insulin resistance and hyperglycemia 20. In addition, adipose tissue elaborates
proinflammatory cytokines (TNF-α, IL-6, IL-1β, IL-18, MCP-1), proinflammatory
adipokines such as leptin and resistin, and produces less anti-inflammatory adipokines such
as adiponectin. The consequence of these events is systemic inflammation which may
ultimately impair innate and adaptive immune function by inducing endoplasmic reticulum
stress, lipotoxicity, oxidative stress, and leptin resistance 21-22. (Summarized in Figure 1).
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II. Obesity is a risk factor for the severity of illness from influenza
The H1N1 influenza pandemic of 2009 provides the strongest evidence that the obese
exhibit greater susceptibility to pulmonary viral infections 5, 23. A number of reports
indicated that the obese and morbidly obese appeared to be more susceptible to and
exhibited a greater severity of illness from the H1N1 influenza pandemic of 20095, 23-25.
Additional studies confirmed these associations indicating that obesity and morbid obesity
were independent risk factors for hospitalization 26, admission to an intensive care unit 27,
and critical illness and death 23, 28 associated with H1N1 infection in the US29. Similar
reports from many other countries also indicate a greater severity of illness and death from
pandemic H1N1 in obese patients 30-35 (Summarized in Table 1). While this information
suggests that obese individuals should receive annual seasonal influenza vaccinations,
obesity is associated with a greater decline in influenza vaccine antibody titers and defective
influenza-specific CD8+T cell function 36. A novel influenza vaccine strategy may be
required to protect obese humans from seasonal influenza. Finally, since mortality from
influenza is often associated with secondary bacterial pneumonia, future studies should
investigate potential associations between obesity and the possibility that these individuals
may be more likely to develop secondary bacterial pneumonia.

III. Diet induced obese mice exhibit increased mortality and impaired host
defense against influenza-infection
Diet Induced Obese (DIO) mice and influenza A infection

The recent obesity epidemic is most likely due to a positive energy balance that commonly
occurs as a consequence of an energy rich diet and limited physical activity. Many
investigators have taken a similar approach in producing DIO mice by feeding these animals
diets consisting of 40-60% fat, usually in the form of saturated fatty acids, to induce obesity
within a relatively short period of time (100-120 days) 37. Using the DIO model, a number
of studies that have examined the effects of obesity on mechanisms of host defense against
influenza infection 18, 21, 38-40. In the first study to demonstrate that obesity increases the
risk of death from influenza infection, Smith et al. observed that DIO mice exhibited greater
mortality, increased lung pathology scores, and a defective cytokine response following
infection with a mouse adapted influenza virus (Influenza A/PR8/34) 38. The impairment in
host defense in DIO mice was associated with a decrease in type I IFNs (IFN-α and IFN-β),
a delay in the expression of IL-6 and TNF-α that eventually increased to levels greater than
that observed in lean animals, and impaired natural killer (NK) cell cytotoxicity. Subsequent
studies revealed that DIO also impairs the ability of dendritic cells to present antigens to T
cells, attenuating monocyte and CD8+T cell recruitment, and diminishing IL-2 and IL-12
production following influenza infection 39. Following a primary challenge with non-lethal
influenza H3N2, Karlsson et al. demonstrated that DIO mice exhibited increased morbidity
and mortality following a secondary infection with influenza A/PR/8 that was associated
with reduced CD8+ T cell, IFN-γ production, and defective antigen presentation by
dendritic cells 21, 41. This impairment was due to an inability of DIO mice to generate and
maintain functional antigen specific memory CD8+ T cells.

DIO mice and pandemic H1N1 infection
Recent studies by Easterbook et al. and O'Brien et al. showed that DIO mice experience
greater mortality despite similar viral loads following infection with the 2009 pandemic
H1N1 influenza virus 40, 42. In the report by Easterbrook, the authors observed that
pulmonary IFN-β and proinflammatory cytokine production in DIO mice were lower than in
lean control animals. Interestingly, serum cytokine levels were elevated in DIO and this
response did not occur after influenza infection in lean mice. In a study by O'Brien et al.,
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increased mortality in DIO and ob/ob mice following H1N1 infection was associated with
increased lung pathology, impaired wound repair and subsequent pulmonary edema 42. The
results of these studies are summarized in Figure 2, a picture adapted and updated from a
review published by Karlsson et al. 41. While these reports provide valuable insights into
mechanisms by which obesity may impair host defense against influenza infection, future
studies should examine the direct effects of nutrient excess (i.e. elevated blood lipids and
hyperglycemia), endoplasmic reticulum and oxidative stress, and leptin resistance on
intracellular signaling pathways and effector functions in NK cells, macrophages, CD4+ T
cells, effector CD8+T cells, plasma B cells, DCs, and other cells known to participate in the
anti-viral response 21. The use of cells recovered from obese patients and mice that become
obese due to hyperphagia, a more physiologically relevant model, rather than a high fat diet,
are also encouraged.

IV. Does obesity increase the risk of community-acquired or nosocomial
pneumonia?
Obesity and risk of community-acquired pneumonia

While there is ample evidence that shows an increased risk of bacterial infections of the feet,
surgical and catheter sites, gingival and periodontal tissues, gastrointestinal tract, and of the
skin in obese patients, the impact of obesity on bacterial pneumonia is less certain 14.
Community-acquired pneumonia is most frequently caused by bacterial pathogens.
Paradoxically, three studies have demonstrated a protective association between obesity and
mortality from pneumonia 43-45. Corrales-Medina et al. 43 demonstrated that increasing BMI
was negatively correlated with 30-day mortality in patients with proven pneumococcal or
Haemophilus community-acquired pneumonia. Similarly, LaCroix et al. 44 reported a
negative relationship between mortality from pneumonia and BMI with increased mortality
in men in the lowest BMI quartile compared with the highest BMI quartile. This study also
suggests that the obese were protected from pneumonia as a cause of death. In a study that
evaluated protective factors against death from pneumonia in 110,000 Japanese subjects,
Inoue et al. 45 reported that low BMI (<18) was associated with an increased risk of death
while the opposite was true for subjects with a high BMI (25-30.9). The reported
associations between lower BMI and an increased risk of death from pneumonia 43-45

probably reflects the greater frequency of chronic diseases associated with malnutrition, e.g.
emphysema, known to increase one's susceptibility to pneumonia. In contrast to these, a
study by Baik et al., which included 26,429 men aged 44 to 79 years from the Health
Professionals Follow-up Study and 78,062 women aged 27 to 44 years from the Nurses’
Health Study II, demonstrated a significant association between a 40-lb weight gain and a
twofold increased risk of community-acquired pneumonia 46. Only one study, at the time
that this review was written, has demonstrated an association between childhood obesity and
respiratory infections 47. In this study, the authors reported that overweight and obese
children (BMI in the 90th percentile) experienced twice as high a risk for acute respiratory
infections (the cause of which was not identified) than children with a low BMI. At present,
the effect of obesity on susceptibility to community-acquired bacterial pneumonia is
uncertain. However, the disparity in these reports may be due to the endpoints reported. For
example, obesity was associated with a lower risk of mortality from community-acquired
pneumonia in the studies by Corrales-Medina, LaCroix, and Innoe 43-45 and a higher risk of
respiratory infection in the studies by Baik and Jedrychowski 46-47. Based on these reports, it
is possible that obesity increases susceptibility to community-acquired pneumonia while
reducing the risk of mortality. However, additional research is needed to reach an
appropriate conclusion.
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Obesity and risk of nosocomial pneumonia
Obese patients experience more complications while hospitalized for critical illness and after
surgery requiring greater hospital and ICU lengths of stay. Although there are numerous
studies demonstrating that obesity is associated with a greater risk of surgical site
infections 48, wound infections, catheter and blood stream infections 49, and infections of the
urinary tract 50, the data on the association between obesity and the risk of nosocomial
pneumonia, which is most often caused by bacteria, are mixed. For example, a prospective
study by Bochicchio et al. involving 1167 critically ill trauma patients demonstrated that
obesity was associated with increased hospital and ICU lengths of stay and a twofold
increased risk of urinary tract and blood stream infections, and pneumonia 4. Similarly,
Newell et al. also observed an increase in hospital and ICU lengths of stay, increased urinary
tract infections, a longer period of ventilator support, as well as an increased risk of
pneumonia in obese and severely obese critically injured blunt trauma patients 6. A
retrospective chart review of patients admitted to medical ICUs conducted by Yaegashi et
al. 7 revealed that morbidly obese patients, defined as BMI ≥40, had higher rates of
mortality, acute respiratory distress syndrome, catheter infections, acute renal failure,
nosocomial pneumonia, and sepsis than obese patients with a BMI in the range of 30-39.9.
The morbidly obese also required a longer period of time on ventilatory support. Finally, in
a retrospective study which included patients admitted to a Level 1 trauma center, Serrano et
al. observed an increased risk of nosocomial pneumonia among obese patients 51. In contrast
to the studies mentioned above, studies by Brant et al. 52 and Moulton 53 did not find a
significant association between obesity and an increased risk of nosocomial pneumonia in
patients undergoing heart surgery. In agreement with Brandt and Moulton, Dossett et al. did
not find a significant association of BMI with pulmonary complications (such as
pneumonia) in a cohort study of critically injured adults 54. The lack of agreement of these
studies may be due to the reason for admission. For example, the increased risk of
pneumonia may be observed among obese trauma patients rather than those who have had
surgery. In total, based on available evidence, an association between obesity and
community-acquired or nosocomial pneumonia is not clear and additional research is
needed. In the future, investigators should identify the cause of infectious pneumonia since it
is likely that obesity selectively impairs the immune response to some but not all infectious
agents. Table 2 provides a summary of some of the studies mentioned above.

V. Effect of leptin and leptin receptor deficiency on susceptibility to
infection in mice and humans
Leptin and leptin receptor deficiency impairs host defense against pulmonary bacterial
infections

Most investigators have used leptin (ob/ob) and leptin receptor (db/db) deficient mice which
are not only obese but exhibit many immune and endocrine abnormalities that are caused by
both leptin deficiency and obesity which complicates the interpretation of these
studies 42, 55-58. Leptin is essential for normal development and function of cells of the
myeloid and lymphoid linage affecting both innate and adaptive immune responses and the
absence of this hormone or its receptor results in severe immune abnormalities and greater
susceptibility to viral 42, 59, bacterial 55-56, mycobacterial 57-58, and fungal infections60. In
general, leptin promotes TH1 cytokine production and the elaboration of proinflammatory
lipid mediators 61-63. It's also been shown to promote immune cell survival 64. Studies
conducted in our laboratory have shown that ob/ob mice exhibit increased pulmonary
bacterial burdens and reduced survival following an intratracheal challenge with either K.
pneumoniae or S. pneumoniae 55-56. In comparison with WT animals, ob/ob mice produced
proinflammatory mediators (TNF-α, IL-6, IL-12, and MIP-2) that were not different 55,
reduced 57, 65, or elevated (MIP-2, PGE2, TNF-α) 56 following intrapulmonary bacterial
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challenge. In a study conducted in by Hsu et al., neutrophil (PMN) recruitment to the lung in
response to S. pneumoniae challenge was enhanced in ob/ob mice. The host defense
impairment in these animals was related to defective alveolar macrophage and PMN
phagocytosis and killing of bacteria in vitro 56. These defects suggest an essential role for
this adipokine in leukocyte antibacterial effector functions. Leptin is known to induce actin
polymerization 66, upregulate complement receptor (CD11b/CD18) expression in
monocytes 67 and PMNs 68, and enhance the production of reactive oxygen intermediates by
inducing the assembly of the NADPH oxidase complex 69-70. Leptin deficiency is also
associated with reduced leukotriene synthesis which is known to contribute to impaired
pulmonary host defense against bacterial pneumonia 55, 63, 71-73. Interestingly, the provision
of exogenous leptin restored host defense and leukotriene synthesis in states of leptin
deficiency 55, 71. The ability of leptin to enhance macrophage leukotriene synthesis has also
been demonstrated in cells from wild type animals and this might be an additional
mechanism by which it promotes host defense in the lung 63, 74-75.

In regard to mycobacterial infections, Wieland et al. reported higher lung M. tuberculosis
counts in ob/ob compared with WT mice that was associated with reduced levels of IFN-γ
in a murine model of tuberculosis 58. Ordway reported similar results in that IFN-γ+ CD4+
T cell recruitment to the lungs was delayed in ob/ob, compared with WT mice challenged
with M. abcessus 57. Lung M. abcessus burdens were higher and mycobacterial clearance
was delayed in ob/ob mice. Similarly, Ob/ob and db/db mice also exhibit impaired host
defense against many other bacterial, fungal, and viral infections of the CNS, liver, paw,
stomach, heart, gut, and peritoneum59, 76-81. While human leptin deficiency is rare,
individuals with this genetic defect are known to exhibit greater susceptibility to respiratory
infections indicating an important role for leptin in the human immune response to
infectious disease as well 82. Despite these advances in pulmonary host defense and leptin
deficiency, further evaluation of the mechanisms by which this adipokine regulates innate
and adaptive immunity is warranted.

Effects of leptin receptor signaling and leptin resistance in infection
While there is disagreement in the literature regarding the susceptibility of the obese to
community-acquired and nosocomial pneumonia, obesity appears to be a risk factor for
influenza and possibly other viral infections. As mentioned above, obesity is associated with
a chronic state of systemic inflammation and one might infer that this condition would lead
to a heightened state of host defense. However, there is more agreement that obesity impairs
host defense against influenza infection and this may occur via leptin resistance and
metabolic dysfunction. Leptin resistance is a condition by which cells become insensitive to
leptin as a consequence of prolonged exposure to elevated levels of this adipokine 83. This
effect is mediated through the down regulation of LepRb in immune cells and the prolonged
activation of STAT3 signaling resulting in the accumulation of intracellular SOCS3 which
inhibits further leptin receptor signaling84. Leptin resistance has been demonstrated in NK
cells 85, T cells 86, and peripheral blood monocytes 87 and this might contribute to
suboptimal responses in the obese during influenza infection. Lastly, it is interesting to note
that polymorphisms in the human leptin receptor gene have not only been associated with
obesity but with susceptibility to infectious disease as well 88-89. It is envisioned that leptin
receptor mutations in humans may be related to impairments in pulmonary host defense that
may or may not be associated with an obese phenotype. Alternatively, leptin receptor
mutations can lead to obesity and a protective immune phenotype against pulmonary
infections 75. In total, more research is needed to determine the role of leptin receptor
dysfunction in infectious disease.
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VI. Role of adiponectin and other adipokines in pulmonary infections
Besides leptin, very little is known regarding the importance of other adipokines in host
defense against infection. Adiponectin, an adipokine with anti-inflammatory properties, has
been shown to play a role in alveolar macrophage activation and the lungs of knockout mice
exhibit an emphysematous phenotype 90. Exogenous administration of adiponectin has been
shown to suppress leukocyte recruitment and it plays an anti-inflammatory role in allergic
airway disease in murine models 91-92. Adiponectin levels are reduced in obese subjects and
its role in infectious disease is unknown 93. Blood adiponectin levels are elevated in human
patients with M. avium-intracellulare complex pulmonary infection 94 and in mice following
influenza infection 95. Interestingly, Uji et al. observed that adiponectin-knockout mice
exhibit greater mortality in a murine model of polymicrobial sepsis and that
pharmacologically induced increases in serum adiponectin improved survival96.
Adiponectin also facilitates the uptake of apoptotic cells 97 by macrophages and this
response is critical for reducing inflammation in the lungs 98-99. Additional studies that
evaluate the role of adiponectin in pulmonary host defense against infection are warranted
since the levels of this adipokine are reduced in obese humans 100.

In regard to other adipokines and host defense against respiratory infections, lipocalin 2,
which is produced in abundance by adipose tissue of obese mice and humans, has been
shown to play a protective role against Klebsiella and E.coli pneumonia 101-102. As
discussed above, it is uncertain whether or not the obese are more susceptible to bacterial
pneumonia. Evaluating a potential association between elevated serum lipocalin 2 levels and
respiratory infections in obese human subjects may provide more insight into physiologic
role of adipokines and host defense. Finally, nothing is known regarding the role of resistin,
retinoic acid binding protein 4, and other proinflammatory adipokines produced in
abundance in the obese during infections of the respiratory tract.

Conclusions
Health care professionals are well acquainted with the association between obesity, type II
diabetes, athlerosclerosis, and ischemic heart disease. However, overweight and obese adults
and children may also be especially susceptible to respiratory infections and this was evident
during the recent H1N1 influenza pandemic of 2009. Since the prevalence of obesity is
likely to be stable within the foreseeable future, this condition should be recognized as a
chronic medical condition known to increase the risk of influenza-related complications
requiring vaccination against seasonal influenza. Only a small number of studies have
characterized the mechanisms by which obesity increases the risk of influenza in animal
models and this research should be expanded to increase our understanding of the
mechanistic underpinnings of this association. Even less is known regarding the
susceptibility of the obese to bacteria and other respiratory pathogens and this warrants
further investigation. Finally, future studies should also determine if therapeutic strategies
employed to prevent obesity-related metabolic and cardiovascular disease, such as weight
loss, would also improve immune function against respiratory infections.
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Figure 1.
Obesity weighs down host defense against pulmonary infections. Obesity diminishes
pulmonary host defense against influenza and possibly bacterial and fungal pathogens.
Excess adipose tissue in the obese results in numerous metabolic disturbances that
contributes to a chronic state of low grade inflammation. The cause of which is due to
elevated serum triacylglycerol (TAG), free fatty acids (FFA), hyperglycemia, and elevated
proinflammatory adipokines such as leptin and resistin, and lower amounts of the anti-
inflammatory adipokine, adiponectin, and classical cytokines, TNF-α, IL-6, IL-1β, IL-18,
and MCP-1 are produced in greater quantities as adipose tissue expands. Collectively, these
alterations result in defective innate and adaptive immune function that impair host against
influenza infection. Whether or not obesity impairs host defense against bacterial pathogens
is not clear. In addition, complications of obesity such as type II diabetes and
gastroesophageal reflux disease (GERD) are known to impair host defense against viral,
bacterial, and fungal pathogens.
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Figure 2.
Mechanisms by which obesity impairs host defense against influenza infection. This figure
has been adapted and updated from a similar one published by Karlsson et al.21. Following
infection of respiratory epithelial cells with the influenza virus (1), the elaboration of type I
interferons (IFN-α/β) are reduced and delayed (2) and the cytotoxic response of natural
killer (NK) cells (3) is attenuated in obese mice. The elaboration proinflammatory cytokines
(IL-1β, IL-6, and TNF-α) (4) are delayed and increased and the production of cytokines
(IL-12, IL-18, IFN-γ) produced by NK cells, macrophages (Mø), dendritic cells (DC) and
IL-2 produced by CD4+ T cells, known to enhance the adaptive immune response is also
reduced (5). Antigen presentation by DCs to CD4+ T helper and CD8+ T cells is also
impaired (6). A delay in chemokine (MCP-1 and MIP-1α/β) production results in postponed
recruitment of PMNs (PMN), CD4+ T cells, and monocytes (Mono) (7). The ability of
effector CD8+ T cells to kill influenza infected cells is diminished and healing of pulmonary
epithelial cells is also impaired resulting in increased microvascular permeability and protein
leak (8). While a more rapid decline in antibody titers of obese humans following
vaccination against influenza has been reported 36, it is not known if obesity affects IgA
levels in the lung (9). The grey boxes indicate changes in cytokines and the pink boxes
represent aberrant immune responses in the obese. Red arrows (  or ) indicate responses that
are impaired or enhanced in the obese host.
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