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Abstract
Although the area under the receiver operating characteristic (ROC) curve (AUC) is the most
popular measure of the performance of prediction models, it has limitations, especially when it is
used to evaluate the added discrimination of a new risk marker in an existing risk model. Pencina
et al. (2008) proposed two indices, the net reclassification improvement (NRI) and integrated
discrimination improvement (IDI), to supplement the improvement in the AUC (IAUC). Their
NRI and IDI are based on binary outcomes in case-control settings, which do not involve time-to-
event outcome. However, many disease outcomes are time-dependent and the onset time can be
censored. Measuring discrimination potential of a prognostic marker without considering time to
event can lead to biased estimates. In this paper, we extended the NRI and IDI to time-to-event
settings and derived the corresponding sample estimators and asymptotic tests. Simulation studies
showed that the time-dependent NRI and IDI have better performance than Pencina’s NRI and IDI
for measuring the improved discriminatory power of a new risk marker in prognostic survival
models.
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1. Introduction
Risk prediction models are important tools to assess risk for cancer and other complex
diseases and have wide applications in clinical medicine, clinical trials, and allocation of
health services resources (Ridker et al. 2008). Calibration and discrimination are two major
components in the evaluation of the predictive accuracy of a risk prediction model (Cook
2007). Calibration quantifies how closely the predicted probabilities agree numerically with
the actual outcomes. Discrimination measures the ability of the model to correctly separate
subjects with different outcomes. A model is said to have perfect discrimination if the model
places each individual in the category to which he/she truly belongs. Good discrimination of
a model does not automatically imply good calibration or vice versa (Cook 2007). Harrell
(Harrell, Jr. et al. 1996) suggests discrimination is of more interest and should be the
primary focus.
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The area under the receiver operating characteristic (ROC) curve (AUC) is the most popular
measure to evaluate model discrimination by calculating the probability that among all
possible pairs of individuals with two different outcomes – positive versus negative, the
predicted value for the one with positive outcome is higher than the one with negative
outcome (Hanley and Mcneil 1982). Increase in AUC (IAUC), defined as the difference in
the AUCs calculated using the model with and the model without the new markers of
interest, is the most widely used measure to quantify the model improvement due to the
addition of a new risk marker to the existing risk models. However, this increase is often
very small in magnitude and insensitive in evaluating the new marker’s predictive
contribution, especially when a few powerful risk factors are already in the model.

Pencina et al. (Pencina et al. 2008) proposed two new measures to quantify the increase in
performance when a new marker is added to an existing risk model. The first is ‘net
reclassification improvement’ (NRI), a measure based on event-specific reclassification
tables and compares the proportions moving up or down in clinical categories in cases
versus controls. They define upward movement (up) as a change into higher category based
on the new model and downward movement (down) as the change into lower category based
on the new model. In their paper, D denotes the event (or disease) indicator (D = 1 for cases
and D = 0 for controls), and the NRI is defined as

The second summary measure is the ‘integrated discrimination improvement’ (IDI), which
examines the difference in the mean predicted risk between individuals who develop the
event and those who don’t. It can also be interpreted as a weighted area between the ROC
curve and the diagonal line in the ROC plot. For any cut-off point u (0 < u < 1), the IDI is
defined as

where  and . The subscript ‘new’ refers to
the model with the new marker while ‘old’ refers to the original model. Both of these new
measures offer incremental information over the IAUC and have proved useful for
evaluating the predictive power of new risk markers (Zethelius et al. 2008; Simmons et al.
2008; Eggers et al. 2009; Shah et al. 2009).

The NRI and IDI indices proposed by Pencina et al. are based on binary outcomes in case-
control settings, which do not involve time-to-event outcomes. However, many disease
outcomes are time-dependent and the disease onset can be censored. Measuring
discrimination potential of a marker in the context of survival analysis (time-to-event
analysis) without consideration of time-to-event can lead to biased estimates (Chambless
and Diao 2006). In this paper, we extended NRI and IDI to survival analysis settings where
the disease onset is observed over follow-up time periods that vary in length. This extension
provides a more accurate measure to evaluate the predictive ability of a new marker added to
the risk of mortality or disease onset at time t.
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2. Methods
2.1 Time-dependent NRI (tdNRI)

Under the survival time setting, we introduce the following notations:

For subject i, let Ti denote the failure time and Ci the censoring time, then Yi = min(Ti,Ci) is
the follow-up time. Let Di(t) represent failure status at time t, which indicates whether
subject i had an event prior to time t; that is, Di(t) = 1 if Ti ≤ t and Di(t) = 0 if Ti > t. Zi is a
risk score that can be used to predict whether subject i would developed an event by time t.

Let X denote the vector of covariates (risk factors). In survival regression model, Z is
usually calculated as the sum of products of the subject’s level for each risk factor (X) and
the corresponding estimated regression coefficient vector (β̂), that is, Z = Xβ̂. Zold is the
vector of risk scores calculated from the original model and Znew as the vector of risk scores
calculated from the new model. Here we assume that the new model includes all of the
variables from the original model plus one new risk factor of interest. Let ‘Up’ and ‘down’
represent the events that the new model moves the predicted risk score up and down,
respectively. For example, for subject i, if (Znew)i > (Zold)i, we say subject i is reclassified
up by the new model.

Now we define the time-dependent NRI (tdNRI) as a function of time:

(2.1)

The tdNRI for the subjects who have events by time t and for those who don’t are defined
respectively as follows:

(2.2)

(2.3)

Using Bayes’ theorem, we can rewrite P(up|D(t) = 1), P(down|D(t) = 1), P(up|D(t) = 0), and
P(down|D(t) = 0) as

(2.4)

(2.5)

(2.6)

and

(2.7)
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where S(t) is the survival function S(t) = P(T > t). S(t|up) and S(t|down) are the conditional
survival functions for the subset of subjects satisfying Znew > Zold and Znew < Zold,
respectively; while P(up) or P(down) are the probabilities that Znew > Zold or Znew < Zold.

The most popular nonparametric method to estimate the survival function S(t) is Kaplan-
Meier or product limit method (1958). Assume that the events occur at D distinct times t1 <
t2 < … < tD, and at time ti there are di events. Define Ni as the number of individuals who
are at risk at time ti. For any time t (t1 ≤ t), the Kaplan-Meier (KM) estimator ŜKM(t) is
defined as

(2.8)

So a simple estimator for P(up|D(t) = 1) is given by

(2.9)

Likewise, the following expressions are the estimators for P(down|D(t) = 1), P(up|D(t) = 0)
and P(down|D(t) = 0):

(2.10)

(2.11)

(2.12)

where

(2.13)

and

(2.14)

Thus, tdNRI(t) is estimated as

(2.15)

Similarly, in formulas (2.2) and (2.3), the tdNRI for event subjects and nonevent subjects by
time t may be estimated separately as
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(2.16)

(2.17)

Assuming that the event individuals and nonevent individuals at time t are independent, we
may use a simple asymptotic test testing the null hypothesis of tdNRI(t) = 0, with the
following test statistic:

(2.18)

The improvement in event and non-event classification at time tcan be tested by the
following formulas:

(2.19)

(2.20)

2.2 Time-dependent IDI (tdIDI)
We adopted Chambless and Diao’s approach (Chambless and Diao 2006) to generate time-
dependent IDI. Again, let Z = Xβ̂ denote the risk score and D(t) denote the corresponding
indicator of event by time t. Writing f (z) as the density function of Z, at any given time t
and a given cut-off value u (0 < u < 1), we define

(2.21)

(2.22)

Using the same set of subscripts, we define tdIDI at time t as

(2.23)

where

, and .

From (2.21) and (2.22) and using Bayes’ theorem, the conditional probabilities, f (z|D(t) =
1) and f (z|D(t) = 0), can be expressed as
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(2.24)

and

(2.25)

respectively, where E(·) is the expectation function.

With the above expressions, sensitivity(u,t) and 1 − specificity(u,t) can be written as

(2.26)

(2.27)

Further, the integral of sensitivity at time t is defined as , which
can be expressed as

(2.28)

Similarly, the integral of 1 − specificity at time t is defined as

, and

(2.29)

Interchanging the order of integrations within formulas (2.28) and (2.29), we have

(2.30)

(2.31)

Substituting the expected values in (2.30) and (2.31) with the corresponding sample means,
we can obtain an estimator for IS(t):
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(2.32)

Likewise, an estimator for IP(t) is

(2.33)

Thus, the tdIDI(t) defined in (2.23) can be estimated as

(2.34)

Note that IS(t) can also be viewed as the weighted average over the range of all cut-off
points of sensitivity by time t (sample mean of sensitivity by time t) and IS(t) can be viewed
as the sample mean of 1 − specificity over all cut-off points by time t.

The standard deviation of  from equation (2.34), denoted by , can
be calculated as the standard error of paired differences of sensitivity and 1 − specificity for
the new model. Denoting the corresponding estimator for the old model by  and

assuming the correlation coefficient between  for new model and

 for old model is γ, we obtain the following asymptotic test for the null
hypothesis of tdIDI(t) = 0:

(2.35)

3. Simulations
Simulation studies were conducted to examine the performance of the proposed tdNRI and
tdIDI and compare them to the original NRI and IDI proposed by Pencina et al.

A proportional hazards relationship was generated from a Weibull distribution, which is
characterized by two parameters, the scale parameter λ and the shape parameter ν. The
corresponding hazard function is given by h(t|X) = λvtv−1 exp(β̂′X), where t represents the
time, X the vector of covariates, and β̂ the vector of estimated regression coefficients. The
survival time T of a Cox model with the baseline hazard of a Weibull distribution can be
expressed as

(3.1)

where U ~ Uniform(0,1).

Two risk variables x1 and x2 were simulated with x1 ~ N(0, 1) and x2 ~ Bernoulli(0.5),
where x1 was regarded as the baseline risk factor in the original model and x2 was the
additional risk factor of interest in the new model. The estimated coefficient β̂ = (β̂1, β̂2) was
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assumed to be known, where β̂1 = 3 and two different values of β̂2 were attempted to specify
the effect size of the new risk factor x2 with β̂2 = 1 and β̂2′ = 0.5, respectively. The event
time tevent was simulated using formula (3.1) with the scale parameter λ = 0.005 and the
shape parameter ν = 5. The censoring time tcensor was generated from an exponential
distribution tcensor ~ exp(λ′), and the choice of λ′ determines the censoring rate. The
observed follow-up time was t = min(tevent, tcensor).

In this simulation process, data were generated with sample size of 1000 and censoring rates
of 15%, 30% and 50% respectively. There were 1000 replicates for each simulation. The
simulation results were evaluated in the time period [4, 7] because a large proportion
(>70%) of cases occur in this time interval. For comparison, for the same time period, we
estimated Pencina’s NRI and IDI by assuming that the disease onset status is as at the end of
the individual’s observation time without considering time-to-event or censoring.

Tables 3.1–3.6 present the simulation results under different censoring mechanisms. Tables
3.1–3.3 contain the simulation results with the hazard ratio (HR) of the new risk factor
equaling 2.72 (β̂2 = 1), and Table 3.4–3.6 contain the results with the HR of the new risk
factor equaling 1.65 (β̂2 = 0.5). The simulation results indicate that the tdNRI is consistently
greater than NRI in magnitude under the same conditions, and that the tdNRI and the NRI
produce comparable results when the censoring rate is low. As the censoring rate increases,
NRI is less sensitive than tdNRI and always overestimates the added discrimination
potential of the new risk model. In contrast, tdIDI is consistently smaller than IDI in
magnitude, especially when used to assess the discriminatory power of the new marker with
small effect size (β̂2 = 0.5). Compared with tdIDI, IDI is less sensitive when the censoring
rate increases. Not surprisingly, tdNRI and tdIDI perform similarly in detecting the added
predictive ability of a new marker with large effect size. However, tdNRI is more sensitive
than tdIDI in detecting discriminatory power of the new risk marker with small effect size
(β̂2 = 0.5).

4. Discussion
We extended the concept of assessing the improvement in model performance by adding
new markers from the logistic regression setting with binary outcome to the survival
analysis setting with time-to-event outcome, following the definition of NRI and IDI by
Pencina et al. Two new statistics, tdNRI and tdIDI were proposed. For each measurement,
we derived the sample estimator and asymptotic test. We examined the performance of the
tdNRI and tdIDI and compared it with Pencina’s NRI and IDI by a series of simulations.

The NRI and IDI are based on binary outcomes in case-control settings. In the context of
survival models, where time to event is modeled as a function of baseline exposure factors,
NRI or IDI should be estimated as a function of time with proper consideration of censoring.
Our proposed tdNRI and tdIDI meet these requirements, thus allowing us to evaluate the
improved discriminatory power of a new risk marker in prognostic models for a given time
point. As shown by our simulations, compared with Pencina’s NRI and IDI that ignore time,
our tdNRI and tdIDI both have little bias in detecting the increased power of the model due
to the addition of a new marker.

Pencina et al. pointed out in their paper that caution needs to be given to the interpretation of
the NRI results due to the property of NRI that it depends on somewhat arbitrary choice of
categories, which means NRI can be influenced by the number and extent of the risk
categories selected. In our simulations, for clearer illustration, instead of setting up the
specific risk categories, we considered the categorization so fine that each person belongs to
his/her own risk category. The same is true for the relationship between the NRI and IDI.
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The tdIDI is actually the continuous version of the tdNRI, which can explain why the tdNRI
and tdIDI perform quite similarly for large samples in our simulations.

We have not addressed the calibration of prognostic survival models thus far. Calibration is
another important criterion when evaluating model performance but it may not be very
informative in assessing the utility of a new marker. Houwelingen (van Houwelingen 2000)
discussed comprehensively how to assess the calibration of the prognostic survival models,
which provide us with applicable calibration approaches. Like the original NRI and IDI,
tdNRI and tdIDI depend on model calibration as well, so it is important to ascertain that
incidence rates in the development and validation sets are similar when assessing the model
improvement, especially when the external data are used for model validation. One
advantage AUC (or IAUC) possesses over NRI or IDI is that the model calibration issue
does not apply to AUC (or IAUC), because they are scale-invariant and independent of
model calibration. Thus, as suggested by Pencina et al., the improvement in AUC (or IAUC)
should still remain an important criterion when assessing the model improvement.

Because our simple estimator for the tdNRI at time t is given by combining the conditional
and unconditional Kaplan-Meier estimators, a potential problem with the tdNRI estimator is
that it may be difficult to obtain the conditional Kaplan-Meier estimate when there are very
few events/nonevents moving up/down.

Some alternative extensions of the time-dependent IDI may be attempted. One could follow
the work by Pepe et al. (Pepe et al. 2008) who showed that the IDIs estimated as differences
in discrimination slopes are very close to the logistic R-squares if the model is evaluated on
the same sample on which it is developed. The R-squares can be translated to survival
analysis settings. Another attempt to obtain the time-dependent IDI could be made by
following the bivariate distribution function method to estimate time-dependent sensitivity
and specificity proposed by Heagerty et al. (Heagerty et al. 2000). It would be interesting to
compare the performance of these two alternative time-dependent IDIs with our proposed
tdIDI in future research.
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