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Abstract
A great deal of work has gone into classifying bursting oscillations, periodic alternations of
spiking and quiescence modeled by fast-slow systems. In such systems, one or more slow
variables carry the fast variables through a sequence of bifurcations that mediate transitions
between oscillations and steady states. A rigorous classification approach is to characterize the
bifurcations found in the neighborhood of a singularity; a measure of the complexity of the
bursting oscillation is then given by the smallest codimension of the singularities near which it
occurs. Fold/homoclinic bursting, along with most other burst types of interest, has been shown to
occur near a singularity of codimension three by examining bifurcations of a cubic Liénard
system; hence, these types of bursting have at most codimension three. Modeling and biological
considerations suggest that fold/homoclinic bursting should be found near fold/subHopf bursting,
a more recently identified burst type whose codimension has not been determined yet. One would
expect that fold/subHopf bursting has the same codimension as fold/homoclinic bursting, because
models of these two burst types have very similar underlying bifurcation diagrams. However, no
codimension-three singularity is known that supports fold/subHopf bursting, which indicates that
it may have codimension four. We identify a three-dimensional slice in a partial unfolding of a
doubly-degenerate Bodganov–Takens point, and show that this codimension-four singularity gives
rise to almost all known types of bursting.
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1. Introduction
Fast-slow systems, particularly oscillators with fast activation and slow inhibition, are
ubiquitous in biology (see, for example, [14]); this is likely because cells are replete with
mechanisms on a wide range of time scales and because negative feedback is powerfully
selected by evolution to maintain homeostasis. The combination of these ingredients leads
naturally to oscillations that break away from homeostasis, i.e., lose stability by bifurcation,
in order to support homeostasis on a longer time scale. When oscillations on different time
scales become interlinked, bursting oscillations, which consist of alternating active and
silent periods, often ensue.
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Electrically excitable cells, such as neurons and secretory cells, display a wide variety of
bursting rhythms. One reason is that single cycles of fast oscillations (spikes or action
potentials) are ineffective at mediating the build-up of calcium, which is needed to trigger
release of neurotransmitters and hormones. A particularly favorable form of bursting for this
purpose is plateau bursting, which provides a prolonged period of high membrane potential
to mediate calcium entry [9]. Plateau bursting both resembles and shares features of
mathematical structure with relaxation oscillations, but the excited, high-voltage state is
adorned with small-amplitude spikes.

The first mathematical models for bursting were guided by this simple intuition of spike
trains modulated by a slow process. An early fruitful example was the model for insulin-
secreting pancreatic beta cells of Chay and Keizer [4]. Rinzel [18] pioneered the bifurcation
analysis of these systems, showing that such bursts could be generated by a so-called frozen
system or fast subsystem that had bi-stability between a low-voltage steady state and a high-
voltage spiking state. Upward transitions were initiated by a saddle-node bifurcation and
downward transitions by passage through a homoclinic orbit. A simple example of such a
burster, informally called a square-wave burster, is the plateau burster shown in Figure 1(a),
with the corresponding bifurcation diagram in Figure 1(b). Rinzel also began the process of
classifying the various burst patterns that were emerging at that time in terms of the
bifurcations marking the transitions [19].

Another formative example was the bursting observed in R15 neurons of the sea snail
Aplysia, which is characterized by a spike frequency that first increases and then decreases
during the active (spiking) phase [1]. This was dubbed parabolic bursting and was elegantly
demonstrated to be explained by passage in the frozen system through a curve of saddle-
node-on-invariant-cycle (SNIC) bifurcations at both the beginning and end of the active
phase [21]; an example of this type of bursting is illustrated in Figure A5 of the Appendix. A
model for a third form of bursting, observed in an oscillating chemical reaction, was shown
to be mediated by bi-stability generated by a subcritical Hopf bifurcation with active phases
terminated by a saddle-node of periodics bifurcation (SNP) [19]; an example of this type of
bursting is illustrated in Figure A9 of the Appendix. Hoppensteadt and Izhikevich [12]
pointed out that there should be many more burst types, sixteen if one considers just the
bifurcations of planar fast subsystems that can mediate transitions between fixed points and
limit cycles, and up to 120 if one defines bursting more broadly. In their nomenclature,
square-wave bursting became “fold/homoclinic” bursting.

These early successes in modeling and in classifying the diverse patterns prompted an
ongoing effort to ascertain mathematically what other burst types might exist and what are
the simplest mathematical models that can instantiate them. Cells perform vastly different
tasks and so diversity is to be expected as cells randomly explore the bifurcation landscape.
Simplicity, on the other hand, is not a priority for Nature and, indeed, redundancy is
generally preferable in order to buffer cells from imperfections such as noise and
heterogeneity in the components at their disposal, as well as provide sites of regulation.
Nonetheless, it has been of both mathematical and biological interest to know what the
limits of such exploration are.

One type of plateau bursting that was not appreciated at the time of previous classification
efforts is that of fold/subHopf bursting, shown in Figures 1(c) and 1(d); in contrast to the
bifurcation diagram in Figure 1(b) that corresponds to squarewave plateau bursting, the
Hopf bifurcation for fold/subHopf bursting is subcritical. This type of plateau bursting had,
in fact, been predicted as a missing element in the tables of Hoppensteadt and Izhikevich
[12, 13], but did not show up in a biophysical model until the papers by Tsaneva-Atanasova
et al. [28] and Stern et al. [23] on pituitary somatotrophs. (Van Goor et al. [8] had previously
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published a model for somatotrophs with this bifurcation structure but did not show the
bifurcation diagram.) Fold/subHopf bursting had been overlooked because its appearance as
in Figure 1(c) is similar to that of square-wave bursting in Figure 1(a), except for the
suspiciously small spike amplitude. However, hewing closely to the data revealed the fold/
subHopf structure and showed that the small spike amplitude was a consequence of not
having any stable limit-cycle attractors in the frozen system. The spikes then are only seen if
the speed ∈ of the slow variable is not very small. This seems paradoxical, as bursting
trajectories were previously understood to be a sequence of states of the system that exist in
the limit ∈ → 0 and are visited as the slow variable(s) evolve in time. In contrast, the states
visited during fold/subHopf bursting are transients of the frozen system, not attractors. As
shown in Figure 1(d) at the end of the active phase, the plateau can persist even when there
is no stable solution at all. Such bursting with transient spikes has been called pseudo-
plateau bursting to distinguish it from square-wave bursting [23]. Cells, not being
scrupulous about observing the neat formulations of mathematicians, readily exploit the
fold/subHopf structure, which has now turned up in models for another pituitary cell,
namely, the lactotroph [24, 26].

In this paper we follow [2, 7] and investigate the complexity of burst types in terms of the
smallest codimension of the singularities in whose unfolding it appears. We briefly recall
this approach in the next section and discuss that most known burst types are found in the
codimension-three unfolding of a degenerate Bogdanov–Takens point. However, fold/
subHopf bursting does not occur alongside these other known burst types. Therefore, in
Section 3 we focus our attention on a partial unfolding of a codimension-fourdoubly-
degenerate Bogdanov–Takens point as studied in [15]. We are able to identify fold/subHopf
along with almost all known burst types in a neighborhood of this codimension-four
singularity. We believe that fold/subHopf bursting has codimension four and explain this in
Section 4. We end with conclusions in Section 5 and include an Appendix with illustrations
of all burst types discussed in this paper that are not visualized in the main text.

2. Towards a normal form for bursting
In the original Chay–Keizer model [4] the four equations of the classical Hodgkin–Huxley
system [11] were modified to provide for a parameter regime with three steady states, and an
equation for calcium was added. It was quickly realized that two variables could be set to
equilibrium, leaving two variables to mediate spiking and one for negative feedback, leading
to equations of the form

(1)

This is the minimum number of equations for bursting; some types, such as parabolic
bursting, require a second slow variable [19, 21]. The parameter ϕ has to be sufficiently
small to yield spiking, and ε has to be much smaller than ϕ to allow for multiple spikes per
burst. Figure 1 shows examples of fold/homoclinic and fold/subHopf bursting for a model
that was made using the Hodgkin–Huxley formalism, with x representing membrane
potential, y activation of a voltage-dependent potassium current, and z cytosolic calcium; the
slow rise in calcium acts on a calcium-activated potassium channel to terminate the active
phase. We used the equations and parameters as in [27, Fig. 1], except that fc = 0.0052 for
the squarewave bursting shown in Figures 1(a) and 1(b). Figures 1(a) and 1(c) show the time
series of x and z for both square-wave and pseudo-plateau bursting, respectively; in panels
(b) and (d) the respective bursting orbits are overlaid on the bifurcation diagrams that are
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obtained by considering only the (x, y)-equations in (1) and using the slow variable z as a
bifurcation parameter.

If one is willing to give up biophysically identifiable ion currents then the functions f, g, and
h in (1) can be replaced by polynomials. Hindmarsh and Rose [10] adopted for f the cubic of
the Fitzhugh–Nagumo system, originally introduced as a model for simple spiking, which
allows for three steady states. They found, however, that g needed to be quadratic to break
the symmetry between the upper and lower states, allowing one to be a fixed point and the
other a limit cycle. The function h need only be linear.

2.1. Classification of bursters by unfolding
The next advance in classification was by Bertram et al., who showed that the three burst
patterns identified by Rinzel could be located in a single two-parameter bifurcation diagram
[2] of the two-dimensional frozen system involving only the equations for x and y above;
here, one parameter plays the role of a slow negative feedback variable (which represents z
above) and the other determines the burst pattern — these two parameters correspond to μ1
and ν in system (4) of this paper. Bertram et al. pointed out that the two-parameter plane in
[2, Fig. 7] was a slice of the unfolding of a codimension-three singularity, namely, a
degenerate Bogdanov–Takens point of focus type; this singularity had been studied by
Dumortier et al. [6], who were not concerned about bursting but sought to categorize all
singularities of planar vector fields.

Apart from unifying the known burst patterns, [2, Fig. 7] revealed two additional types of
bursting that emerged naturally as the parameter corresponding to ν was varied. One of
these was a second type of fold/homoclinic burster that did not take the form of a square
wave because the limit cycles surrounded all three steady states. This burst type had
previously been found by Pernarowski [17] in a cubic Liénard system augmented by a slow
variable and described as “nearly parabolic” bursting, because of the large-amplitude spikes.
The bifurcation diagram, however, revealed that this burster does not involve passage across
a SNIC, but rather is of fold/homoclinic type; an example of this type of bursting is
illustrated in Figure A6 of the Appendix. It was called type Ib in [2, 7] to distinguish it from
the classical fold/homoclinic bursting with square-wave appearance (historically called type
I). The bifurcations of this cubic Liénard system were later systematically studied by De
Vries [30].

The work in [2] suggested that additional types of bursters were possible and that unfolding
would be a way to find and classify them. This approach involves finding an unfolding that
contains the required bifurcations of the fast subsystem as well as a path through the
parameter space representing an evolution of the slow variable(s) to visit the bifurcations in
the appropriate order. This was implemented systematically for the first time by Golubitsky
et al. [7], who pointed out that unfolding would also provide an unambiguous way to define
the complexity of a burst type in terms of the codimension of the singularity in whose
unfolding it first appears. They showed, in particular, that fold/homoclinic bursting appears
for the first time in the unfolding of a codimension-three singularity, namely, the degenerate
Bogdanov–Takens point studied in [6]. Golubitsky et al. [7] used the following normal form

(2)

with b = 3, which puts the system into the elliptic case studied in [6], instead of the focus
case identified by Bertram et al. [2]. Nonetheless, they were able to identify a path for fold/
homoclinic bursting in the (μ1, ν)-plane with μ2 = ⅓ fixed. Note that we use the notation –
μ1, instead of +μ1, because we view μ1 as the inhibitory slow variable z; see Figure 2(b).
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Parabolic bursting could be obtained by choosing a different path in this same plane. The
subHopf/fold-cycle burster, in contrast, was determined to have codimension two.

In order to make the normal form (2) into a burster, we assume that μ1 is slowly oscillating
and identify μ1 with the slow variable z in (1). Hence, we define μ1 = μ1(t) = z(t), where

(3)

The fold/homolinic burst path identified by Golubitsky et al. [7] has the disadvantage that
system (2) exhibits an unstable limit cycle of large amplitude surrounding the region in
phase space that is involved in the burst; this is not seen in the biophysical models. Figure
2(a) shows a square-wave burster obtained using the fold/homoclinic burst path found by
Golubitsky et al. [7]. The underlying bifurcation diagram, shown in Figure 2(b), illustrates
the presence of a large-amplitude unstable periodic orbit that coexists in the regime that
gives rise to the square-wave burster. Furthermore, there always exists a Hopf bifurcation on
the lower branch that gives rise to a family of periodic orbits; for the choice of path in [7]
this additional family ends in a SNIC. Note that neither family affects the actual shape of the
square-wave bursting pattern, but the phase portraits sampled during the oscillation differ
from those found in typical models; the large-amplitude unstable periodic orbit influences
the flow and its sensitivity to perturbations. A ‘clean’ fold/homolinic burst path can be found
in the time-reversed system, which is system (4) that we study in this paper (technically one
also reverses the orientations of μ1, ν and x, so that the net effect is only a change of sign
for the cubic term y x2, and the Hopf bifurcation again occurs on the “upper” branch; see
Section 4). Figures 2(c) and 2(d) illustrate a fold/homoclinic burst path in the (μ1, ν)-plane
for the time-reversed system with μ2 = ⅓ and b = 3 as before. For this time-reversed case
there exist no large surrounding periodic orbits within the path of the oscillation.

3. Fold/subHopf bursting has codimension at most four
Pseudo-plateau (fold/subHopf) bursting is a new type of plateau bursting that was identified
relatively recently and whose codimension has not yet been determined. In this section, we
identify a path for fold/subHopf bursting in the unfolding of a particular codimension-four
singularity; hence, the codimension of fold/subHopf bursting is at most four. Furthermore,
we show that this singularity gives rise to a bifurcation diagram in which paths for almost all
known bursters can be identified. We actually believe that fold/subHopf bursting has
codimension four, which we discuss in detail in Section 4.

We found fold/subHopf bursting in the (partial) unfolding of the doubly-degenerate
Bogdanov–Takens singularity studied by Khibnik et al. [15]. A Bogdanov–Takens point can
be thought of as a bifurcation point where a Hopf bifurcation occurs at the same time as a
saddle-node bifurcation, which automatically gives rise to a family of homoclinic orbits in
the bifurcation diagram. A degenerate Bogdanov–Takens singularity is a Bogdanov–Takens
point that occurs at a cusp point, rather than an ordinary saddle-node bifurcation. The
doubly-degenerate Bogdanov–Takens singularity is characterized by the fact that the Hopf
bifurcation at the degenerate Bogdanov–Takens bifurcation point is itself degenerate. As we
will see, the degeneracy of the Hopf bifurcation at the singularity creates an additional
(generic) Bogdanov–Takens bifurcation not found in the codimension-three scenarios and
this creates the appropriate bifurcations in the appropriate order for fold/subHopf bursting.

A partial unfolding of the doubly-degenerate Bogdanov–Takens singularity has been studied
by Khibnik et al. [15], who used the cubic Liénard form:
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(4)

Here, we preserve the notation used in (2); equation (4) can be obtained from (2) by
reversing time as well as the orientations of x, μ1 and ν. It is important to realize that in this
codimension-four unfolding the parameter b is no longer fixed and we study the entire four-
dimensional parameter space.

As is always the case in unfolding theory, the singularity under consideration lies at the
origin (μ1, μ2, ν, b) = (0, 0, 0, 0) in the four-dimensional parameter space (and the
bifurcation also occurs at the origin in phase space). The codimension-one saddle-node,
Hopf and homoclinic bifurcations form three-dimensional manifolds in this four-
dimensional parameter space. In order to understand how these bifurcations organize the
possible phase portraits of (4), it helps to reduce the effective parameter space, preferably
without limiting the possible dynamics. Note that the b-axis, except for the origin itself,
consists entirely of codimension-three degenerate Bogdanov–Takens points of the types
studied in [6]. However, the unfoldings described in [6] are only a local theory, i.e.,
additional bifurcations may occur for parameters outside a neighborhood of the origin in
(μ1, μ2, ν)-space. On the other hand, these additional bifurcations are present in an
arbitrarily small neighborhood of the codimension-four singularity in (μ1, μ2, ν, b)-space.
Hence, for each fixed b it suffices to consider a large enough neighborhood around the
origin in (μ1, μ2, ν)-space; or conversely, any fixed neighborhood around the origin in (μ1,
μ2, ν)-space contains the additional bifurcations, provided b is chosen small enough.

We consider the unit sphere, that is, a sphere with radius one centered around the origin in
(μ1, μ2, ν)-space, as the boundary of such a fixed neighborhood. We found that b = 0.75 is
small enough that we can identify a fold/subHopf burst path of (4) on this unit sphere;
Figure 3(a) shows the corresponding bifurcation diagram. There are two cusp points C on
the ν-axis that give rise to two curves of saddle-node bifurcations, denoted SNl and SNr for
the left and right knees, respectively; inside the smaller region delimited by SNl and SNr
there are three coexisting steady states. A (generic) Bogdanov–Takens point BTr (BTl)
exists on SNr (SNl) that gives rise to curves of Hopf Hr (Hl) and homoclinic bifurcations
HCr (HCl). The curves HCr and HCl end on SNl and SNr, respectively, which gives rise to
segments on SNl and SNr that correspond to SNICs; the other end points of the SNIC
segments are formed by the end points of a third homoclinic bifurcation curve HCc. We
denote these SNIC segments SNICl and SNICr; note that SNICl is so small that it is not
labeled but is indicated by the (red) dot on SNl in Figure 3(a). As shown by the dashed
curves in Figure 3(a), the Hopf bifurcations Hl and Hr are both subcritical, but the two
curves are connected via a segment of supercritical Hopf bifurcations and two degenerate
Hopf points DH (one on the left side of the sphere, labeled, and the other on the back side,
μ2 < 0, unlabeled); this gives rise to two curves of saddle-nodes of periodics (SNP) that end
on HCr and HCc.

Pseudo-plateau bursting is defined by any path that crosses SNl below SNICl and crosses
SNr between BTr and SNICr such that it only intersects the curves Hr and HCr; such a path
is indicated in Figure 3(a) and corresponding time series and bifurcation diagram are
illustrated in Figures 3(b) and 3(c). More specifically, we chose the circle segment with ν =

0.1 fixed and , where μ1 ranges between ±0.38. As before, we identified μ1

with the slow variable z as in (3) with , A = 0.38 and ε = 0.1. The bursting oscillation
associated with this path is shown in Figure 3(b); it has all the characteristics of a pseudo-
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plateau burster and the underlying bifurcation diagram, shown in Figure 3(c), illustrates that
this is indeed a fold/subHopf burster.

3.1. Transition from pseudo-plateau to square-wave bursting
The cells that exhibit pseudo-plateau bursting (or, at least, whose models do so), such as
pituitary somatotrophs and lactrotrophs, are closely related functionally and
developmentally to cells that exhibit square-wave bursting, such as pituitary corticotrophs
and pancreatic β cells. This leads us to expect that the two burst patterns are also related
mathematically. In fact, the fold/homoclinic and fold/subHopf bursters shown in Figure 1
were obtained from the same model by changing a single parameter, namely, one that
controls the activation of the calcium current. Shifting this activation to lower voltages has
the consequence that greater activation of the calcium-activated potassium channels is
needed to destabilize the steady, highvoltage plateau. This shifts the supercritical Hopf
bifurcation in Figure 1(b) to the right and also causes it to flip to subcritical, i.e., it passes
through a degenerate Hopf bifurcation. It was shown in [25] that shifting the activation of
the voltage-dependent potassium channel causes the same transition, which, thus, seems
easily available to cells.

There is no path on the sphere in Figure 3(a) that represents square-wave bursting. (For this,
the curve Hr from BTr must become supercritical before it crosses the homoclinic HCc, that
is, DH should lie between SNl and SNr.) However, we know that the origin in Figure 3(a) is
a degenerate Bogdanov–Takens point and expect that a fold/homoclinic path exists for μ1,
μ2 and ν small enough [6, 7, 15]. In order to visualize bifurcations inside the unit sphere we
choose a slice with ν = −0.09 fixed. The bifurcation diagram of (4) with b = 0.75 and ν =
−0.09 is shown in Figure 4; the location of the (μ1, μ2)-plane in (μ1, μ2, ν)-space relative to
the unit sphere of Figure 3 is shown in panel (a) and the slice itself in panel (b), with an
enlargement in panel (c). Note that there are two Bogdanov–Takens points in this slice that

are both located on SNr; we denote these points BTr and . The point BTr that lies very
close to the origin (μ1, μ2) = (0, 0) is part of the unfolding of a degenerate Bogdanov–
Takens singularity with b = 0.75 fixed [6, 7, 15], but the transition from square-wave to

pseudo-plateau bursting is organized by , which is not part of that unfolding. That is,

as the sphere is shrunk with b fixed,  is not guaranteed to persist. ¿From 
emanates a subcritical Hopf bifurcation H that becomes supercritical at the point DH, which
lies just to the right of SNl; the degenerate Hopf point DH gives rise to a curve of saddle-
nodes of periodics (SNP) that ends on the curve of homoclinics HC, which also emanates

from . Paths for both fold/subHopf and fold/homoclinic bursting that involve only the

Hopf H and homoclinc bifurcations HC originating from  are indicated in Figures 4(b)
and 4(c).

The path for fold/subHopf (pseudo-plateau) bursting is horizontal, with μ2 fixed such that it

lies above the point on HC where SNP ends and below . Figure 5(a) shows the time
series for x and z corresponding to the path labeled fold/subHopf in Figure 4(b) with μ2 =
0.5, and Figure 5(b) shows the one-parameter bifurcation diagram. Fold/homoclinic (square-
wave) bursting can be obtained by choosing μ2 below the point DH, but above the segment
SNICl on SNl in Figure 4(c). An example with μ2 = 0.24 is shown in Figures 5(c) and 5(d).

For intermediate values of μ2, in between DH and the point on HC where SNP ends in
Figure 4(c), a transitional form of bursting with square-wave appearance is found in which
the Hopf bifurcation is subcritical but becomes stable via an SNP before going homoclinic.
The stable branch then carries the spikes of the active phase and the unstable branch is not
involved. The canonical square-wave example that has introduced a generation of
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computational neuroscientists to bursting [20, Fig. 7.9] is of this type, albeit with the SNP
outside the knees; it does not occur in the unfolding of the degenerate Bogdanov–Takens
singularity [2, 6] but rather appears as a transitional form between the classical supercritical
fold/homoclinic and fold/subHopf types in the scenario of Figure 4.

For values of μ2 that intersect the segment SNICl, no type of bursting is possible with one
very slow variable but may be possible for non-small ∈. Parabolic bursting would be
possible with two (also very) slow variables. This has not been observed in pituitary cells,
but the diagram is compatible with the beating (repetitive large spikes) seen spontaneously
in lactotrophs and in somatotrophs when the large conductance voltage- and calcium-
dependent (BK) channel is blocked [8].

3.2. Transition to other known burst patterns
As mentioned above, the point (μ1, μ2, ν) = (0, 0, 0) with b = 0.75 is, in fact, a degenerate
Bogdanov–Takens singularity classified in [6]. We can recover the bifurcation diagram of
this unfolding as part of the unfolding of the doubly-degenerate Bogdanov–Takens
singularity by considering a slice with μ2 fixed. Figure 6 shows the bifurcation diagram of
(4) for b = 0.75 and μ2 = 0.0675; the value for μ2 is precisely the μ2-value of BTr in Figure
4, so that BTr in Figure 6 is the same Bogdanov–Takens bifurcation point. As in Figure 4,
we illustrate the relative location of the μ2-slice in (μ1, μ2, ν)-space with respect to the unit
sphere of Figure 3(a) in Figure 6(a); the slice itself is shown in panel (b) with an
enlargement in panel (c). The bifurcation diagram is organized by the degenerate
Bogdanov–Takens singularity at the origin in (μ1, μ2, ν)-space because all ingredients that
are important for the bifurcation structure on this slice are present in a small neighborhood
of the origin (μ1, ν) = (0, 0), which is also a small neighbhorhood of the origin in (μ1, μ2,
ν)-space, since μ2 = 0.0675 is small. Figure 6(c) is similar to the bifurcation diagrams
shown in [2, Fig. 7] and [30, Fig. 18], but with the top-down orientation reversed. Hence, we
expect to obtain fold/homoclinic bursting by selecting a path that crosses SNl and SNr such
that it only intersects the curves HCr and Hr that emanate from BTr; it is illustrated in Figure
A4. Note that this fold/homoclinic burster is not generated by the same bifurcation curves as
the fold/homoclinic burster marked in Figure 4 and we distinguish between fold/homoclinic
bursters that are near fold/subHopf bursters (Figure 4) and those that are not (Figure 6).

Apart from fold/subHopf bursting, the bifurcation diagram in Figure 6 contains most known
burst types. We describe these briefly here, and refer to the Appendix and the literature for
pictures and details. Let us again choose horizontal path segments with ν constant and μ1
playing the role of the slow variable. As already mentioned, for ν-values between the
minimum of HCr and the bottom of the SNIC region SNICl we get square-wave bursting.
Note that the Hopf bifurcation required for square-wave bursting occurs (far) to the left of
SNl in Figure 6; if both Hopf bifurcations lie between SNl and SNr, which happens if the
minimum of Hr lies between SNl and SNr, then the spike envelope of the burst first shrinks
in amplitude then grows; see Figure A10. This was termed “parabolic amplitude bursting” in
the Liénard model of Pernarowski [17, Fig. 1(c)] and was also found in a Hodgkin-Huxley
model for pituitary corticotrophs [16]. Mathematically, these cases are topologically
equivalent and the latter is considered a minor variant of fold/homoclinic bursting because it
does not involve any change in the bifurcation structure. Put another way, the transition of
the far left Hopf bifurcation across SNl is not a bifurcation and is not even required if curved
paths are allowed.

Moving ν up so that horizontal path segments cross SNICl gives parabolic bursting (Figure
A5); and moving ν further up to cross the middle homoclinic curve HCc gives fold/
homoclinic with large limit cycles (Figure A6). Other bursters with large limit cycles are
found as ν is increased further (Figures A7 and A8), as described in detail in [2].
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If ν is chosen below the minimum of HCr but above the minimum of Hr, there are two Hopf
bifurcations on the upper steady-state branch of the frozen system that are joined by a closed
curve of periodic orbits. The shape of the active-phase spike envelope again depends on
whether both Hopf bifurcations on Hr occur between SNl and SNr or one lies to the left of
SNl. The latter is the case in Figure 6 and results in tapered bursting; see Figure A3 as well
as [17, Fig. 1(e)] and [5, Fig. 7]. An example with both Hopf bifurcations between the knees
is given in [25, Fig. 2]. In the nomenclature of Izhikevich and Hoppensteadt [12, 13] these
are both variants of fold/fold bursting, which also occurs for ν-values below the minimum
of Hr, when there are no longer any limit cycles in the frozen system (Figure A2). In the
limit ∈ → 0, this last case is just a classic relaxation oscillator, but if ∈ is not very small
compared to the rate of attraction to the upper stable steady state, transient spikes can appear
on the plateau.

We emphasize again that the location of the Hopf bifurcations relative to the knees is only of
phenomenological interest. All of the burst types mentioned above can be found in Figure 6,
provided one allows for curved paths, for which the value of ν depends linearly or even
nonlinearly on μ1. Nonetheless, the options with ν fixed, where μ1 is directly identified with
the slow variable z, are very easy to identify and already account for most of the wide range
of burst types reported in the literature.

4. The codimension of fold/subHopf bursting
We have shown above that fold/subHopf bursting can be obtained by unfolding a
codimension-four doubly degenerate Bogdanov-Takens singularity. We now examine more
closely whether it is possible to find this burst pattern in the neigbhorhood of a singularity
with smaller codimension. Unfortunately, not all possible unfoldings are known and already
the list of unfoldings of codimension-three singularities is incomplete. In this section we
show that fold/subHopf bursting does not appear in any of the known unfoldings, which
indicates that its codimension is likely equal to four.

The main ingredients for fold/subHopf bursting are very similar to those for fold/homoclinic
bursting: the bifurcation structure must include three coexisting steady-state branches, with a
Hopf as well as a homoclinic bifurcation on the “upper” branch. The Hopf bifurcation for
fold/subHopf bursting is subcritical, whereas for fold/homoclinic bursting it is supercritical.
The requirement of three coexisting steady states implies that the singularity must lie at a
cusp point. Furthermore, the presence of a Hopf bifurcation together with a homoclinic
bifurcation on the same branch can only be realized with a Bogdanov–Takens point. Hence,
in our opinion, the only codimension-three candidate for fold/subHopf is the degenerate
Bogdanov–Takens singularity; such a singularity also gives rise to fold/homoclinic bursting.
However, we show here that fold/subHopf bursting cannot be realized near a degenerate
Bogdanov–Takens singularity.

The degenerate Bogdanov–Takens singularity was studied systematically by Dumortier et al.
in [6]. They defined the unfolding

(5)

with b > 0 fixed and unfolding parameters μ1, μ2, and ν. Here, we use –μ1 instead of μ1
conforming to our notation. Note that systems (2) and (4) are examples of (5) with –x3,
whereas (2) uses +y x2 and (4) uses –y x2. As we have stated previously, the sign of the
cubic term y x2 can be changed by reversing time, which also transforms stable equilibria
and periodic orbits into unstable ones and vice versa; more precisely, apart from the stability
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properties, system (5) with ±x3 and +y x2 is equivalent to system (5) with ±x3 and –y x2 via
the transformation (x,y,μ1,μ2,ν,t) ↔ (–x,y,–μ1,μ2,–ν,–t). Hence, strictly speaking, the sign
of yx2 not lead to a different case; it only affects the stability of the invariant objects.
Dumortier et al. used +y x2 in their analysis [6], whereas we have consistently used –y x2 in
this paper.

Dumortier et al. [6] identified three canonical cases: system (5) with +x3 leads to the saddle
case, where b > 0 is unrestricted; system (5) with –x3 leads to the focus case, if 0 < b < 2 ,
or the elliptic case, if b > . The focus case is contained in the bifurcation diagrams for
this paper, except for Figure 2, because we use b = 0.75 <  in our analysis of the
codimension-four singularity at b = 0; Golubitsky et al. [7] studied the elliptic case with b =
3 > ; see also Figure 2. The saddle case can be dismissed immediately, because all of the
phase portraits that have three steady states consist of two saddles separated by a node or a
focus; see [6, page 6]. Fold/subHopf bursting requires two foci or nodes and only one
saddle.

Hence, it suffices to consider system (5) with –x3. We first consider the focus case. One can
get an idea of the bifurcation diagram for the focus case from the slice at constant μ2 in
Figure 6(c), in which the cusp points are located at infinity. While the unfolding (5) involves
the full three-dimensional parameter space, it is argued in [6, 15] that this two-dimensional
slice contains all possible phase portraits for the focus case, provided we do not prescribe
the definitions of “upper” and “lower” branches. Fold/subHopf bursting requires a path that
crosses one of the Hopf curves, Hl or Hr, the associated curve of homoclinic bifurcation,
HCl or HCr, respectively, and, in order to create a silent phase, it should cross the “opposite”
saddle-node curve, SNr or SNl, respectively. The Hopf bifurcation should be subcritical,
which can be achieved by reversing time when necessary. Furthermore, the branch that
corresponds to the silent phase should consist of stable steady states. There are other
stability requirements — for example, the segment of the “upper” steadystate branch in
between the Hopf and homoclinic bifurcations should be stable as well — but we do not
need them for our arguments. The saddle-node bifurcations SNl and SNr give rise to a saddle
and a stable steady state when crossed below BTl and BTr in Figure 6(c), respectively;
otherwise, we get a saddle-focus pair. Of course, these stability properties are reversed if we
reverse time.

Figure 6(c) has a subcritical Hopf bifurcation Hl, but the phase portraits locally near Hl do
not support fold/subHopf bursting. The parameter regime bounded by the curves SNl, Hl and
SNr gives rise to a saddle and two foci; one of the foci becomes stable in a subcritical Hopf
bifurcation as we cross Hl from the left (see examples in Figures A7–A9). However, this
steady-state branch should correspond to the “upper” branch or active phase of the burst, and
this makes the “lower” branch, which should correspond to the silent phase, unstable.
Furthermore, in this region of Figure 6(c) there is an attracting periodic orbit that surrounds
all three steady states, also evident in Figures A7–A9, which removes any hope for
generating fold/subHopf bursting.

Alternatively, if we consider the time-reversed version of Figure 6(c), then the family of
Hopf bifurcations Hr becomes subcritical; this means that we need to cross Hr, HCr and SNl.
The phase portraits corresponding to the two parameter regimes on either side of Hr and
bounded by SNl, SNr and HCc do not exhibit a large periodic orbit surrounding all three
steady states. However, the time reversal renders the silent phase arising from SNl unstable,
so bursting is again not possible; for example, consider the time-reversed version that
corresponds to Figure A10, in which the Hopf bifurcation is conveniently between the
knees. We refer to [15] for a complete overview of all possible phase portraits for the focus
case.
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The elliptic case is different from the focus case, but not at the level of the phase portraits
locally near the Bogdanov–Takens points BTl and BTr. In fact, the two paths discussed
above for the focus case are illustrated for the fold/homoclinic case of system (5) with +x3

and b = 3 in Figures 2(b) and 2(d). If we reverse time in these two figures, the Hopf
bifurcation becomes subcritical, but we lose the silent phase; as in the focus case, there also
exists a large attracting periodic orbit in the time-reversed version of Figure 2(b).

Paths crossing Hl or Hr are the only possible candidates for fold/subHopf bursting in the
unfolding of the degenerate Bogdanov–Takens singularity. Hence, we conclude that the
right combinations for the fold/subHopf case do not exist near such a codimension-three
singularity. It is tempting to conclude from Figure 4 that fold/subHopf bursting and its
cousin fold/homoclinic bursting appear in the same unfolding of a different codimension-

three singularity, namely, the one that gives rise to the point  and associated
bifurcations SNr, H and HC. Such a singularity could be thought of as a Bogdanov–Takens
point that occurs at a degenerate Hopf point, rather than a generic Hopf bifurcation. An
entire curve of such codimension-three singularities exists in the unfolding of the
codimension-four doubly-degenerate Bogdanov–Takens singularity. However, as a single
codimension-three point, this singularity does not give rise to three coexisting steady states.
Only the doubly-degenerate Bogdanov–Takens singularity guarantees both saddle-node
bifurcations SNl and SNr, which provides the possibility of a stable silent phase. Hence, we
conclude that the codimension of fold/subHopf bursting is four.

5. Conclusions
The development of the theory of bursting serves as a valuable case study of the interplay
between biology and mathematics. The impetus to examine bursting in the first place came
from the experimental observation of it in cells. Through mathematical analysis the diverse
experimental phenomena were assembled into a beautiful and coherent theory of
considerable explanatory power and in turn facilitated modeling by providing ready-to-use
templates. Rapid progress was made possible by the prior existence of a body of theory
cataloguing the possible behaviors of planar systems without regard to bursting; the strong
separation of time scales allowed this to be leveraged into a theory of bursting.

In this paper we have extended the theory of bursting by classifying fold/subHopf (pseudo-
plateau) bursting in terms of the codimension of the singularity in whose unfolding it first
occurs. We identified a fold/subHopf burst path in the partial unfolding of a codimension-
four doubly-degenerate Bogdanov–Takens singularity and believe that this is the smallest
codimension of singularities that give rise to pseudo-plateau bursting. Furthermore, since the
unfolding of this codimension-four singularity includes a curve of codimension-three
degenerate Bogdanov–Takens bifurcation points of focus type, it also gives rise to all the
codimension three bursters, which include most known burst types.

Prior biological observation and modeling experience indicated that pseudoplateau and
square-wave bursting should be cousins. Figure 4 illustrates the existence of a one-parameter
transition between these two burst types as part of the partial unfolding of the codimension-
four doubly-degenerate Bogdanov–Takens singularity. This transition is organised by a

second Bogdanov–Takens bifurcation point on the “upper” branch, denoted  in Figure
4(b), the occurrence of which is in turn organized by a codimension-three bifurcation point
that exists as part of the unfolding of the doubly-degenerate Bogdanov–Takens singularity.

Our analysis illustrates that not all fold/homoclinic bursters are the same — some can be
converted to fold/subHopf bursters by small changes in a single parameter (e.g.,Figure 4)
and others cannot (e.g., Figure 6). This highlights a difference between classification of
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bursters by unfolding and classification in terms of the bifurcations that initiate and
terminate the active phase [13]. Although all the bursters disclosed by unfolding had
previously been identified by the classification system of [13], additional distinctions are
made by unfolding that reflect bifurcations that do not participate in the burst mechanism
but may influence its properties and what other patterns it has as neighbors. Other examples
in this study include the two types of fold/homoclinic in Figure 2 and the two types of
subHopf/fold-cycle in Figure A8 and A9.

The two slices shown in Figures 4 and 6 combined provide a fairly complete picture of
possible burst types that have been found in models. In principle, one should be able to
define a single two-dimensional curved slice in (μ1, μ2, ν)-space that contains a
combination of the two bifurcation diagrams with ν, respectively μ2 fixed. There are other
known burst types, such as fold/fold-cycle with small limit cycles [22], that do not occur in
either of the slices we have considered, but it may be possible to find this and additional
known or unknown burst types in other unexplored slices of the unfolding of the
codimension-four doubly-degenerate Bogdanov–Takens singularity. We propose that
bursting cells explore a bifurcation landscape in the neighborhood of this codimension-four
singularity.

Despite the fact that burst types appear to be generated by planar fast subsystems, cells
likely operate with non-planar fast subsystems. Indeed, cells have to serve a variety of
functions under different conditions and, therefore, incorporate a non-minimal set of ion
channels. Coupling of bursters also naturally generates higher-dimensional fast subsystems.
Instructive examples of single [2] and coupled cells [3] have been described, but the surface
has only been scratched.

Some common forms of bursting (e.g., pseudo-plateau and fold/fold with no or only
vestigial limit cycles) depend on the separation of time scales not being too great, otherwise
spikes would not be seen in the active phase. This has led to consideration of pseudo-plateau
bursting as a form of mixed-mode oscillation, in which y and z are considered slow and x
fast. This approach has advantages for some purposes, such as predicting a priori how many
spikes occur per burst, and cases exist in which the traditional fast-slow method fails
completely [29]. Mixed-mode oscillations in systems with two slow variables can similarly
be viewed as generated via bifurcation diagrams of particular unfoldings. We leave it as
challenging future work to extend the classification theory for bursting to such higher-
dimensional paths.
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Appendix

Appendix:
The figures in this appendix were all made with system (4), repeated here for convenience:
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Except for Figure A10, μ2 is fixed at 0.0675 and b at 0.75, corresponding to the μ2-slice in
Figure 6, which is reproduced, enlarged and annotated in Figure A1. The parameter ν is
varied to select an appropriate horizontal slice in the (μ1, ν)-plane in order to produce each
form of bursting that was not previously illustrated in the main text. Time series and one-
parameter diagrams are displayed in increasing order of ν.

As before, μ1 is identified with the slow variable z; we use the sinusoidal oscillation defined
in (3) in the main text, i.e.,

where A, , and ε are chosen to produce an appropriate path for the desired burst pattern, as
listed in each figure caption; all paths are also indicated in Figure A1 and labeled with the
associated figure number. In each figure, the left panel shows the time series of the (fast)
variable x and the right panel shows this trajectory overlayed in the (z, x)-plane on top of the
bifurcation diagram of the fast subsystem, where z is considered a parameter. Solid curves in
the bifurcation diagrams correspond to stable solutions and dashed ones to unstable
solutions. The bifurcations are labeled as follows: SN for saddle-node bifurcations, H for
Hopf, HC for homoclinic, SNIC for saddle-node-on-invariant-cycle, and SNP for saddle-
node of periodics; the subscripts l and r indicate whether these involve the upper (x > 0),
lower (x < 0) equilibrium branches, respectively, while the subscript c indicates that the
bifurcation involves a large periodic orbit surrounding all three steady states.

REFERENCES
[1]. Adams WB, Benson JA. The generation and modulation of endogenous rhythmicity in the Aplysia

bursting pacemaker neurone R15. Prog. Biophys. Molec. Biol. 1985; 46:1–49. [PubMed:
2410951]

[2]. Bertram R, Butte MJ, Kiemel T, Sherman A. Topological and phenomenological classification of
bursting oscillations. Bull. Math. Biol. 1995; 57:413–439. [PubMed: 7728115]

[3]. Best J, Borisyuk A, Rubin J, Terman D, Wechselberger M. The dynamic range of bursting in a
model respiratory pacemaker network. SIAM J. Appl. Dyn. Syst. 2005; 4:1107–1139.

[4]. Chay TR, Keizer J. Minimal model for membrane oscillations in the pancreatic cell. Biophys. J.
1983; 42:181–190. [PubMed: 6305437]

[5]. Duan L, Lu Q, Wang Q. Two-parameter bifurcation analysis of firing activities in the Chay
neuronal model. Neurocomputing. 2008; 72:341–351.

[6]. Dumortier F, Roussarie R, Sotomayor J. Generic 3-parameter families of planar vector fields,
unfoldings of saddle, focus and elliptic singularities with nilpotent linear parts. Springer Lect.
Notes Math. 1991; 1480:1489–1500.

[7]. Golubitsky, M.; Josić, K.; Kaper, TJ. An unfolding theory approach to bursting in fast-slow
systems. In: Broer, HW.; Krauskopf, B.; Vegter, G., editors. Global Analysis of Dynamical
Systems. Institute of Physics Publishing; Bristol: 2001. p. 277-308.

[8]. van Goor F, Li Y-X, Stojilkovic SS. Paradoxical role of large-conductance calcium-activated K+

(BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J.
Neurosci. 2001; 16:5902–5915. [PubMed: 11487613]

[9]. van Goor F, Zivadinovic D, Martinez-Fuentes A, Stojilkovic S. Dependence of pituitary hormone
secretion on the pattern of spontaneous voltage-gated calcium influx. Cell type-specific action
potential secretion coupling. J. Biol. Chem. 2001; 276:33840–33846. [PubMed: 11457854]

[10]. Hindmarsh J, Rose M. A model of neuronal bursting using three coupled first order differential
equations. Proc. R. Soc. London B. 1984; 221:87–102. [PubMed: 6144106]

[11]. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to
conduction and excitation in nerve. J. Physiol. (London). 1952; 117:205–249.

Osinga et al. Page 13

Discrete Contin Dyn Syst Ser A. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[12]. Hoppensteadt, FC.; Izhikevich, EM. Applied Mathematical Sciences. Vol. 126. Springer-Verlag;
New York: 1997. Weakly Connected Neural Networks.

[13]. Izhikevich EM. Neural excitability, spiking and bursting. Intl. J. Bifurc. Chaos Appl. Sci. Engrg.
2000; 10:1171–1266.

[14]. Keener, J.; Sneyd, J. Interdisciplinary Applied Mathematics. 2nd edition. Vol. 8. Springer-
Verlag; New York: 2009. Mathematical Physiology.

[15]. Khibnik AI, Krauskopf B, Rousseau C. Global study of a family of cubic Liénard equations.
Nonlinearity. 1998; 11:1505–1519.

[16]. LeBeau AP, Rabson AB, McKinnon AE, Sneyd J. Analysis of a reduced model of corticotroph
action potentials. J. Theoretical Biol. 1998; 192:319–339.

[17]. Pernarowski M. Fast subsystem bifurcations in a slowly varying Liénard system exhibiting
bursting. SIAM J. Appl. Math. 1994; 54:814–832.

[18]. Rinzel, J. Bursting oscillations in an excitable membrane model. In: Sleeman, BD.; Jarvis, RD.,
editors. Ordinary and Partial Differential Equations. Springer; Berlin: 1985. p. 304-316.(Dundee,
1984)Lect. Notes Math., 1151

[19]. Rinzel, J. A formal classification of bursting mechanisms in excitable systems. In: Gleason, AM.,
editor. Proc. Intl. Cong. Math.; Berkeley, Calif.. Providence, RI: American Mathematical
Society; 1987. p. 1578-1593.1986

[20]. Rinzel, J.; Ermentrout, B. Analysis of neural excitability and oscillations. In: Koch, C.; Segev, I.,
editors. Methods in Neuronal Modeling. The MIT Press; 1998. p. 251-291.

[21]. Rinzel J, Lee YS. Dissection of a model for neuronal parabolic bursting. J. Math. Biol. 1987;
25:653–675. [PubMed: 3437231]

[22]. Shilnikov A, Calabrese RL, Cymbalyuk G. Mechanism of bistability: Tonic spiking and bursting
in a neuron model. Phys. Rev. E. 2005; 71(3):9. 056214.

[23]. Stern JV, Osinga HM, LeBeau A, Sherman A. Resetting behavior in a model of burting in
secretory pituitary cells: Distinguishing plateaus from pseudo-plateaus. Bull. Math. Biol. 2008;
70:68–88. [PubMed: 17703340]

[24]. Tabak J, Toporikova N, Freeman ME, Bertram R. Low dose of dopamine may stimulate prolactin
secretion by increasing fast potassium currents. J. Comput. Neurosci. 2007; 22:211–222.
[PubMed: 17058022]

[25]. Teka W, Tsaneva-Atanasova K, Bertram R, Tabak J. From plateau to pseudo-plateau bursting:
Making the transition. Bull. Math. Biol. 2011; 73:1292–1311. [PubMed: 20658200]

[26]. Toporikova N, Tabak J, Freeman ME, Bertram R. A-type K+ current can act as a trigger for
bursting in the absence of a slow variable. Neural Comput. 2008; 20:436–451. [PubMed:
18047413]

[27]. Tsaneva-Atanasova K, Osinga HM, Rieß T, Sherman A. Full system bifurcation analysis of
endocrine bursting models. J. Theoretical Biol. 2010; 264:1133–1146.

[28]. Tsaneva-Atanasova K, Sherman A, van Goor F, Stojilkovic SS. Mechanism of spontaneous and
receptor-controlled electrical activity in pituitary somatotrophs: Experiments and theory. J.
Neurophysiology. 2007; 98:131–144.

[29]. Vo T, Bertram R, Tabak J, Wechselberger M. Mixed mode oscillations as a mechanism for
pseudo-plateau bursting. J. Comput. Neurosci. 2010; 28:443–458. [PubMed: 20186476]

[30]. de Vries G. Multiple bifurcations in a polynomial model of bursting oscillations. J. Nonlinear Sci.
1998; 8:281–316.

Osinga et al. Page 14

Discrete Contin Dyn Syst Ser A. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Time series (a) and bifurcation diagram (b) for square-wave (fold/homoclinic) bursting in a
conductance-based model. Time series (c) and bifurcation diagram (d) for pseudo-plateau
(fold/subHopf) bursting. Parameters as in [27, Fig. 1], except that here the square-wave
bursting trajectory is calculated for fc = 0.0052.
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Figure 2.
Time series (a) and bifurcation diagram (b) for the square-wave (fold/homoclinic) burster
defined in Golubitsky et al. [7] with μ2 = 1/3 and b = 3 in (2). For the slow path we set ν =

−1.4+10 μ1 and identified μ1 with the slow variable z as in (3) with  = −0.071, A = 0.006
and ∈ = 0.01. Time series (c) and bifurcation diagram (d) for a ‘clean’ fold/homoclinic
burster with no large surrounding periodic orbit. This case is obtained from (4) with μ2 = ⅓
and b = 3, which is (2) with time reversed as well as the orientations of μ1, ν and x. Here,

we used ν = —0.7 + 10 μ1 and z as in panels (a) and (b), with  = −0.062, A = 0.015 and ∈
= 0.01.
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Figure 3.
Pseudo-plateau bursting exists in the (partial) unfolding (4) of a doubly-degenerate
Bogdanov–Takens singularity. Panel (a) shows the bifurcation diagram on the unit sphere in
(μ1, μ2, ν)-space with b = 0.75. Color in on-line version: red, homoclinic (HC); blue, Hopf
bifurcation (H; solid: supercritical, dashed: subcritical); black, saddle-node (SN); orange,
Bogdanov–Takens point (BT); green, saddle node of periodics (SNP); degenerate Hopf and
cusp are labeled DH and C, respectively. Panels (b) and (c) show time series and underlying
bifurcation diagram of pseudo-plateau bursting corresponding to the path indicated in panel
(a).
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Figure 4.
Bifurcation diagram of (4) with b = 0.75 and ν = −0.09; the bifurcation diagram on the unit
sphere with b = 0.75 from Figure 3(a) is shown for reference in panel (a) with the (μ1, μ2)-
plane shown in panel (b) and an enlargement in panel (c). Note that there are two

Bogdanov–Takens points, BTr and , on the same side SNr of the cusp point C. Two
burst paths are indicated, which are the fold/subHopf and fold/homoclinic bursters
illustrated in Figure 5. Colors and symbols as in Figure 3.
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Figure 5.
Time series and one-parameter bifurcation diagrams illustrating the two path segments
indicated in Figure 4; we used (4) with b = 0.75 and ν = −0.09, and μ2 = 0.5 for pseudo-
plateau bursting in panels (a) and (b), and μ2 = 0.24 for square-wave bursting in panels (c)

and (d), respectively. The slow variable z = μ1 is defined in (3); we used  = −0.01, A =

0.15 and ε = 0.1 for μ2 = 0.5, and  = −0.0395, A = 0.0066 and ε = 0.01 for μ2 = 0.24.
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Figure 6.
Bifurcation diagram of (4) with b = 0.75 and μ2 = 0.0675; the bifurcation diagram on the
unit sphere with b = 0.75 from Figure 3 is shown for reference in panel (a) with the (μ1, ν)-
plane shown in panel (b) and an enlargement in panel (c); the Bogdanov–Takens point BTr
is the same point as the one labeled BTr in the ν-slice shown in Figure 4. Colors and
symbols as in Figure 3.
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Figure A1.
Bifurcation diagram of (4) in the (μ1, ν)-plane with b = 0.75 and μ2 = 0.0675 fixed; see also
Figure 6. The horizontal paths indicated in the figure correspond to the bursters shown in
Figures A2–A10 and have been labeled accordingly.
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Figure A2.
Fold/fold bursting in which there is no Hopf bifurcation of the fast subsystem but spikes are

generated by transients of the fast subsystem. The path satisfies ν = −0.15, A = 0.008,  = 0
and ε = 0.025. The spikes disappear as ε ↔ 0.
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Figure A3.

Tapered (fold/fold) bursting with ν = −0.13, A = 0.008,  = 0.001 and ε = 0.002.
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Figure A4.

Square-wave (fold/homoclinic) bursting with ν = −0.105, A = 0.0013,  = −0.006 and ε =
0.005.
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Figure A5.

Parabolic (circle/circle) bursting with ν = −0.08, A = 0.008,  = −0.0025 and ε = 0.0025.
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Figure A6.
Fold/homoclinic bursting with no plateau because the limit cycles surround all three steady

states. The path satisfies ν = −0.03, A = 0.002,  = −0.006 and ε = 0.002.
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Figure A7.

Fold/fold-cycle bursting, historically called “Type 4″, with ν = 0.2, A = 0.03,  = 0.005
and ε = 0.02.
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Figure A8.
A form of subHopf/fold-cycle bursting with folds in the steady-state curve so that some of
the fast-subsystem limit cycles surround three steady states. The path satisfies ν = 0.3, A =

0.05,  = 0.02 and ε = 0.01.
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Figure A9.

“Type III” (subHopf/fold-cycle) bursting with ν = 0.35, A = 0.043,  = 0.05 and ε = 0.001.
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Figure A10.
“Parabolic amplitude” bursting, a phenomenological variant of fold/homoclinic bursting,

with μ2 = 0.2, ν = −0.132, A = 0.006,  = 0.023 and ε = 0.05. This case does not
correspond to a path in Figure A1; μ2 was changed to move both Hopf bifurcations to the
right of the left knee (small periodic branch corresponding to the right Hopf bifurcation not
displayed).
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