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ABSTRACT

Recent advances in RNA sequencing technology
(RNA-Seq) enables comprehensive profiling of
RNAs by producing millions of short sequence
reads from size-fractionated RNA libraries.
Although conventional tools for detecting and dis-
tinguishing non-coding RNAs (ncRNAs) from refere-
nce-genome data can be applied to sequence data,
ncRNA detection can be improved by harnessing the
full information content provided by this new
technology. Here we present NORAHDESK, the first
unbiased and universally applicable method for
small ncRNAs detection from RNA-Seq data.
NORAHDESK utilizes the coverage-distribution of
small RNA sequence data as well as thermodynamic
assessments of secondary structure to reliably
predict and annotate ncRNA classes. Using
publicly available mouse sequence data from
brain, skeletal muscle, testis and ovary, we evalua-
ted our method with an emphasis on the perform-
ance for microRNAs (miRNAs) and piwi-interacting
small RNA (piRNA). We compared our method with
DARIO and MIRDEEP2 and found that NORAHDESK

produces longer transcripts with higher read
coverage. This feature makes it the first method par-
ticularly suitable for the prediction of both known
and novel piRNAs.

INTRODUCTION

The involvement of non-coding RNAs (ncRNAs) in many
genetic and epigenetic processes is well documented (1).
To date, the best studied class of small ncRNAs is micro
RNA(miRNA), which regulates gene expression by re-
pressing messenger RNA (mRNA) translation, but other
classes of small ncRNAs, such as piwi-interacting small

RNA (piRNA) and small nucleolar RNA (snoRNA),
have also been characterized (1). It has been said that
the majority of the genome is transcribed at some stage
(2), therefore, the exact expression profile is necessary to
functionally annotate known and novel ncRNAs.
Progress in the study of the active RNA transcriptome

in a genome-wide manner is supported by recent advances
in sequencing technology. The initial sequencing proto-
cols developed for capturing large RNAs such as
mRNAs, are inadequate to detect small ncRNAs; new
protocols have thus been developed to specifically
capture small ncRNA (small-RNA-Seq). In these proto-
cols, only the fragments that fall within a predefined size
distribution are selected for sequencing. Although conven-
tional ncRNA discovery methods can be applied to
analyze assembled sequences derived from this data,
programs specifically developed for deep sequencing
data yield better performance (3,4).
Most methods developed for deep sequencing

data analysis to date are either in-house-only bioinfor-
matic tools to generate a resource dataset (5,6) or report
simply the clusters of mapped reads (7), mainly with a
focus on miRNA (8–11) or small silencing RNAs (12).
Friedländer et al. (3) observed that the biological
miRNA maturation process leaves a distinct footprint in
the read coverage of deep sequencing data, which can be
leveraged to improve the specificity of miRNA prediction
[MIRDEEP2 (13)]. miRNA transcripts (known as
pri-miRNAs) are transcribed by the RNA polymerase II
from either independent transcripts of intergenic regions
(IGRs) or from the introns of protein-coding genes (14).
These pri-miRNA transcripts are processed into hairpin
shaped precursors (pre-miRNAs) of about 70 nucleotides
(nt) in length by the Drosha-DGCR8 complex, which are
then cleaved into �22 nt long duplexes of mature miRNAs
by Dicer (14). Chaing et al. observed miRNA gene expres-
sion in high-throughput data has certain characteristics:
miRNA tend to have pairs of expressed contigs connected
by a sequence able to form a predicted hairpin structure,
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and regions where one of these proximal pairs is absent
are therefore likely to be degradation intermediates rather
than miRNA (15). Therefore, the simplest way to recon-
struct miRNA transcripts from deep sequence reads is to
examine whether proximal reads are able to form
pre-miRNA like hairpin structures. This observation can
be extended to the prediction of other ncRNA classes (16)
such as piRNAs, which also have a characteristic footprint
in the read distribution data. piRNAs are short RNAs of
26–31 nt in length with a bias for 50 uridine that interact
with Piwi proteins, a subgroup of Argonaute proteins that
are required for germ- and stem-cell development (17–19).
In mammals, the main role of piRNAs is to regulate Piwi
proteins to repress transposons (20). piRNAs are derived
from clusters of genome regions of 20–90 kilobases in
length, since all transcripts in one cluster originate from
the same strand it has been suggested that they are pro-
cessed from one long primary transcript (17,18).
Although the origin of the observed uneven and gapped

read distribution of ncRNAs is not well understood,
Langenberger et al. (16) developed a machine learning-
based framework, DARIO (21), which firstly reports all
annotated ncRNA with non-zero coverage and secondly
uses a machine learning-based framework to successfully
predict and classify novel ncRNA types from these indi-
cative features in the sequencing data. However, the
accuracy of any machine learning based classifier
strongly depends on how well the training set represents
the features of yet unseen ncRNAs. DARIO’s training set
size is 434 ncRNA of which half are miRNAs. Its ability
to generalize is thus likely to be limited and is further
restricted to the species the classifier was trained on (cur-
rently human, mouse, Caenorhabditis elegans and
Dorsophila melanogaster).
Here we present NORAHDESK, the first unbiased and

universally applicable tool for predicting ncRNA that
exploits the read characteristics of ncRNAs in deep
sequencing data. We utilize two biological observations:
first, small ncRNAs generally possess stable secondary
structures with each class of ncRNAs clearly distinguish-
able by their length and structures (22); second, many
small ncRNAs are transcribed from large primal tran-
scripts (23).
To leverage these observations, our method first joins

overlapping reads into contigs and then tests whether
neighboring contigs can hybridise to form a sound second-
ary structure. By hybridizing contigs, we reconstruct the
full-length of the putative ncRNA transcript, which
enables us to evaluate the structural energies before
reporting the high-confidence candidates.
To evaluate the performance of our approach in pre-

dicting ncRNAs from deep sequencing data, we report the
frequency of hyridization-based merging and the size
distribution of assembled transcripts in four publicly
available datasets. Secondly, we report the fraction of
known ncRNA within NORAHDESK’s predictions. In the
‘Results’ section, we compare the performance of our
method to DARIO and MIRDEEP2. Fourthly, we report
NORAHDESK’s ability to predict miRNA transcripts and
piRNAs-clusters, and conclude by surveying the fraction
of novel ncRNA predicted by our method.

MATERIALS AND METHODS

Implementation

The functionality of NORAHDESK can be separated into
two stages: (i) reconstructing small ncRNA transcripts
from deep sequencing data; (ii) and annotating these tran-
scripts with known RNAs.

Transcriptome reconstruction
NORAHDESK takes a list of deep sequence reads aligned to
the reference genome in BAM or BED format produced
by sequence read aligners such as BWA (24) and Bowtie
(25) as input. Figure 1 shows the overview of the four
steps NORAHDESK undertakes to reconstruct ncRNA tran-
scripts from deep sequencing data. The ‘first’ step merges
all overlapping reads into one longer sequence fragment (a
contig). The ‘second’ step hybridizes closely located
contigs to each other. To do this, we group all contigs
by chromosome and strand, then we hybridize all tran-
scripts within a group that are at most a certain distance
(D) apart and screen the pairs of hybridized transcripts
that have a free energy below a certain threshold (Eh).
We test two different maximum distances, D={250 nt,
500 nt}, measured by the start position of one read and
end position of another read, and three different
maximum hybridization free energies, Eh={�5 kcal/
mol, �7.5 kcal/mol, �10 kcal/mol}, computed by using
RNAduplex (Vienna RNA package http://www.tbi.
univie.ac.at/RNA/). The third step merges overlapping
newly created transcripts and original contigs to create
the final reconstructed transcripts. The transcripts con-
taining <10 reads are discarded at this stage. In the final
step, we compute the folding energies of remaining tran-
scripts and discard the transcripts with free energy Ef

>�5 kcal/mol. The structural energies of the transcripts
are computed using RNAfold (26). We compute the
folding energies for only the transcripts �3000 nt in
length due to computational limitations; and assign
�100 kcal/mol for those >3000 nt, assuming the long tran-
scripts have lower folding energies than �5 kcal/mol.

Throughout the processes, BEDTools (27) are used to
merge reads (‘merge’ program) and obtain the sequences
for the merged reads (‘getSequences’ program). The
output of this stage is a list of predicted small ncRNA
transcripts in BED format. All displayed structures are
predicted using RNAfold (26).

The run time of NORAHDESK largely depends on the
numbers and the length of transcripts predicted by the
software. For example, it took from �11min (using a
threshold of D=250 nt and Eh=5kcal/mol) to �12
min (D=500 nt and Eh=10kcal/mol) to compute
brain sample (SRR042477) using a linux cluster with
Intel Xeon CPU 2.13GHz with (restricted to) 8GB
memory. It also took from �204 min (D=250 nt and
Eh=5kcal/mol) to �265 minutes (D=500 nt and
Eh=10kcal/mol) to compute testis samples
(SRR042485), which contain many long piRNA tran-
scripts (see Results) to compute. For the same dataset,
MIRDEEP2 took from �101min (SRR042485) to �233
min (SRR042486).
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Transcripts annotation
In the second stage, NORAHDESK categorizes predicted
transcripts into classes of known ncRNAs and novel
ncRNAs. To do this, we construct an annotation file of
known ncRNAs using fRNAdb version 3.4 (28), (http://
www.ncrna.org/frnadb/download). Since the miRNA
entries in fRNAdb are old (miRBase version 9), we sup-
plement the precursor miRNA data using miRBase
version 18 (29) (www.mirbase.org/ftp.shtml) and con-
struct a single ncRNA annotation file. To detect the tran-
scripts that overlapped with protein coding genes, we also
construct an annotation file for Ensemble genes using
ensGene.txt (http://hgdownload.cse.ucsc.edu/goldenPath/
mm9/database/). All annotation files are converted
into BED format. We use the intersect program in
BEDTools (27) to map the locations of our predicted
RNA transcripts to known RNAs. We require 90%
overlap (90% of the shorter transcripts, either the pre-
dicted or known transcripts, have to overlap with the
longer transcripts) for fRNAdb and miRBase data, and
10% overlap with Ensemble data. We search predicted
transcripts against, first, the ncRNA file, then the
Ensemble gene file. We identify transcripts that overlap
with only ncRNA files, i.e. miRBase and fRNAdb, as
known ncRNAs, and transcripts that do not overlap
with any of the above database are classified as potential
novel ncRNAs. We also count transcripts that overlap
with Ensemble entries but not overlap with ncRNAs as
mRNAs; however, we do not supply an annotation file of
mRNA transcripts. Additionally, we categorize ncRNAs
into classes of: miRNA, piRNA, snoRNA, other small
ncRNA (sncRNA), rRNA, tRNA, antisense transcript and
other ncRNA. sncRNA class includes small cajal body
specific RNA (scaRNA), small nuclear RNA (snRNA)
and minor spliceosomal RNA (snRNA_splicing).
If a predicted transcript overlaps with multiple classes of
ncRNAs, e.g. as miRNA and piRNA, the known ncRNA
annotation file contains multiple entries. For counting
statistics, we select each transcript as miRNA, piRNA,

snoRNA, sncRNA, rRNA, tRNA, antisense transcript
and other ncRNA in this order and do not allow
multiple counts; The outputs of this program are a list
of categorized known ncRNAs, a list of potential novel
ncRNAs and a summary (count) file. NORAHDESK requires
only 4–6 s to annotate each set of data.

Sequence data

Four sets of mouse RNA-Seq reads from Kuchen et al.
(30) [brain (SRR042477), skeletal muscle (SRR042483),
testis (SRR042485) and ovary (SRR042486)] were down-
loaded from NCBI Sequence Reads Archive (SRA)
(http://www.ncbi.nlm.nih.gov/sra). These data were
generated by the protocol optimizing for small RNAs
(18–30 nt in length) with the read length of 32 nt and
single strand (adaptor in one side) (30). The number of
reads in each sample ranges from 3 to 7.5 million. The
downloaded reads (in SRA format) are converted into
FASTQ files using SRA Toolkits (http://trace.ncbi.nlm
.nih.gov/Traces/sra/sra.cgi?view=software) and mapped
to the mouse genome (mm9) using BWA (24) with the
default setting. About 65–89% of reads map to the
genome, after discarding the reads that mapped to mito-
chondrial DNA (Supplementary Table 1),

Shuffled reads

To query the statistical validity of the hybridization step
we generate 100 sets of shuffled sequences for each set of
contigs using a first order Markov model, which keeps the
di-nucleotide distribution intact (‘squid’, ftp://selab
.janelia.org/pub/software/squid/). We hybridize these
shuffled contigs as mentioned above (the second step of
‘Transcriptome reconstruction’) and construct shuffled
transcripts. Then we compare the number of the resulting
transcripts between the shuffled and real data (Wilcoxon
Rank-sum test).

Figure 1. Steps to reconstruct small ncRNA transcripts.
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Coevolution and PeptideAtlas annotation

The secondary structure conservation is obtained by em-
ploying tools that investigate thermodynamic stability
[RNAz (31)] and covariance [SISSIz (32)] in multiple
sequence alignments (multiz30way from UCSC genome
browser), as also used in Mercer et al. (33). After filtering
for size >30 and species �3, there are 800 regions with
alignment information. All transcripts exceeding the
default score as determined by this approach are
reported to have conserved secondary structure.
To investigate whether the transcripts are translated to

known peptides, we first generate the amino acid sequence
for all open reading frames of the predicted transcripts
and then query the resulting peptides against the the online
database of PeptideAtlas (34) using a REST protocol. All
transcripts overlapping with known peptides are from our
ncRNA prediction.

RESULTS

We predict 612 unique transcripts (which contain �4.6
million reads) in brain, 729 transcripts (�6.2 million
reads) in muscle, 5397 transcripts (�2.4 million reads) in
testis, and 1284 transcripts (�2.8 million reads) in ovary.
The number of predicted transcripts and transcripts
overlapping with known ncRNAs is largely robust to par-
ameter changes (Supplementary Tables S2 and S3). We
hence select D=250 nt and a maximum hybridization
free energy Eh=�5 kcal/mol, and describe the results
obtained using this criteria for the rest of the document.

Hybridizing proximal reads significantly improves
transcript prediction

To establish that the hybridization-based reconstruc-
tion of transcripts is contributing significantly to the
prediction-outcome, we show that the size distribution
of the initial contigs (see the first step of ‘Transcriptome
reconstruction’ in ‘Materials and Methods’ section) is sub-
stantially different from the size distribution of the pre-
dicted transcripts.
The length distributions are visualized in Figure 2.

Starting off with a mean ‘read’-length of �21–22 nt in
brain, skeletal muscle and ovary, and 26 nt in testis, we
observe almost no change in the mean ‘contig’-length
(22–31 nt; Supplementary Table 1). When we select
contigs that contain �10 reads, we observe a small
change in length (27–28 nt) in brain and skeletal muscle,
and a slightly larger increase in ovary (46 nt) and testis
(92 nt) (Figure 2 and Supplementary Table 1). However,
the mean length of predicted ncRNA ‘transcripts’ is sub-
stantially shifted to 101 nt in brain, 110 nt in muscle, 498 nt
in testis and 666 nt in ovary (Figure 2 and Supplementary
Table 2), implying that neighboring fragments indeed
originated from the same transcript.
Figure 2 is showing that ‘contigs’ are of similar length

across the different tissues. In contrast, the length distri-
butions of reconstructed ‘transcripts’ varies greatly, sug-
gesting that our method is better suited for revealing the
different ncRNA populations present in each tissue than
methods based on contigs alone. For example, the size

distribution peak at �23 nt in brain, muscle and ovary
suggests a large fraction of transcripts are mature
miRNAs, whereas the peak at �65–75 nt is indicative of
pre-miRNA transcripts. We will show in the next section
that these transcripts indeed overlap with known
miRNAs. The miRNA peaks are less dominant in testis,
which has an additional broader peak around �200 nt.
Both testis and ovary have a general tendency for longer
transcripts, i.e. 11% of transcripts in testis and 20% in
ovary are �1000 nt in length, which imply both testis
and ovary contain long piRNA transcripts (explained in
the piRNA section). Importantly, the highest peak shown
at �200 nt in testis indicates that the dominant small
ncRNA in testis is piRNA and not miRNA.

Furthermore, to establish that the hybridization-based
transcript reconstruction is building upon biologically
relevant properties rather than noise, we show that
randomly generated data have a different contig-hybridi-
zation property. Successful hybridization depends on two
determinants: location (distance of neighboring contigs)
and sequence (base pairing compatibility). We hypothesize
that contigs from the same transcript are more likely to
hybridize with each other compared with random
sequences or contigs originating from different transcripts.

In brain we observe 1477 hybridization events that
satisfy above criteria. After shuffling the sequence of
each contig keeping their relative location fixed we
observe on average 1332 and at most 1366 hybridization
events (repeated 100 times). This shows that real data are
significantly more likely to contain neighboring contigs
that are able to hybridize (Wilcoxon Rank-sum test; P-
value � 0.045). We obtain similar results for the other
tissues (data not shown).

In summary, our hybridization-based reconstruction of
transcript is a statistically sound approach to greatly
extend the length of the predicted transcripts thereby
may be able to trace the ncRNA population in different
tissues.

Discovery of ncRNAs with known function

In this section we survey the predicted transcripts with
respect to known ncRNA classes in the different tissues
to further investigate NORAHDESK’s sensitivity.

We observe that 48% (291) and 37% (268) of the pre-
dicted transcripts in brain and muscle, respectively,
overlap with known ncRNA annotations. In testis and
ovary this ratio increases to 66% (3557) and 76% (979),
respectively. As shown in Figure 3, these transcripts
comprise between 92 and 99% of the total reads in these
tissues. This means that any ncRNA our method fails to
report must have a very low expression level, which attests
to the precision of our method.

As noted in the previous section, the ncRNA popula-
tion in the four tissues is very different. The highly
abundant transcripts predicted by NORAHDESK for brain,
muscle and ovary are predominantly miRNAs, whereas
the predictions in testis are dominated by piRNAs.
These observations are in agreement with Kuchen et al.
(30) and will be further discussed in the following sections.
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Concordance with published ncRNA prediction methods

In this section, we benchmark NORAHDESK against the
current state-of-the-art in miRNA and ncRNA prediction
by comparing our results to the predictions made by
MIRDEEP2 and DARIO. We used the same input (mapped
sequence) file for all three methods.

We predict 246 miRNA transcripts that overlap with
known miRNAs in brain, see Table 1 (the results on
other tissues are available in Supplementary Table S4).
Although, NORAHDESK predicts only �60% of the
miRNAs predicted by DARIO and MIRDEEP2 (Table 1),
our miRNA transcripts comprise a similar number of
reads as DARIO, which means that on average DARIO’s
predictions are supported by fewer reads. To ensure only
high-confidence transcripts are reported, NORAHDESK

requires the support of at least 10 reads per transcript,
where DARIO also includes ncRNAs consisting of a
single read in the known ncRNA prediction. In fact, 119
out of 427 (28%) miRNAs predicted by DARIO contain
<10 reads.

The 442 miRNAs predicted by MIRDEEP2 on the other
hand, comprise nearly double the number of reads than

DARIO and NORAHDESK (Table 1), which means that the
average number of supporting reads is as high as
NORAHDESK’s. This indicates that a single predicted
miRNA transcript is assigned to a miRNA (or a
miRNA family) that derived from multiple locations.
However, MIRDEEP2 implements a quality criteria to
remove low-quality predictions including a miRNA tran-
script that mapped to multiple known miRNA locations.
Due to the length and the sequence composition of
miRNA the fraction of non-uniquely mapping reads is
natively high; rather than excluding a very large fraction
of reads at the mapping stage, NORAHDESK reduces the
negative effect of multi-mappings by reconstructing
miRNA precursors. In this way, we are able to predict
each miRNA transcript that derived from a distinct
(unique) locus.
Despite the different approaches, all three methods

predict a similar set of high-abundant miRNAs (Sup-
plementary Table S5).
Similar to the miRNA prediction performance,

NORAHDESK predicts fewer snoRNAs, rRNAs and
tRNAs compared with DARIO. However, of the 282

Figure 2. Size distribution of contigs and predicted transcripts. The shift in the size distribution of contigs (blue) and predicted transcripts (red) in
brain, muscle, testis and ovary. The x-axis shows the size in number of nucleotides and the y-axis shows the corresponding density as the smoothed
and normalized contig- and transcript count, respectively.
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snoRNAs only 40 snoRNAs contain �10 reads, which
means the majority of known snoRNAs predicted by
DARIO would not pass our quality criteria. fRNAdb
contains only one tRNA entry; therefore, we do not
expect to predict any tRNA; however, some novel
ncRNA transcripts NORAHDESK predicts are overlapped
with tRNAscan-SE (35) predicted tRNAs (see
‘Discovery of novel ncRNAs’ section).
To evaluate how well a method is able to predict

unannotated miRNAs, we compare the novel miRNAs
predicted by MIRDEEP2 and NORAHDESK using miRBase
v16 to the content of miRBase v18. The proportion of
novel miRNA that are included in the most recent anno-
tation indicates the power of miRNA prediction. We are
unable to compare DARIO’s results in the same way, as the
documentation does not indicate which database version
DARIO uses. In the brain sample, MIRDEEP2 predicts
62 novel miRNAs (including six transcripts, which are

also predicted as rRNA/tRNA) using miRBase v16. Of
these 62 predicted novel miRNAs, three are listed as
new miRNAs in v18. NORAHDESK predicts 268 novel
ncRNA transcripts, including 150 transcripts that are
overlapped with predicted tRNAscanSE (see ‘Discovery
of novel ncRNAs’ section) using an annotation file that
contains miRBase v16. Of these, four transcripts are now
listed in v18. MiRBase v18 includes a further three
transcripts that were predicted by NORAHDESK but previ-
ously annotated as piRNA, piRNA/snoRNAs and other
ncRNAs in fRNAdb. In total, NORAHDESK predicts seven
new miRNAs that were shown to be correct in v18; this
demonstrates the ability of NORAHDESK to correctly
predict un-annotated miRNAs transcripts. Note, one
miRNA (miR-1994) is deleted from v18 but annotated
as snoRNA in fRNAdb.

To summarize, while all three methods are able to detect
the highly abundant transcripts, NORAHDESK’s strict

Figure 3. Distribution of ncRNA types in different tissues. The figures show the fraction of reads overlap with known and novel classes of RNAs in
brain, skeletal muscles, testis and ovary.

Table 1. Comparison with other methods

Method miRNAs piRNAs snoRNAs sncRNAs tRNAs

transcripts reads transcripts reads transcripts reads transcripts reads transcripts reads

NORAHDESK 246 4 497 220 9 1150 12 1237 3 103 0 0
DARIO 427 4 811 848 NA NA 282 43 075 NA NA 334 8486
MIRDEEP2 442 8 781 481 NA NA NA NA NA NA NA NA
MIRDEEP2> 0 343 7 429 586 NA NA NA NA NA NA NA NA
MIRDEEP2> 9 208 3 712 002 NA NA NA NA NA NA NA NA

Number of transcripts and reads predicted by NORAHDESK, DARIO and MIRDEEP2. >0 and >9 show that the predicted miRNAs with
MIRDEEP2 quality scores >0 and 9. The numbers are actual (not normalized) reads.
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selection criteria applied for all predicted transcripts, both
known and novel small ncRNAs, predict fewer but
high-quality transcripts supported by more reads.

On data that do not contain many long transcripts such
as brain samples, the run time of NORAHDESK (�11 min) is
considerably shorter than MIRDEEP2 (�157 min); however,
NORAHDESK requires more computational resource to
process data containing many long transcripts (see
‘Transcriptome reconstruction’ section in ‘Materials and
Methods’ section). Since DARIO is a web server, we are
unable to directly compare its run time with other
stand-alone programs.

Prediction of miRNA precursors

This section explores the properties of miRNA transcripts
predicted by NORAHDESK. As previously described, our
method relies on reconstructing miRNA precursors to
predict miRNA transcripts. Being able to accurately
predict the secondary structure of the precursor is hence
paramount. Figure 4 shows an example of similar folded
pre-miRNA transcript predicted by our method is in com-
parison with the known fold as annotated by miRBase v18.

The average length of precursors in miRBase v18 is
84 nt (48 – 133 nt), where we predict transcripts in brain
with the average length of 87 nt with 9% of them being
>133 nt (4% are <48 nt). Furthermore, we observe that
these large transcripts contain multiple known
miRNAs, e.g. the largest predicted transcript is 817 nt
(Chromosome 14 + strand) and overlaps with 5 known
miRNAs (miR-18a, miR-19a, miR-20a, miR-19b-1 and
miR-92a-1). Rather than being an artifact of an
over-agressive contig merging behavior, NORAHDESK’s
predictions reflect biological properties: miRNA clusters
indeed exist where several miRNA genes are transcribed in
a single pri-miRNA, as discussed in Berezikov (36).
Following on from this, we also predict a small number
of transcripts, which contain a single miRNA and one or
more contigs that are either un-annotated or annotated as
ncRNAs (e.g. non-coding transcripts from FANTOM3),
indicating yet unknown miRNA clusters (Figure 5).

To summarize, NORAHDESK’s approach of reconstruct-
ing full transcripts by hybridizing neighboring fragments
can be successfully applied to miRNA discovery.

Prediction of piRNA sub clusters

In this section, we explore how suitable NORAHDESK is for
identifying piRNAs; as piRNAs are thought to be derived
from long primary transcripts (17), to reconstruct long
transcripts (resembling the pre-processed form) by
hybridizing neighboring contigs would aid in the discovery
of all piRNAs from one transcription unit.
As shown in Figure 3, we predict piRNAs mostly in

testis and to a lesser degree in ovary. This is in agreement
with what the raw sequence data indicates: the average
length of sequence reads in testis (26 nt) is longer than in
other tissues (21–22 nt), with the largest frequency of reads
at 31 nt, which falls within the range of a typical piRNA
(26–31 nt) (Supplementary Figure S6). Indeed, 3099 out of
5397 predicted transcripts (57%) overlap with known
piRNAs in testis. As discussed earlier, a group of
piRNAs are transcribed from a large cluster, and in
many cases, individual piRNAs are located close each
other in the cluster. Thus using our method, clustered
piRNAs are merged into a single long transcript, each of
them contains several known piRNAs. Alrhough the
average length of predicted piRNA-cluster transcripts
are longer than the ones overlapping with known
miRNAs in testis (577 versus 124 nt), they are still
shorter than the piRNA-cluster that have been reported
to extend 20–90 k nt (18). Our longest predicted tran-
scripts is 6505 nt and the majority (85%) are <1 k nt;
therefore, the piRNA-clusters analyzed here seem to be
derived from substantially shorter primary transcripts or
contain gaps that are longer than our hybridization
approach can bridge (>250 nt on this analysis).
Figure 6 shows two predicted transcripts that overlap

with known piRNAs. Both transcripts form energetically
stable complexes and contain one or more known piRNAs
(green), which are overlapped with contigs (yellow),
indicating that the piRNAs were indeed derived from
the longer transcript. Additionally, these transcripts
contain contigs that are not annotated as piRNA, but

Figure 4. Known versus predicted structure of mmu-let-7f1. The top figure shows the known structure of mmu-let-7f1 from miRBase and the bottom
shows the predicted structure of reconstructed transcript. The mature miRNA-duplex is shown in purple.
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when individually folded form piRNA like secondary
structures (Supplementary Figure S7) and the majority
contains 50 uridine.
By reconstructing the full—or at least a part of the—

extended transcriptional unit, we are able to predict

additional or even a complete set of piRNAs transcribed
from a single piRNA-cluster. This classification-by-
association approach enables us to annotate novel
ncRNA with yet unknown function as piRNAs. Indeed,
while Kuchen et al. (30) was able to annotate only

Figure 5. Example of long miRNA transcript. Predicted miRNA transcript from chr17:17967156-17967398 (+strand) overlaps with miR-99b
precursor and contains additional one un-annotated contig.

Figure 6. Examples of predicted piRNA transcripts. (A) Predicted piRNAs transcripts from chr10:18517077-18517536 (-strand); 4 out of 7 contigs
overlap with known piRNAs and all contigs have 50 uridine. (B) Predicted piRNAs transcripts from chr6:128121896-128122316 (-strand); only one
out of 6 contigs overlap with a known piRNA and 4 out of 6 contigs have 50 uridine.
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�50% of the reads to be piRNA and classified �23% to
be novel ncRNAs, we predict that 82% of all reads in
testis belong to piRNA.

To summarize, our analysis supports the evidence that
piRNAs are transcribed from longer transcripts and pro-
cessed into mature forms. NORAHDESK’s hybridization-
based approach is particularly suited to the identification
of a set of piRNAs from one transcriptional unit, which
includes many predicted novel piRNAs.

Discovery of novel ncRNAs

In this section, we investigate whether NORAHDESK is able
to recover meaningful transcripts in the four publicly
available datasets that have not been reported before.
We predict 264 novel transcripts in brain, 359 in skeletal
muscle, 1182 in testis and 230 in ovary. The average
lengths of the novel ncRNA transcripts in brain, muscle
and testis are 6–16% shorter than the average length of
over all transcripts, and in ovary the transcript-size was
reduced by half. Apart from a smaller size, they also
occupy only a very small fraction of reads: 0.4% in
brain, 1.1% in muscle, 4.6% in testis, 2.2% in ovary.
However, as discussed by Clark et al. (37), low-level
transcripts may be functional and hence must not be
discarded.

To investigate whether the predicted low-abundant
transcripts are potential novel miRNAs, we screen tran-
scripts in brain that fall in the pre-miRNA size range
(48–133 nt). We randomly select 8 transcripts and
manually investigate their secondary structure for the
pre-miRNA like hairpin structure. In total, 7 out of 8
randomly selected transcripts overlap with predicted
tRNA by tRNAscan-SE (35). The structure of the remain-
ing transcript resembles a snoRNA (Supplementary
Figure 8).

Since one structure resembles a snoRNA, we also inves-
tigate whether the predicted transcripts in brain may be
other types of ncRNA. We therefore first remove all tran-
scripts that overlapped with predicted tRNA structures
(tRNAscan-SE), which filters out about half of all tran-
scripts leaving 114 putatively novel ncRNA in brain, 180
in muscle, and 128 in ovary, except in testis where almost
all transcripts remain (1107).

Next we measure whether the secondary structure of the
predicted RNA transcripts is evolutionary conserved, by
using the same methodology as reported in Mercer et al.
(33) (see ‘Materials and Methods’ section). Only 4–10% of
the predicted transcripts show evolutionary conserved
RNA structure (12 brain, 7 in muscle, 8 in ovary and 98
in testis). After excluding the ones overlapping with
known peptides from PeptidAtlas (34), we predict 10
novel ncRNA in brain, 7 in muscle, 8 in ovary and 96 in
testis. When limiting our analysis to regions expressed in
all four tissues, we observe 20 regions, of which two are
conserved throughout mammalian evolution and one
overlaps with a known peptide.

To summarize, while NORAHDESK predicts small
numbers of novel ncRNA transcripts in this dataset,
these transcripts are likely degradated products of either
tRNA or peptide producing genes.

DISCUSSION

The collection of short sequence reads from RNA-Seq
reflects the expression level of each transcript as well as
the state of the transcripts where RNA synthesis, degrad-
ation and interim processes of ncRNA biogenesis have
occurred simultaneously. Thus, it is meaningful to recon-
struct transcripts from proximal reads found in the same
sample, since they may be derived from the same primary
transcript. Evaluating whether proximal reads/contigs hy-
bridise and form a stable structure is important to distin-
guish degraded fragments from functional ncRNA
transcripts and reduce the risk of annotating fragmented,
miss-mapped and/or multi-mapped reads as novel
ncRNAs.
Using these assumptions, we have developed a program,

NORAHDESK, to predict small ncRNA transcripts from
small-RNA-Seq data. We tested our method on publicly
available mouse data (brain, muscle, testis and ovary)
using different selection criteria. We showed that
different criteria produce similar results, suggesting that
NORAHDESK robustly detect biological signals rather
than sequencing artifacts.
Transcripts that overlapped with known ncRNAs

including the un-annotated contigs in these transcripts,
occupy 92–99% of reads that mapped to the genome.
An overwhelming majority of reads belongs to miRNAs
in brain, muscle and ovary, and miRNAs and piRNAs in
testis.
Compared with DARIO and MIRDEEP2, our method

recovers similar highly expressed known miRNAs;
however, it produces longer transcripts with higher
coverage. Our method is capable of detecting known
miRNAs without extensive read mapping strategies.
We detect many known piRNAs in large transcripts,

where piRNAs are clustered, indicating that piRNAs
indeed are transcribed from a long primary transcripts.
Moreover, we found that many un-annotated contigs
that resemble piRNA structures are clustered with
annotated contigs (known piRNAs) in these long tran-
scripts. NORAHDESK is hence the first program to specific-
ally exploit the piRNA biogenesis to predict piRNA
transcripts from high-throughput sequencing data.

CONCLUSION

NORAHDESK reconstructs full-length putative ncRNA
transcripts from short sequence reads by hybridizing
contigs. It analyzes not only the distinct read distribution
of true ncRNA classes in an unbiased way but also utilizes
secondary structures as an independent confirmation
source to reliably predict ncRNA from deep sequencing
data. NORAHDESK and the mouse small ncRNA annota-
tion file in BED format used in this study are available at
http://www.bioinformatics.org.au/NorahDesk.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–5 and Supplementary Figures
6–8.
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