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One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based
on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze
microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-
throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact
that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray
experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel
methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis
and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based
gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than
11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses
pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the
shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey’s biweight
correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R
package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene
expression patterns or transcriptional network analyses.

One of the computational challenges in plant systems
biology is to construct biological networks that aid in
elucidating the functional relationships of genes during
plant development and in response to environmental
stimuli from genome-scale experiments (Long et al.,
2008; Nakashima et al., 2009; Moreno-Risueno et al.,
2010; Wellmer and Riechmann, 2010). Although bio-
logical networks encompass different types of physical
interactions at the protein, RNA, DNA, and even epi-
genetic levels, inference of the transcriptional regulation
relationships from gene expression data remains the
most common and efficient way to monitor dynamic
biological processes (Ma et al., 2007; Long et al., 2008;
Berri et al., 2009; Vandepoele et al., 2009). While
microarray technology has been a dominant approach
for gene expression profiling over the past decade, next-
generation sequencing technology has emerged as a
powerful platform to profile transcriptomes in a de
novo manner without relying on the availability of
genome sequences (Mortazavi et al., 2008; Wang et al.,
2009). Compared with microarray data, in which gene

expression levels are measured by fluorescence inten-
sities, RNA-Seq experiments use short read counts to
represent gene expression abundance, in which the
discrete nature of read counts results in a Poisson or
binomial distribution characterized by a long, heavy
tail (Garber et al., 2011; Hu et al., 2012). Based on this
presumption, computational biologists have devel-
oped new software, such as EdgeR and Cufflinks, that
use Poisson and binomial distributions to detect differ-
entially expressed genes from RNA-Seq data (Robinson
et al., 2010; Trapnell et al., 2010). Currently, most
existing RNA-Seq tools focus on read mapping, expres-
sion measurement, differential expression detection,
and variation calls. Thus, novel bioinformatic tools and
methodologies are expected for advanced statistical
analyses of sequencing-based gene expression data,
such as clustering and network analyses, with the
consideration of the properties of RNA-Seq data.

In gene expression analyses, the coregulation rela-
tionship of two genes can be inferred by the correlation
coefficients that are derived using multiple mathe-
matical methods, such as the Pearson’s product-
moment correlation coefficient (PCC), the Spearman’s
rank correlation coefficient (SCC), and the Kendall’s
rank correlation coefficient (KCC; Rice et al., 2005;
Scheinine et al., 2009; Ficklin and Feltus, 2011). While
the PCC infers the linear relationship between two
genes based on the covariance and SD from the ex-
pression values in a series of samples, the SCC and the
KCC use the ranks of gene expression levels in the
samples to compute correlations instead of directly
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using expression values. Although the SCC and the
KCC are more robust on nonnormal distributions
compared with the PCC, they have not been favored
by biologists because information on expression levels
is not considered. Of the many correlation methods in
biology, the Pearson correlation is the most commonly
used technique and has often been applied in clus-
tering analyses and network constructions; however,
disadvantages of this method have been frequently
reported. For instance, although the PCC performs well
in deriving global linear relationships between two
variables, its performance is dramatically reduced on
partial linear relationships or nonlinear relationships
(Hardin et al., 2007; Reshef et al., 2011). Moreover, the
PCC is not stable to outlier data points representing the
extreme values (either low or high) of a gene’s expres-
sion, which are substantially deviated from the median
and/or average expression level in a series of samples
(Hardin et al., 2007; Usadel et al., 2009).
Recent studies regarding the regulatory networks in

Escherichia coli and Saccharomyces cerevisiae have shown
that the current correlation methods are not adequate
to infer all of the regulatory relationships (Marbach
et al., 2010; Allen et al., 2012). For instance, the Pearson
correlation can only detect 60% of the true positive
regulatory relationships in E. coli, and more than 40%
of the predicted relationships are false positives (Allen
et al., 2012). This result is attributed to the complexity
of the biological systems, in which most regulatory
relationships are not globally represented as linear.
Because the expression levels of a transcription factor
(TF) and target genes may greatly vary and the tran-
scriptional regulation may occur transiently in specific
conditions or tissues, the PCC is not sensitive enough
to derive such relationships (Usadel et al., 2009). Spe-
cifically, with the exception of linear relationships, a
considerable amount of gene regulation exists in non-
linear relationships, such as inverted (negative regula-
tion) or time-delayed (regulatory response lag) patterns
(Yu et al., 2003).
With the recent availability of the protein inter-

actome (Arabidopsis Interactome Mapping Consor-
tium, 2011) and a TF-target interaction database
(AtTFDB of AGRIS) for Arabidopsis (Arabidopsis
thaliana; Yilmaz et al., 2011), a systematic evaluation of
the commonly used correlation methods in biology on
their power to infer regulatory relationships and their
compatibility with RNA-Seq data analyses is in high
demand. If necessary, novel correlation methods shall
be introduced into biology. The Gini correlation co-
efficient (GCC) is a member of the family of Gini
methodologies that have been widely used in eco-
nomics, sociology, physics, engineering, and infor-
matics to solve a series of mathematic problems
without having to hypothesize the forms of data dis-
tribution (Yitzhaki, 2003). In economics, the GCC is
used to calculate correlations between sources of
family income (e.g. salaries) and the total family in-
come for a country (Schechtman and Yitzhaki, 1999).
The robustness of the GCC was demonstrated recently

in biology in analyzing the connectivity of genes in
transcriptional networks (Ma et al., 2011). Similar to
other correlation coefficients, GCC values range from
21.0 to 1.0. While 0 indicates the absolute indepen-
dence between two variables,21.0 and 1.0 indicate the
absolutely monotonic decreasing and increasing rela-
tionships, respectively. Different from the PCC, SCC,
and KCC, the GCC can compute the correlation of two
variables considering both rank and value informa-
tion. In this way, the Gini correlation is more robust on
nonnormally distributed data and is more stable for
data containing outliers, compared with the correla-
tion methods developed based on normal distribu-
tions. Additionally, a consideration of gene expression
values provides higher accuracy than correlation
methods that only use rank information.

In this study, we propose the use of the Gini corre-
lation to infer regulatory relationships of genes from
transcriptomic data. Using a compiled data set that
includes approximately 11,000 regulatory relationships
from Arabidopsis, we systematically evaluated the
performance of the GCC method and four other cor-
relation methods, the PCC, Tukey’s biweight (BiWt),
the SCC, and the KCC. We also assessed the compat-
ibility and the consistency of these methods on RNA-
Seq data. Our analyses indicate that the GCC has
multiple advantageous merits, such as independence
of distribution forms, better capability of detecting
nonlinear relationships, more tolerance to outliers,
and less dependence on sample sizes. Finally, we im-
plemented the GCC correlation as an R package named
rsgcc to perform clustering analyses of transcriptomic
data.

RESULTS

Compilation of a Gene Set with Known Regulatory
Relationships in Arabidopsis

To evaluate the performances of the Gini and the
above-mentioned correlation methods, we first com-
piled a set of genes that have documented regulatory
relationships according to the recently released protein
interactome (Arabidopsis Interactome Mapping Con-
sortium, 2011) and the most updated TF-target inter-
action database (AtTFDB) that contains more than
11,000 direct interactions collected from single gene
studies and large-scale ChIP-Chip/ChIP-Seq experi-
ments (Yilmaz et al., 2011). In addition to the direct
interactions between the TFs and targets, the proteins
that are physically interacting with the TFs were de-
fined as cofactors. Therefore, the compiled gene in-
teraction data set includes 8,929 interactions between
the TFs and targets, 1,428 interactions between the TFs
and cofactors, and an addition of 772 interactions be-
tween the cofactors and targets, which together cover
822 TFs, 6,287 target genes, and 823 cofactors. Among
those genes, 34.3% (2,159 of 6,287) of the target genes
are regulated by more than one TF and 32.7% (269 of
822) of the TFs have experimentally validated targets.

Plant Physiol. Vol. 160, 2012 193

Gini Correlation for Transcriptome Analysis



Among these 269 TFs, 51.7% (139 of 269) of the TFs
cooperate with at least one cofactor to regulate their
target genes (Supplemental Table S1). To fully include
all of the possible regulatory relationships by gene
expression profiles, we downloaded the Affymetrix
array data from the AtGenExpress database, which
contains 79 samples that were collected during Arab-
idopsis development and includes major organs, such
as the root, stem, leaf, whole plant, apex, flower, floral
organs, and seed, as well as tissues from various de-
velopmental stages of each organ (Schmid et al., 2005).
The expression data set of approximately 7,000 genes
from the 79 samples is sufficient to evaluate the per-
formance of the above-mentioned correlation methods
based on the fact that these regulatory relationships
may be covered by a comprehensive expression profile
during Arabidopsis development.

Evaluation of the Overall Performances of the Five
Correlation Methods

Using the compiled data set, we first evaluated the
overall performances of the proposed GCC method
and the other four methods, the PCC, SCC, KCC, and
BiWt. Similar to the PCC, the BiWt calculates the
correlation with the covariance and SD from the ex-
pression values that are first weighted by the BiWt
estimation (Hardin et al., 2007). The correlations of the
PCC, SCC, and KCC methods were computed with the
cor.test function in R. The correlation of the BiWt
method was calculated using the biwt package in R.
The statistical significance (P value) of each computed
correlation was derived from 2,000 permutation tests
by randomly shuffling the gene expression data of the
analyzed gene pairs (see “Materials and Methods”).
Because the GCC method calculates the correlation of
two variables based on one gene’s rank information
and the other gene’s actual expression value, the GCC
can produce two correlation coefficients (GCC1 and
GCC2) for one gene pair (see “Materials andMethods”).
The two calculated correlations by reciprocally using
the rank and value information are usually similar, as
are their P values (Supplemental Fig. S1). Hence, we
chose the coefficient with the lower P value as the
final GCC correlation.

We adopted the receiver operating characteristic
(ROC) curve analysis to evaluate the performance,
which can graphically illustrate the power of the clas-
sifier in distinguishing positive samples from negative
samples with the changes of significance thresholds.
The x axis in ROC represents the fraction of detected
false positives from the negative data set (false positive
rate [FPR]), and the y axis represents the fraction of
detected true positives from the positive data set (true
positive rate [TPR]). Thus, for a pair of TF and target
genes, their actual gene expression data across the 79
conditions were considered as the positive sample, and
the negative sample was constructed from the randomly
shuffled expression profiles (permutation) of the tested

TF-target pair. The permutation was repeated 2,000
times, and an empirical distribution of the correlations
for the permuted TF-target pairs was built, in which
each correlation can be associated with a P value by
considering its probability under the empirical distri-
bution. Then, for all TF-target gene pairs, the positive
and negative samples were combined as the positive
and negative data sets, respectively. At each possible
significance level (P value) of correlations for the
samples in the positive and negative data sets, we
were able to use the P value as the cutoff to determine
the TPR from the positive data set and the FPR from
the negative data set. Then, the TPRs and FPRs were
imported to the R package pROC to visualize the ROC
curve, representing the TPR against the FPR at differ-
ent significance levels. The area under the ROC curve
(AUC) was then computed as a quantitative measure
of the overall performance; this measure ranges from
0.0 to 1.0. A higher ROC curve results in a larger AUC
value and indicates a better resolution to distinguish
the positive samples from the negatives samples.

The ROC curves of the GCC correlation were always
beyond the curves from the other four methods,
whether the analysis was performed in the TF-target,
TF-cofactor, or cofactor-target data sets (Fig. 1, A–C).
The BiWt ranks at the second position, followed
by the SCC and KCC methods, while the PCC always
has the lowest AUC values (Fig. 1, A–C). To confirm
this pattern, the ROC analysis was repeated 2,000 times
within each class of interactions. The order of the dis-
tributions of AUC values drawn in a box plot was
consistent with that in the ROC curves generated from
the five correlation methods (Fig. 1D). Therefore, al-
though the overall performances are not dramatically
different among the five methods, the GCC method
slightly outperforms the other four methods in inferring
the expected regulatory relationships.

In addition, at a significance level of P = 0.05, the
GCC method detected 5,969 pairs of known TF-target
interactions, which was 19.48%, 10.19%, and 2.74%
higher than that of the PCC, SCC, and BiWt methods,
respectively (Supplemental Fig. S2). The GCC method
was able to identify 96.14% (4,803 of 4,996) of the linear
correlations that were derived by the PCC method and
94.85% (5,138 of 5,417) of the monotonic correlations
that were derived by the SCC method (Supplemental
Fig. S2). Moreover, the GCC method identified 332
correlated expressions of the TF-target pairs that
could not be detected by either the PCC or the SCC
method at the same significance threshold (P = 0.05;
Supplemental Fig. S2). These analyses demonstrated
the ability of the GCC method to derive both linear
and nonlinear (monotonic) relationships between a
TF and a target. Additionally, the GCC method may
also be capable of detecting new forms of the regu-
latory relationships that have been overlooked by
the value-only PCC or the rank-only SCC methods.
Similar analyses that were performed on the TF-cofactor
and cofactor-target gene pairs show consistent re-
sults (Supplemental Fig. S2). We also examined the
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performance of the GCC method with different strate-
gies of choosing the P value for the final output.
Compared with the selection of lower P values for
GCC1 and GCC2, the GCC method detected less sig-
nificant interactions when using the higher one or the
average P value of GCC1 and GCC2, corresponding
to 4,222 and 4,619, respectively, for the TF-target in-
teractions.
We provide three examples to display the properties

of the GCC in capturing various expression relation-
ships below.

The Gini Correlation Is Able to Detect Both Linear and
Nonlinear Regulatory Patterns

The feature allowing the Gini method to detect more
regulatory relationships is attributed to its ability to
consider both value and rank information when cal-
culating correlations, compared with other methods
that only use value or rank information. To validate
whether the significant correlations that are only
detected by the GCC are genuine, we manually in-
spected the expression patterns of several pairs of TF-
target genes. First, we examined whether the GCC can
derive a similar correlation from a globally correlated
TF-target pair that has a linear relationship and its
correlation computed by the PCC and the SCC
methods. Figure 2A demonstrates the expression profile
of an E2F3 TF (for E2F TRANSCRIPTION FACTOR3;

AT2G36010) and its target HAC7 (for HISTONE
ACETYLTRANSFERASE OF THE GNAT FAMILY2;
AT5G56740) that encodes a histone acetyltransferase.
A global linear relationship was exhibited across all
of the 79 samples. Except for the BiWt generating a
higher correlation of 0.94, the other three methods, the
GCC, PCC, and SCC, yielded a similar correlation of
0.88 with P # 0.001, indicating that the correlation
calculated by the GCC is equivalent to either the PCC
or the SCC method in inferring the linear relationship.
The higher correlation yielded by the BiWt is attrib-
uted to the down-weight of the outlier points in its
algorithm, but the BiWt seemingly overestimated the
correlation.

We then examined another pair of TF and target
genes, a basic helix-loop-helix TF (POPEYE [PYE];
AT3G47640) and FRO3 (for FERRIC REDUCTION
OXIDASE3; AT1G23020) that encodes a ferric chelate
reductase, which demonstrated a linear relationship
among the 74 samples, but these were obviously un-
correlated in only five tissues in seed (Fig. 2B). While
the rank-based SCC and the rank- and value-based
GCC methods derived a similar correlation of 0.50
with a significant value of P # 0.001, the correlation
computed by the PCC was only 0.22, and the P value
of 0.06 was no longer considered a significant rela-
tionship. This case indicates that the performance and
accuracy of the PCC can be greatly reduced due to
only a few outlier samples if the PCC correlation is
computed across all of the samples. Conversely, the

Figure 1. Assessment of the overall performances
of the five correlation methods evaluated by ROC
analyses. A to C, The ROC curves were plotted for
the GCC, PCC, SCC, KCC, and BiWt using the
data sets of TF-target (A), TF-cofactor (B), and
cofactor-target (C) gene pairs with a 1:1 ratio of
positive and negative samples. D, Box plot of
AUC values derived from the ROC analysis re-
peated 2,000 times. cof, Cofactor.

Plant Physiol. Vol. 160, 2012 195

Gini Correlation for Transcriptome Analysis



GCC and SCC, which take the rank information to
calculate the correlation, are more capable of tolerating
outlier data. Again, the BiWt, yielding a higher corre-
lation of 0.68, likely overestimated the correlation.

Because many TFs regulate their targets only in
specific tissues or under specific environmental con-
ditions, we were interested in whether the transient
regulatory relationships could be detected using these
four methods. A well-known TF, LFY (for LEAFY;
AT5G61850), which controls flowering time and
meristem development, is specifically expressed in
apex, where a correlation with its target MUP24.5
(AT5G60630) was observed (Fig. 2C). While PCC,
SCC, and BiWt computed insignificant correlations of
0.14, 0.06, and 20.07, respectively, the GCC could still
successfully detect this regulatory relationship, with a
significant correlation of 0.56 at P # 0.001. More in-
terestingly, because the GCC can compute two corre-
lations (GCC1 and GCC2) reciprocally using the rank
and value information of a pair of variables, one of the
GCCs may be more significant than the other GCC;
this is especially true in biology when the correlated
expression of a TF and its target only exhibits in a
small subset of samples, and in majority of the samples

their expression patterns are not concordant and/or
are very different in expression levels. In the third case,
there was a correlation between MUP24.5 and LFY in
apex, while the expression of MUP24.5 was slightly
and significantly higher than that of LFY in root and
seed, respectively (Fig. 2C). Hence, if using the rank
information of LFY, the expression values of MUP24.5
are not in a full agreement with LFY’s rank informa-
tion, thus generating a low correlation (GCC1 = 20.19,
P = 0.23). However, if using MUP24.5’s rank infor-
mation, LFY’s expression values in apex consistently
fit in the MUP24.5’s rank in apex, thus generating a
significant correlation (GCC2 = 0.56, P # 0.001; Fig.
2C). This feature of the GCC method actually com-
pensates for the shortcoming of the PCC and SCC,
which may only derive a global linear or monotonic
relationship in the majority of samples, whether using
values or ranks to compute the correlation. The BiWt
might have down-weighed the 10 correlated samples
in apex as outliers and generated the lowest correla-
tion. Therefore, the GCC is more capable of detecting
transient interactions (or partial concordances) that oc-
cur in a minority of samples, while the other methods
that require the majority of samples are correlated to

Figure 2. The GCC can detect the regulatory relationships missed by the PCC, SCC, and BiWt methods. A, The GCC can detect
a linear relationship with similar correlation values to the PCC and SCC correlations. B, The PCC failed to infer the relationship
in the samples containing outliers, which was detected by the GCC, SCC, and BiWt. The five outlier samples are represented by
the red circles in the gray region in seed. C, The GCC was able to identify transient interactions that were overlooked by the
PCC, SCC, and BiWt. The expression values of TF and target are only correlated in nine samples in apex out of the 79 samples
(red circles in the gray region). Two correlations, GCC1 and GCC2, are produced by the GCC reciprocally using rank and value
information of the two genes’ expression data. In the last two columns, the expression data of genes sorted with their own rank
information are displayed as black dashed curves, while the expression data of genes sorted with the other gene’s rank in-
formation are shown as blue and red solid curves. The Gini correlation can be explained as the difference between the solid and
dashed curves weighted by the rank information. “Value” and “Rank” denote the value and the rank information of the gene
expression data, respectively.
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derive a significant correlation between a TF and a
target.

Evaluation of the Tolerance to Outlier Data Points by the
Five Correlation Methods

The outlier data points in a gene’s expression profile
refer to the extremely high or low expression values in
a subset of samples. In reality, these genes are of more
interest because of their tissue-specific expression be-
havior, and the correlated strength is expected to be
persistent regardless of the number of samples in
which the gene is specifically expressed. However, the
value-based PCC method is not stable to outliers,
and the existence of a small number of outliers may
affect the derivation of accurate correlations, as illus-
trated in the pair PYE and FRO3 (Fig. 2B). In this
analysis, we tested the ability of the five correlation
methods in terms of their consistency toward the
number of outlier data points. First, we defined the
outliers in the compiled data set using the following
criterion: outliers are classified as data points 1.5 times
the interquartile range (interquartile range = Q3 2 Q1,
where Q3 and Q1 represent the 75% quartile and 25%
quartile, respectively) and above the 75% quartile or
below the 25% quartile. About 83% (9,325 of 11,129) of
the gene pairs in the complied data set contain outlier
data points. Because the number of tested gene pairs
significantly decreases with an increase in the number
of outliers, we only tested the performance of the
correlation methods on gene pairs with zero, one to
five, six to 10, and more than 10 outliers (Supplemental
Fig. S3).
Within each range of outlier numbers, we again per-

formed the ROC analysis for each type of interaction
and repeated the test 2,000 times to generate 2,000 AUC
values for each correlation method. The distribution of
these AUC values is shown in a box plot (Fig. 3).
Overall, the AUC values of all five methods dropped
with the increase of outliers, suggesting that these
methods are all influenced by outliers. The PCC shows
the most dramatically reduced performance. For the TF-
target pairs without including any outliers, the average

AUC value of the PCC was 0.88. However, when six to
10 outliers existed, the average AUC value decreased to
0.77 (Fig. 3; Supplemental Table S2). The performance
of another value-based correlation method, BiWt, was
also greatly affected by the increase of outliers. The
average AUC value of the BiWt dropped from 0.90 to
0.81 when the number of outliers increased from
zero to more than 10 in TF-target gene pairs (Fig. 3;
Supplemental Table S2). Compared with the value-
based methods, the rank-based methods (SCC and
KCC) and the value- and rank-based GCC method are
more tolerant to outliers on TF-target gene pairs (Fig.
3; Supplemental Table S2). A similar analysis was also
performed on the TF-cofactor and cofactor-target
gene pairs (Fig. 3). Overall, the GCC and BiWt showed
better performance than the other tested methods in
inferring regulatory relationships from microarray data,
whether the gene expression profiles contained outliers
or not. Compared with the BiWt, the GCC could achieve
higher AUC values and be more tolerant to outliers in
most cases. The robustness of the GCC to tolerate out-
liers may be mainly attributed to its feature that uses
rank information if the expression levels of outliers are
extremely deviated from the center of data distribution.

The Influence of Sample Size on the Performance of the
Five Correlation Methods

The number of samples (sample size) is another
critical issue that may greatly affect the power of many
statistical methods, such as differential expression call
(Jørstad et al., 2007). While a relatively small sample
size may lead to a higher FPR of detecting differentially
expressed genes, a larger sample size is usually required
to perform sound tests. Inspired by the concern that a
rank-based method might need a minimum amount of
variables to derive a correct rank order to calculate
correlations, we investigated whether the sample size
would affect the performance of the correlation methods
studied. To conduct this analysis, we first selected a
TF and target pair, AGL9 (for AGAMOUS-LIKE9;
AT1G24260) and Hsp40 (for HEAT SHOCK PRO-
TEIN40; AT3G04960), which demonstrated a global

Figure 3. Assessment of the influences from the
outlier data points on the five methods. The per-
formances of the correlation methods were eval-
uated on the pairs TF-target, TF-cofactor, and
cofactor-target gene sets, with influences of zero,
one to five, six to 10, and more than 10 outliers by
ROC analyses.
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linear relationship, with a Spearman correlation of 0.93
(P # 0.001) and a Pearson correlation of 0.94 (P #
0.001; Fig. 4, A and B). We then computed the corre-
lation coefficients on the simulated gene pairs with five
to 75 samples randomly selected from the real gene
pairs using the five correlation methods. This process
was repeated 1,000 times, and an average correlation
coefficient was calculated for each sample size. The
reason that we selected a globally correlated TF-target
pair was to minimize the chance that the noncorrelated
data points were selected and biased the evaluation.
The PCC, GCC, and BiWt methods that consider value
information could derive similar correlations regard-
less of the increase in the sample size from five to 75
(Fig. 4C). Conversely, the correlations calculated by the
rank-only SCC method gradually increase from 0.84 to
0.94, which indicates a strong dependence of the SCC
method on the sample size to derive the expected cor-
relation (Fig. 4C). The result from another rank-based
method, the KCC, was much lower than the expected
value of 0.94 (Fig. 4C).

To further confirm this pattern derived from the
study of one gene pair, we then performed a similar
analysis on 75 gene pairs with the Pearson correlations
higher than 0.80. For each gene pair, the differences
between the average correlations on simulated gene
pairs and the Pearson correlation on the real gene pair
were computed in order to estimate the influence of
sample size on the performance of the five methods.
The box plots of these differences for five to 75 ran-
domly selected samples are shown in Figure 4D. Con-
sistent with the results on gene pair AGL9 and Hsp40,
the accuracy of the SCC method was largely depen-
dent on the sample size to derive a meaningful rank
order and to properly calculate the correlations (Fig.
4D). In contrast to the SCC, the dependence of the

BiWt on the sample size is relatively small (Fig. 4D).
The GCC, KCC, and PCC could yield stable correla-
tions when the sample size was increased from five to
75, indicating that their dependence on the sample size
is minimal. Noting that the KCC correlations are much
lower than the expected values, this may be caused by
the fact that the KCC method calculates the difference
between the probability of concordance and discor-
dance obtained from the rank information of all pos-
sible pairs of data points.

The Compatibility of the Five Correlation Methods on
RNA-Seq Data

The RNA-Seq technology has greatly accelerated the
production of transcriptomic data in biology without
relying on whole-genome sequences or precollected
complementary DNA sequences. However, concerns
have been raised regarding whether the current ana-
lytic methods and tools developed for microarray
platforms can be directly applied to RNA-Seq data,
because the data properties between microarray and
RNA-Seq are naturally different (Wang et al., 2009).
Therefore, we further evaluated the five correlation
methods on RNA-Seq data, performed on both read
count per gene and fragments per kilobase per million
reads (FPKM) values, the two popular measurements
of gene expression abundance. Compared with read
counts, the FPKM produced from the Cufflinks RNA-
Seq analyses pipeline is generally considered as a more
reasonable measure to quantify gene expression levels,
because the bias caused by the gene length and the se-
quencing depth is normalized to perform comparable
between-sample analysis (Trapnell et al., 2010; Garber
et al., 2011).

Figure 4. Assessment of the influences
from sample size on the five methods.
A and B, A significant linear relationship
exists between the gene expression
profiles of the TF-target (AGL-Hsp40)
gene pair. C, The average correlation of
the different correlation methods for
1,000 gene pairs with five to 75 samples
randomly selected from the gene ex-
pression profiles of the AGL-Hsp40
gene pair. D, The differences between
the correlations computed on simulated
gene pairs (sCor) and the Pearson cor-
relations on the real gene pairs (rCor),
computed with the formula (sCor 2
rCor)/rCor. “Log2 value” denotes the
log2-transformed value of the gene
expression data.
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We first plotted the distributions of the read counts
and the FPKM values from the RNA-Seq data sets
from Arabidopsis (Gene Expression Omnibus accession
nos. GSM838184 and GSM764078), in which both forms
of data were not normally distributed with long heavy
tails (Fig. 5A). From each distribution, we generated
2,000 pairs of genes for each number of simulated
samples (5 # n # 100) with an expected correlation
coefficient of 0.7 using the copulas function in MATLAB.
Then, the correlation coefficients from the 2,000 gene
pairs were computed using the five correlation
methods. The average correlation coefficient within a
20.05 to +0.05 deviation range was considered as the
expected correlation. When computing the correlations
on the read counts or the FKPM, the GCC yielded an
average correlation coefficient within the expected
range, followed by the correlations computed by the
SCC (Fig. 5B), while the average correlations com-
puted by the PCC and BiWt methods were below the
expected range (Fig. 5B). Moreover, we also found the
performance of the BiWt and PCC decreased with
the increase of sample size. We speculate that the low
effectiveness of the PCC and BiWt may be due to their
strict dependence on a normal distribution to derive a

correct mean and SD values. On the contrary, the rank-
based GCC and SCC have better performance on
nonnormally distributed RNA-Seq data.

Considering that most methods in microarray anal-
yses use log transformation to scale the expression
intensities to a proximal normal distribution, we next
evaluated the five methods on the log2-transformed
read counts and the FPKM. As for the read counts, the
average correlations calculated by the GCC, PCC, and
BiWt were all close to the expected 0.7 value (Fig. 5C).
The performance of the SCC was not improved, since
log transformation does not change the ranks of gene
expression (Fig. 5C). When computing the correlations
on log2-transformed FPKM values, the results from the
GCC method are approximate to the expected value,
while the average correlations from the PCC and BiWt
were slightly below 0.7 (Fig. 5C). We speculate that
calculating FPKM values from genes with very few
reads may generate FPKM values below 1, and the log
transformation resulted in negative values that influ-
enced the accuracy of correlations. Collectively, our
analyses showed that the GCC, PCC, and BiWt methods
were equally effective on log2-transformed read counts,
which can be recommended as the most optimal data
form in RNA-Seq analysis.

Evaluation of the Five Methods Using 29 TF-Target Genes
in Maize RNA-Seq data

Finally, we evaluated the five methods using a re-
cently published RNA-Seq data set in maize (Zea mays)
containing 13 samples that included eight male and
female reproductive tissues, four tissues from devel-
oping seeds, and one leaf tissue (Davidson et al., 2011).
Analyses were performed on three TFs (OUTER CELL
LAYER1 [OC1], WRINKLED TRANSCRIPTION FAC-
TOR [WRI], and MYB RELATED PROTEIN1 [MRP1])
functioning in these reproductive tissues and regulat-
ing 29 known target genes; this information was col-
lected from a literature search (Supplemental Table
S3). Correlations using these 29 pairs of TFs and tar-
gets were computed on the FPKM values using the five
correlation methods (Supplemental Fig. S4), and the
statistical significance (P value) was determined by the
2,000 permutation tests. The BiWt failed to calculate
the correlations for six pairs of TF and target genes,
since a number of samples had zero reads for these
genes. The BiWt totally identified only seven TF-target
interactions, which were much fewer than the num-
bers of TF-target interactions detected by the SCC (12),
KCC (13), PCC (13), and GCC (17) methods with a P =
0.05 cutoff (Supplemental Fig. S4). All five methods
failed to detect 12 pairs of TF-target interactions, in-
cluding 10 pairs coexpressed in only one sample in
either endosperm or anthers and two pairs exhibiting
a lagged coexpression pattern (Supplemental Fig S5).
These results indicated that all five methods require
the regulatory relationships to concordantly present in
at least two samples to be detectable.

Figure 5. The compatibility of the five correlation methods on RNA-
Seq data. A, The kernel density estimation of the read counts and the
RPKM values were generated from the Arabidopsis RNA-Seq data
(Gene Expression Omnibus accession nos. GSM838184 and
GSM764078). By using the RNA-Seq data without (B) and with (C) log
transformation, the average correlation coefficients of each method
were calculated from 2,000 random gene pairs with an expected
correlation coefficient of 0.70 across the five to 100 simulated sam-
ples. “Ave correlation” represents the average correlation coefficients.
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Implementation of the Gini Correlation as an R Package
for Gene Expression Clustering Analyses of
Transcriptomic Data

Clustering analyses of gene expression patterns are
an essential part of large-scale transcriptome analyses,
which are usually performed with hierarchical clus-
tering methods that measure the distance between two
genes based on correlation coefficients (D’haeseleer,
2005). We implemented the Gini correlation method
and four other correlation methods evaluated in this
study in an R package, named rsgcc, to perform clus-
tering analyses of both microarray data and RNA-Seq
data based on either read counts or FPKM values and
to visualize the clustered gene expression pattern using

a heat map. This package is also capable of performing
parallel computing to increase the speed of the calcu-
lation of correlation coefficients for thousands of genes
via the implementation of the snowfall package in the
R environment. Additionally, we also provided a user-
friendly interface using the gWidgetsRGtk2 package
in R, which allows users to perform analyses via a series
of mouse actions without command line-based R
programming (Fig. 6). The rsgcc package allows a user
to easily select different correlation and clustering
methods, to specify the number of central processing
units for parallel computing, and to choose the color
scales for heat map visualization (Fig. 6). In the current
version of rsgcc, three types of distance measurements

Figure 6. A screen shot of the GCC-based R package (rsgcc) for correlation and clustering analyses of gene expression data. The
rsgcc was applied to cluster approximately 2,800 tissue-specifically expressed genes in maize RNA-Seq data. DAP, Days after
pollination; Endo, endosperm; Post-em, postemergence; Pre-em, preemergence; ts-genes, tissue-specific genes.
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(raw correlation, 1-coef; absolute correlation, 1-|coef|;
squared correlation, 1-|coef|2, where coef = corre-
lation coefficient) and seven clustering methods
(complete-linkage, average-linkage, median-linkage,
centroid-linkage, McQuitty-linkage, single-linkage,
and ward-linkage) are provided for users to select a
variety of clustering methods.
Although the rsgcc is efficient in performing clus-

tering analyses on all of the genes in a genome by
taking advantage of parallel computing, preselecting a
group of differentially expressed genes identified by
Cufflinks or EdgeR or a group of tissue-specifically
expressed genes to generate the clustered heat map is
highly recommended. Therefore, we provided a func-
tion in rsgcc to select tissue-specific genes by calcu-
lating a tissue-specificity (ts) score for each gene. The
detailed tissue-specificity algorithm is described in the
online manual of rsgcc. To demonstrate the function of
rsgcc, we first used the “find ts-genes” function to se-
lect a group of 2,279 tissue-specifically expressed genes
out of the 39,456 genes from the RNA-Seq data pro-
filed in 13 reproductive samples in maize (Davidson
et al., 2011). Then, using the GCC-based similarity
measure, a heat map of the 2,279 clustered, tissue-
specific genes was generated by rsgcc in which the
genes specifically expressed in the same tissue were
successfully clustered in one group (Fig. 6). The clus-
tered gene expression pattern can be saved in a stan-
dard output of the hierarchical clustering result: the
“CDT” format, which can also be visualized and ana-
lyzed using the TreeView program (Saldanha, 2004).
The rsgcc package and manual documents can be
freely accessed from the Comprehensive R Archive
Network at http://cran.r-project.org/web/packages/
rsgcc.

CONCLUSION

In this study, we compared five correlation methods,
the PCC, the SCC, the KCC, the BiWt correlation, and
the GCC, in terms of effectiveness in inferring regula-
tory relationships from gene expression data. The
evaluation analyses were performed based on known
TF and target interactions collected from Arabidopsis
and maize. Among these methods, the GCC was in-
troduced in plants to our knowledge for the first time
to analyze the transcriptomic data produced from
microarray and RNA-Seq platforms. Compared with
the other four methods, one of the unique features for
the Gini correlation is that its algorithm reciprocally
considers value and rank information of a TF and
target pair, making the Gini correlation less dependent
on the form of data distribution. This feature allows
the Gini correlation to identify nonlinear relationships
between TFs and targets, and transient interactions
occurred in a small subset of samples, which might be
missed by the methods that only globally consider
value or rank information from all the samples. The
robustness of the Gini correlation is also reflected in its

higher tolerance of outlier data points and less de-
pendence on sample size.

Application of the Gini correlation provides an al-
ternative for biologists to analyze gene expression data.
We implemented the Gini correlation as an R package
to perform clustering analyses based on microarray
data and RNA-Seq data. Additionally, this package can
also be applied to construct gene coexpression net-
works and to perform network analyses on other types
of interaction data. For instance, the rsgcc package is
available to be called by the wgcna (weighted gene
coexpression network analysis) package in the R
environment (Langfelder and Horvath, 2008). This
package can also be incorporated to the Cytoscape
software as a plugin for broader utilization in network
visualization and network analysis in biology (Smoot
et al., 2011). Moreover, the Gini-based methodologies
are a system of mathematical solutions, including the
Gini correlation, Gini mean difference, Gini index, Gini
covariance, and Gini regression, that can be used for a
variety of purposes when analyzing data that are not
distributed normally, and they are widely used in
other disciplines, such as economics, physics, infor-
matics, and sociology. Therefore, the Gini methodo-
logical systems have a promising prospect to model
the complexity of biological systems.

MATERIALS AND METHODS

Microarray and RNA-Seq Data Sets

The microarray gene expression data were downloaded from the
AtGenExpress database (http://www.weigelworld.org/resources/microarray/
AtGenExpress/), which includes 79 samples that were collected during Arabi-
dopsis (Arabidopsis thaliana) development. The microarray data were generated
with the Affymetrix ATH1 array platform and have been normalized with the
GC robust multiarray average method. More details about this microarray data
set can be found in Schmid et al. (2005).

The maize (Zea mays) RNA-Seq data were obtained from Davidson
et al. (2011), which contains 13 samples from eight reproductive tissues,
four tissues from developing seeds, and one leaf tissue. The sequence
reads of these tissue samples were first generated using the Illumina se-
quencing platform and then aligned to the maize genome (B73) by using
the Bowtie and TopHat alignment tools with the limit of intron length
ranging from 5 to 60,000 bp. The normalized gene expression levels in the
FPKM format were finally calculated with the Cufflinks software. Detailed
information about this RNA-Seq data set can be found in Davidson et al.
(2011).

Computation of the GCC

The GCC is a well-defined measure to quantify the correlation between
two variables following normal and/or nonnormal distributions (Schechtman
and Yitzhaki, 1999; Yitzhaki, 2003). As the GCC method reciprocally utilizes
the value information of one variable and the rank information of the other
variable, it can produce two correlation coefficients. For a given gene pair
(X, Y ), one GCC is defined as

GCCðX;YÞ ¼ ∑
n

i¼1
ð2i2 n2 1Þ$xði;YÞ= ∑

n

i¼1
ð2i2 n2 1Þ$xði;XÞ ð1Þ

where n is the sample size (i.e. the number of observed gene expression
values) and x(i, X) is the ith value of gene expression profile X sorted in an
increasing order, here x(1, X) # x(2, X) # . # x(i, X) # . # x(n, X). x(i, Y) is
the corresponding value of X in the gene pair (X, Y) for the ith value of gene
expression profile Y sorted in an increasing order.
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The other GCC value can be given as

GCCðY;XÞ ¼ ∑
n

i¼1
ð2i2 n2 1Þ$yði;XÞ= ∑

n

i¼1
ð2i2 n2 1Þ$yði;YÞ ð2Þ

where y(i, X) and y(i, Y) are defined similarly to x(i, Y) and x(i, X), respectively,
in Equation 1.

According to Equations 1 and 2, correlations of the GCC method can be
interpreted as differences between two curves weighted by the information
deriving from the rank order of gene expression data. The x(i, Y) and y(i, X)
values are represented as red and blue curves in the last two columns, whereas
x(i, X) and y(i,Y) are represented as black curves in these columns, in Figure 2.

Determining Statistical Significance

The statistical significance (P value) of the correlation was computed with
the permutation test method (Qian et al., 2001; Wang et al., 2008). For one
given gene pair and correlation method, the P value was calculated as follows.
(1) Computing the correlation r on the real paired expression values. (2)
Constructing a permuted gene pair by randomly shuffling gene expression
data in different samples and recomputing the correlation on the permuted
gene pair. (3) Repeating step 2 for a large number of times (n = 2,000), an
empirical distribution (H0) of the correlations on the permuted gene pairs is
then generated. (4) Calculating the statistical significance of the correlation r
under the empirical distribution H0 with the formula P = 2 3 m/N, where m
denotes the times that the absolute value of the correlation on the shuffled
data is greater than the correlation on the real data.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Scatterplots of GCC1 versus GCC2 for TF-target,
TF-cofactor, and cofactor-target gene pairs.

Supplemental Figure S2. Venn diagrams of detected regulatory relation-
ships with GCC, SCC, PCC, and BiWt at the significance level of P =
0.05.

Supplemental Figure S3. Number of gene pairs versus number of outliers.

Supplemental Figure S4. Correlations of 29 TF-target gene pairs computed
by the five correlation methods.

Supplemental Figure S5. Gene expression profiles of 12 TF-target gene
pairs missed by all tested correlation methods.

Supplemental Table S1. Statistics of the complied data set including
known transcriptional regulation relationships in Arabidopsis collected
from the AtTFDB database.

Supplemental Table S2. Influence of outliers on the performance of dif-
ferent correlation methods.

Supplemental Table S3. List of the 29 TF-target interactions from maize.
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