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The ubiquitin-proteasome system (UPS) plays a role
in nearly every aspect of plant biology. The wealth of
emerging data demonstrates that regulated protein
degradation rivals the well-studied area of transcrip-
tional regulation for importance in cellular regulation.
In this Update, we will highlight current research
findings that illustrate the contributions of the UPS to
phytohormone signaling. We will also consider out-
standing questions and discuss possible experimental
approaches that will increase our understanding of
regulated protein degradation.

UPS activity involves a three-step enzymatic cascade
between E1, E2, and E3 enzymes that results in the
covalent transfer of ubiquitin to target proteins. This
process can result in different outcomes, including (1)
proteolytic degradation by the 26S proteasome or
reversible, nonproteolytic regulatory events. Current
plant genome annotations indicate that most species
can produce over 1,000 different UPS components; E3
ligase family proteins are the most abundant (Du
et al., 2009; Vierstra, 2009). Thus, the potential scope
of the UPS is extensive. E3 ligases provide specificity
by directly controlling the transfer of ubiquitin to the
target substrate and have been classified into four
groups based on their complex composition and
modes of action: HECT, RING, U-box, and cullin-
RING ligases (CRLs; Vierstra, 2009). CRLs are mul-
tisubunit ligases that can be further subdivided into
four groups based on a variable target recognition
module: (1) F-box proteins in the case of S-phase
kinase-associated protein1-cullin1-F-box (SCF) li-
gases; (2) bric-a-brac-tramtrak-broad complex (BTB)
proteins that define the BTB group of E3s; (3) the
DNA damage-binding (DDB) class that utilizes
WD40 domain-containing DWD proteins; and (4) the
anaphase-promoting complex category that contains
several interchangeable recognition proteins (Vierstra,
2009). Altogether, these enzymatic modules are in-
credibly diverse, and many of their targets are cur-
rently unknown.

The phytohormones are small molecule regulators
that collectively impact every aspect of plant growth
and development. They regulate genetically determined

aspects of development such as organ development as
well as pathogen response, integration of environmen-
tal cues such as light and temperature, and regulation of
circadian clock output (Ho et al., 2008; Vierstra, 2009;
Lee and Lee, 2012). Recent discoveries highlight the
particular importance of UPS action in phytohormone
signaling. In fact, UPS-mediated protein degradation
has been implicated or demonstrated for every plant
hormone, including abscisic acid (ABA), auxin,
brassinosteroid (BR), cytokinin, ethylene, GA, jas-
monic acid (JA), and strigolactone (SL). Notably, the
UPS is also very important for steroid hormone sig-
naling in humans (Lee and Lee, 2012). While some
plant hormones undergo long-distance transport and
thus have different sites of synthesis and action (e.g.
auxin, SL), others appear to be synthesized and func-
tion in the same tissue (e.g. BR). As we will discuss in
more detail below, one of the major functions of UPS
pathways in hormone signaling is the selective de-
struction of proteins whose concentrations must vary
with time and alterations in the state of the cell.

REGULATING THE REGULATORS: KNOWN
E3-TARGET INTERACTIONS

UPS action appears to regulate hormone biosyn-
thesis, transport, and perception and thus provides a
direct mechanism to control the magnitude and du-
ration of hormone signaling (Figs. 1 and 2). Detailed
studies of UPS function in phytohormone pathways
have revealed a number of patterns. First, most of the
hormone-related UPS targets described to date are
proteins associated with transcription. Furthermore,
many of the known target transcription factors are clas-
sified as repressors and contain ETHYLENE RESPONSE
FACTOR-associated amphiphilic repression domains.
This includes the auxin/indole-3-acetic acid (Aux/
IAA; auxin), jasmonate-ZIM domain (JAZ; JA), and
BRASSINAZOLE RESISTANT1 (BZR1; BR) proteins
(Kagale et al., 2010). Second, a number of hormones
directly control ligase-substrate interactions (e.g. auxin,
JA, and GA). The protein degradation mechanisms
involved in auxin, JA, and GA signaling are strikingly
similar (Fig. 1, A, D, and E). Additionally, in the case of
both auxin and JA, the F-box proteins responsible for
target proteolysis are themselves part of the hormone
receptor complex. UPS components controlling BR and
ethylene signaling also appear to be superficially
similar. We will describe the types of E3 ligases and
their target proteins (when known) that are active in
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Figure 1. Conserved and diverse UPS degradation mechanisms control hormone signaling (ABA is considered separately due to
the abundance of UPS components; see Fig. 2). SCF-type E3 ligases are shown as orange pentagons, RING-type ligases are
shown as yellow pentagons, and CRL3-based ligases are depicted as pink pentagons. Unknown ligases are in gray, with a
question mark. Known (or unknown) target proteins are shown in blue (transcription factors) or green (kinases and transporters)
pie wedges. Transcription factors that are directly bound by SCF target substrates are shown as yellow circles. A, An auxin efflux
carrier, PIN2, is degraded in a ubiquitin-dependent manner. In the presence of high auxin concentrations, SCFTIR1/AFB E3 ligases
direct the degradation of Aux/IAA transcriptional repressors, releasing bound ARF transcription factors and thus inducing auxin-
mediated transcription. B, In the presence of JA-Ile, SCFCOI1 directs the degradation of JAZ transcriptional repressors, releasing
bound transcription factors and thus inducing JA-mediated transcription. C, Nucleus-localized growth-repressive DELLA pro-
teins are targeted for degradation by SCFSLY1/SNZ E3 ligases in response to GA perception. D, Ethylene biosynthesis enzymes are
degraded by the proteasome. Type-II ACS proteins are targeted by BTBETO1/EOL, while ACS7 is ubiquitylated by XBAT32. In the
absence of ethylene, ETP1/2 directs the degradation of the membrane-bound protein EIN2. Degradation of the ETHYLENE
INSENSITIVE3 (EIN3) transcription factor is controlled by EBF1 and EBF2 and is inversely correlated with ethylene levels. Thus,
as ethylene levels rise, both EIN2 and EIN3 accumulate and ethylene-regulated transcription is stimulated. E, In the absence of
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Arabidopsis (Arabidopsis thaliana) in more detail below.
The hormones are organized with the aim of highlight-
ing the mechanistic similarities and differences of UPS
action. Conservation of these pathways in other plant
species is discussed separately at the end of the article.

Auxin

Almost every aspect of plant growth and develop-
ment is controlled by auxin signaling (Stewart and

Nemhauser, 2010). The role of UPS activity in the
auxin response has been extensively studied and is
well established (Santner et al., 2009; Shan et al., 2012).
A small family of six F-box proteins, TRANSPORT IN-
HIBITOR RESPONSE1 (TIR1) and AUXIN SIGNALING
F-BOX1 (AFB1) to AFB5, act as auxin receptors
(Dharmasiri et al., 2005; Greenham et al., 2011). In the
presence of auxin, members of the TIR1/AFB1 to -5
family can direct the polyubiquitylation and proteasomal

Figure 1. (Continued.)
SA, the transcription factor NPR1 is targeted for degradation by the NPR4 CUL3-based ligase. The presence of SA reduces the
affinity of CUL3NPR4 for NPR1 and thus allows the accumulation of NPR1 and induced resistance. F, Two key components of BR
signaling, BIN2 kinase and the transcription factor BZR1, are targets of regulated proteolysis in response to BR via unknown
ligase activity. G, The F-box protein MAX2 has been implicated in SL signaling. H, AUF1 may control levels of a cytokinin
(represented here by kinetin) response regulator.

Figure 2. E3 ligases involved in ABA signaling.
The schematic of known UPS components in ABA
signaling illustrates that there is regulation of a
single substrate (ABI5) by multiple E3 ligases and
a number of different classes of E3s act at multiple
levels in the ABA pathway, including biosynthesis
and downstream gene regulation. RING-type E3
ligases are shown as yellow pentagons, U-box-
type E3 ligases as dark orange pentagons, CRL E3
ligases as orange pentagons, and CRL3-based E3
ligases as pink pentagons. AFP is depicted is a
green square, and COP1 is a gray triangle. Known
(or unknown) ligase substrates are blue pie wedges.
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degradation of Aux/IAA transcriptional repressors.
There are 29 Aux/IAA proteins in Arabidopsis, and 23
of these are thought to be substrates of SCFTIR1/AFB

(Fig. 1A; Calderón Villalobos et al., 2012). Auxin is
directly bound by both TIR1/AFB and an Aux/IAA
protein simultaneously and thus creates a “corece-
ptor” complex (Calderón Villalobos et al., 2012). Ad-
ditionally, the binding affinity of auxin appears to be
predominantly controlled by the Aux/IAA proteins
and not the TIR1/AFB proteins (Calderón Villalobos
et al., 2012). A 13-amino acid motif known as the
degron located within domain II of Aux/IAA proteins
(Ramos et al., 2001) contributes to substrate stability and
turnover rates that range from approximately 10 to 80
min (Dreher et al., 2006). The varied protein-protein
interaction affinities between TIR1/AFB proteins and
Aux/IAA proteins (Calderón Villalobos et al., 2012)
combined with distinct spatiotemporal patterns of ac-
cumulation (Parry et al., 2009; Vernoux et al., 2011) may
contribute to the broad role of auxin in diverse growth
processes.

Under low-auxin conditions, members of the Aux/
IAA family participate in repressive transcriptional
complexes containing an AUXIN RESPONSE FAC-
TOR (Mansfield et al., 2004) transcription factor and
TOPLESS (TPL) corepressor protein (Szemenyei et al.,
2008). When auxin levels increase, Aux/IAA proteins are
targeted for proteasomal degradation. Thus, the specific
degradation of the Aux/IAA protein by SCFTIR1/AFB1-5

will result in the disassembly of the repressive com-
plex. It is worth noting that degradation of ARF1 by the
proteasome occurs independently of SCFTIR1/AFB1-5, sug-
gesting that ARF protein levels may also be tightly
controlled (Salmon et al., 2008).

Auxin transport is also regulated by the UPS
through proteasomal degradation of the auxin efflux
carrier protein PIN-FORMED2 (PIN2; Leitner et al.,
2012). Ubiquitylation of PIN2 leads to endocytosis and
vacuolar targeting of PIN2 in response to auxin and
gravity, which affects auxin distribution within the
root (Leitner et al., 2012). It will be interesting to de-
termine which E3 ligase(s) catalyzes the ubiquitylation
of PIN2; often, endocytic sorting of a target protein
involves multiple E3s (Polo, 2012).

Jasmonates

Recent studies indicate that UPS action during
the jasmonate response parallels what occurs during
auxin signaling. JA-Ile (Fig. 1B) is a lipid-derived
hormone known to regulate plant development and
response to environmental stresses. The F-box protein
CORONATINE-INSENSITIVE1 (COI1) acts as a JA-Ile
receptor and directs the degradation of JAZ proteins,
a small family of transcriptional repressors (Fig. 1B;
Shan et al., 2012). A number of JAZ proteins (e.g.
JAZ1) contain a degron motif that facilitates binding to
COI1 (Grunewald et al., 2009; Pauwels et al., 2010;
Sheard et al., 2010). Similar to the situation for auxin,
COI and the JAZ protein act as coreceptors for JA-Ile;

thus, JA-Ile directly stabilizes SCFCOI1 interactions with
some JAZ proteins (Sheard et al., 2010). Some JAZ pro-
teins can form complexes with TPL through the adapter
protein NOVEL INTERACTOR OF JAZ (Pauwels et al.,
2010), whereas the ETHYLENE RESPONSE FACTOR-
associated amphiphilic repression domain-containing
JAZ proteins (e.g. JAZ8) interact directly with TPL or
other corepressors to inhibit JA responses (Shyu et al.,
2012). This JAZ-based complex acts to repress the ac-
tivity of transcription factors such as MYC2 and
MYB21/24 (Pauwels et al., 2010; Song et al., 2011). In the
presence of JA-Ile, JAZ proteins are degraded, JAZ-
mediated repression is relieved, and early JA-responsive
genes are rapidly expressed (Pauwels et al., 2010).
Similar to the Aux/IAA proteins, sequence variation in
the degron motif alters the stability and repressive ac-
tion of JAZ proteins (Shyu et al., 2012).

GA

Similar SCF-mediated regulation has been shown
for GA signaling (Fig. 1C; Gao et al., 2011). The effects
of GA include promotion of seed germination, stimu-
lation of organ elongation, and induction of flowering.
GA is perceived by a protein called GIBBERELLIN
INSENSITIVE DWARF1 (GID1). GA binding to GID1
results in binding to nucleus-localized growth repres-
sors called DELLA proteins (Ueguchi-Tanaka et al.,
2005; Nakajima et al., 2006; Willige et al., 2007). This
tripartite GID-GA-DELLA complex is subsequently
targeted for ubiquitylation by SCFSLY1/SNZ E3 ligases,
resulting in degradation of the DELLAs (Gao et al.,
2011). This scenario is reminiscent of UPS action dur-
ing auxin and JA-Ile signaling, because DELLA pro-
teins bind and repress the activity of transcription
factors such as the PHYTOCHROME INTERACTING
FACTORs (de Lucas et al., 2008; Feng et al., 2008).
Thus, this scenario is reminiscent of UPS action during
auxin and JA signaling because hormone perception
results in the degradation of proteins involved in
transcriptional repression. However, while protein
degradation is directly involved in GA perception, it is
different compared with auxin and JA receptor sys-
tems, where the receptors are themselves part of E3
ligase complexes.

Ethylene

Ethylene functions as a critical growth regulator and
is also important for biotic and abiotic stress responses
(Schaller, 2012). Many aspects of ethylene signaling are
tightly controlled by the UPS (Fig. 1D). First, a number
of enzymes involved in ethylene biosynthesis are
targeted for proteasomal degradation. This includes
(1) type-2 1-aminocyclopropane-1-carboxylic acid syn-
thase proteins (ACS4, ACS5, and ACS9), which are
ubiquitylated by ETO1 and ETO-like1/2 BTB ligases
(Wang et al., 2004; Yoshida et al., 2005; Christians
et al., 2009), and (2) ACS7, a type-3 ACS enzyme that is
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ubiquitylated by the RING-type E3 ligase XBAT32
(Lyzenga et al., 2012). These degradation mechanisms
provide a rapid way to change ethylene concentrations
in planta.
In the absence of ethylene, a pair of F-box proteins,

EIN2-TARGETING PROTEIN1 (ETP1) and ETP2, pro-
mote the degradation of the ethylene signaling protein
ETHYLENE INSENSITIVE2 (EIN2), reducing the eth-
ylene response (Qiao et al., 2009). In the presence of
ethylene, ETP expression is repressed, allowing the ac-
cumulation of EIN2. Downstream of EIN2 lies EIN3
and EIN3-like1 (EIL1), transcription factors that directly
target ethylene-responsive genes. At low ethylene
levels, EIN3 and EIL1 are targeted for ubiquitylation
and degradation by another pair of F-box proteins,
EIN3-BINDING F-BOX1 (EBF1) and EBF2, which are
also subject to proteasomal degradation (Guo and
Ecker, 2003; Potuschak et al., 2003; An et al., 2010). As
ethylene levels increase, the stability of EBF1/2 de-
creases, leading to a buildup of EIN3 and EIL1, thus
inducing transcription (An et al., 2010).

Salicylic Acid

Salicylic acid (SA) is a secondary metabolite produced
by a wide range of organisms, and salicylates have been
used by humans for pain relief for centuries (An andMou,
2011). In plants, SA functions as a plant hormone required
for innate immunity (Vlot et al., 2009). Two paralogous
receptors were recently identified for SA, NPR1-LIKE
PROTEIN3 (NPR3) and NPR4, which are BTB-CUL3 li-
gases (Fu et al., 2012). CUL3NPR3/4 direct the degradation
of NONEXPRESSOR OF PR GENES1 (NPR1), a master
transcriptional regulator of plant defense (Fu et al., 2012).
NPR1 interacts with other transcription factors in the
nucleus to mediate pathogen resistance (Fu et al., 2012).
Thus, the perception of SA (Fig. 1E) parallels other UPS-
controlled hormone signaling mechanisms (Fig. 1).

Other Hormones

To what extent (and how) UPS activity plays a role
in BR, SL, and cytokinin signaling is not clear at pre-
sent (Fig. 1, F–H). A couple of key components of BR
signaling appear to be degraded by the 26S protea-
some in response to BR by unknown ligases (Fig. 1F).
Specifically, the BRASSINOSTEROID INSENSITIVE2
(BIN2) kinase is regulated by proteasome-mediated
protein degradation (Peng et al., 2008). Additionally,
the transcription factor BZR1 is phosphorylated by BIN2
and rapidly degraded by the proteasome to mediate the
feedback inhibition of several BR biosynthetic genes
(He et al., 2002). A recent report also demonstrated
that the endoplasmic reticulum-associated protein
degradation pathway controls levels of the BR receptor
BIN1 via a stress-induced ubiquitin conjugation en-
zyme, UBC32 (Cui et al., 2012). UPS activity is impli-
cated in SL signaling because MORE AXILLARY
BRANCHES2 (MAX2) encodes an F-box protein

(Stirnberg et al., 2002). A direct role for the UPS in cy-
tokinin action has not been described. However, the
recent identification of AUXIN UP-REGULATED F-BOX
PROTEIN1 (AUF1) implicates SCFAUF1/2 in mediating
interactions between cytokinin and auxin (Zheng et al.,
2011). Given the extent of protein degradation for other
hormones, the identification of MAX2 and AUF1/2
targets should prove to be quite interesting.

ABA

The number of E3 ligases involved (or implicated) in
ABA signaling is more than for any other hormone to
date. As a result, many aspects of ABA biology are
controlled by protein degradation (Fig. 2). ABA plays
important roles in many physiological processes, in-
cluding seed germination and stress responses, both
biotic and abiotic. The current understanding of ABA
signaling, from receptors to responses, includes many
intermediate steps and is quite complex (Cutler et al.,
2010; Kim, 2012).

At least one ligase has been shown to directly impact
ABA biosynthesis. SENESCENCE-ASSOCIATED E3
UBIQUITIN LIGASE1/ARABIDOPSIS THALIANA
PLANT U-BOX44 (AtPUB44) regulates the levels of
ABSCISIC ALDEHYDE OXIDASE3, an enzyme that
converts abscisic aldehyde to ABA (Raab et al., 2009).
Another gene that has been shown to affect ABA levels is
XERICO, which encodes a RING-H2 domain-containing
protein that can interact with UPS components in yeast,
including the F-box TUBBY-LIKE PROTEIN9 (Ko et al.,
2006).

The levels of ABA INSENSTITIVE5 (ABI5), a basic
Leu zipper transcription factor, are regulated by at
least two different classes of E3 ligases, including KEEP
ON GOING, a RING-type E3, and DDB-BINDING
WD40 PROTEIN1 (DWA1) and DWA2, CUL4-based
CRLs (Stone et al., 2006; Lee et al., 2010). The nucleus-
localized ABI FIVE BINDING PROTEIN (AFP) family
appears to promote ABI5 degradation in nuclear
bodies in concert with the RING protein CONSTITU-
TIVE PHOTOMORPHOGENIC1 (COP1), although it
is not exactly clear how this process occurs (Lopez-
Molina et al., 2003). Additionally, posttranslational
modifications such as phosphorylation and sumoy-
lation of ABI5 may also play a role in proteasome-
mediated degradation of ABI5 (Lopez-Molina et al.,
2001, 2003; Miura et al., 2009). The regulation of a
single substrate by multiple E3 ligases has been well
documented in animal systems. For example, the
transcription factor p53 was targeted for ubiq-
uitylation and degradation by numerous E3 ligases
(Benkirane et al., 2010). Such a mechanism may rap-
idly integrate different inputs to control the level of
a key transcription factor leading to the appropriate
response(s). Additionally, a RING-type E3, ABI3-
INTERACTING PROTEIN2, acts to control ABI3
transcription factor abundance and modulate down-
stream ABA signaling (Zhang et al., 2005).
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A small family of CUL3-based E3 ligases designated
CRLBPM have recently been found to play a key role in
ABA signaling by directing the proteasomal degra-
dation of the class I homeobox-Leu zipper (HD-ZIP)
transcription factor ATHB6 (Lechner et al., 2011).
Furthermore, all six MATH-BTB proteins can interact
with three different HD-ZIPI transcription factors
(ATHB5, ATHB6, and ATHB16), suggesting that this
family of E3 ligases may regulate other processes as well
(Lechner et al., 2011). A yeast two-hybrid (Y2H) screen
with ABSCISIC ACID RESPONSIVE ELEMENTS-
BINDING FACTOR2 (ABF2) identified an arm repeat
protein interacting with ABF2 (Brentani et al., 2003),
which may act as part of a CUL3-based ligase (Kim
et al., 2004). Additionally, the E3 ligase AtCHIP can
modulate the activity of an A subunit of protein
phosphatase 2A by ubiquitylation, leading to altered
ABA-induced stomatal closing and inhibition of seed
germination (Luo et al., 2006).

A number of other classes of E3 ligases have been
shown to function during ABA signaling, but their
targets (and direct roles in protein degradation) have
not been established yet. These include the F-box pro-
teins Drought Tolerance Repressor (Zhang et al., 2008)
and EID1-LIKE PROTEIN3 (Koops et al., 2011), AtPUB9
(Samuel et al., 2008), and two RING-type E3s, SALT-
AND DROUGHT-INDUCED RING FINGER1 (Zhang
et al., 2007) and ATL43 (Serrano et al., 2006).

INTERACTIONS BETWEEN HORMONES

Plant growth and development involves the simul-
taneous integration of many different hormone signals
at both the cellular and organ levels. With respect to
UPS activity and the hormones, there are a number of
emerging examples illustrating how such cross talk
may occur. For instance, TPL proteins are general co-
repressors that affect both auxin and JA signaling
pathways through the interaction with specific tran-
scription factors (e.g. Aux/IAA and JAZ proteins).
There are also examples of one hormone inducing
an E3 ligase that acts on a target active in another
hormone signaling pathway. For example, AUF1 is
expressed in response to auxin and affects ARR1 levels
(Zheng et al., 2011). The physical interaction of JAZ
and DELLA proteins is an example of how protein-
protein interactions directly link two distinct hormone
pathways (Hou et al., 2010; Arabidopsis Interactome
Mapping Consortium, 2011; Kazan and Manners,
2012; Yang et al., 2012). As protein-protein interactions
continue to be characterized in plants, we expect the
degree of connectedness to increase among hormones.

EVOLUTIONARY CONSIDERATIONS

The sheer number of UPS components in plants
suggests that the ubiquitin pathway has a broad role
in cellular regulation (Vierstra, 2009). Given what is

already known from Arabidopsis, it is likely that many
pathways will be conserved in other species. However,
there are also likely to be some differences. In fact, all
of the UPS components and protein-protein interac-
tions involved in auxin signaling, including the F-box
coreceptors and TPL-Aux/IAA-ARF interactions, ap-
pear to be conserved in the moss Physcomitrella patens
(Prigge et al., 2010; Causier et al., 2012). Over 30 plant
genomes are now available at Phytozome (Goodstein
et al., 2012), providing ample opportunities for in silico
identification of UPS components for further study.
Additionally, a curated database of UPS proteins, called
plantsUPS database, is available online at http://
bioinformatics.cau.edu.cn/plantsUPS/ (Du et al., 2009).

FUTURE DIRECTIONS

How many proteins are modified by ubiquitin and
degraded by the proteasome? This is currently a major
outstanding question in plant biology. Initial descrip-
tions of ubiquitylated proteins in Arabidopsis have
identified about 100 proteins that are modified by
ubiquitin, including known E3 target proteins such as
EIN3 and JAZ6 (Maor et al., 2007; Saracco et al., 2009).
The human ubiquitinome (ubiquitin-modified proteome)
was recently characterized using a unique ubiquitin-
based antibody specific for ubiquitin-conjugated proteins
(Kim et al., 2011). Because this antibody recognizes sig-
nature di-Gly fragments on ubiquitin conjugates
following trypsin digestion, a similar strategy could be
employed in plants to capture ubiquitylated proteins
for identification by mass spectrometry. Such data
could help identify target substrates for known ubiq-
uitin ligases (Figs. 1 and 2) and also identify new
proteins that are under UPS control. Combining these
techniques with hormone treatments and receptor mu-
tants could help place the role of the UPS in hormone-
specific contexts. It is worth noting that a three-step
immunoprecipitation workflow combined with tan-
dem mass spectrometry successfully identified 357
proteins modified by SUMO (for small ubiquitin-like
modifier) in Arabidopsis (Miller and Vierstra, 2011).
Most of the SUMOylated proteins are involved
in transcription and chromatin modification, sug-
gesting that attachment of SUMO may be an im-
portant posttranslational modification for gene
regulation.

While the degradation motifs are known for Aux/
IAA and JAZ proteins, we do not know what other
degron(s) contribute to ligase-substrate interactions
and protein stability. These domains are short and
cannot be easily identified in silico due to a lack of
sequence conservation and because the attachment of
ubiquitin to substrates may not be restricted to Lys
residues (Dreher et al., 2006; Hochstrasser et al., 2008).
In fact, we have very poor knowledge of ubiquitylation
sites on substrates altogether, even for well-studied
proteins like the Aux/IAAs. The use of immunopre-
cipitation strategies combined with mass spectrometry

52 Plant Physiol. Vol. 160, 2012

Kelley and Estelle

http://bioinformatics.cau.edu.cn/plantsUPS
http://bioinformatics.cau.edu.cn/plantsUPS


is one approach to identifying such residues. Addi-
tionally, degron motifs may be useful sensors of hor-
mone action within cells and tissues. A fluorescently
tagged version of Aux/IAA domain II (DII-VENUS),
which contains the canonical degron for this family
of SCFTIR1/AFB1-5 substrates, has been used to quan-
titatively image auxin in the root and shoot (Band
et al., 2012; Brunoud et al., 2012). Another potential
area of investigation involves determining the half-
lives for E3 targets. Aux/IAA and JAZ proteins
exhibit rapid degradation within the range of ap-
proximately 1 to 80 min (Dreher et al., 2006; Pauwels
et al., 2010), but we do not know the stability of other
target proteins.
Proteomics studies from various organisms have

shown a very poor, slightly positive correlation be-
tween mRNA levels and protein abundance (Taniguchi
et al., 2010; Maier et al., 2011; Schwanhäusser et al.,
2011; Vogel and Marcotte, 2012). Additionally, it is clear
that many proteins are under posttranslational control,
and we do not currently know to what extent post-
translational modifications (such as phosphorylation)
play a role in UPS-mediated processes in plants. For
instance, only 56% (78 out of 138) of the hormone- and
UPS-related proteins discussed here (Figs. 1 and 2) are
present in the current proteomics databases (MASCP
Gator search; Joshi et al., 2011). Thus, we need to
develop new techniques and approaches in order to
determine protein abundance and posttranslational
modifications in planta more routinely.
A number of protein-protein assays have been used

to identify ligase-substrate pairs, but most E3 ligases in
Arabidopsis are currently orphans. A high-throughput
Y2H assay could be utilized to identify new ubiq-
uitylation targets (network evolution in an Arabi-
dopsis interactome map; Arabidopsis Interactome
Mapping Consortium, 2011). Considering that a large
number of known E3 targets are transcription factors
(Figs. 1 and 2), screening with a transcription factor-
specific library (Pruneda-Paz et al., 2009; Brady et al.,
2011; Ou et al., 2011) could be very fruitful. Such
screens would also be informative for describing the
activities of UPS targets. For instance, new protein-
protein interactions were described based on a Y2H
assay between a sunflower (Helianthus annuus) Aux/
IAA protein (HaIAA27) and a heat shock transcription
factor, HaHSFA9 (Carranco et al., 2010). Once target
proteins are identified, a number of assays can be used
to confirm that they are ubiquitylated by ligases.
Efficient ubiquitylation assays have been recently de-
veloped using tobacco (Nicotiana tabacum) leaves (Liu
et al., 2010) and UBIQapture columns (Lechner et al.,
2011).
It truly is an exciting time to be studying ubiq-

uitylation and protein degradation in plants, as there
are still many questions and new tools being devel-
oped to help us find answers. Although DNA and
RNA molecules provide the templates, proteins are the
keystones of cells. Further insights into the regulation
of protein abundance, especially with respect to plant

hormone signaling, have strong potential to positively
impact many areas of plant agriculture.
Received May 22, 2012; accepted June 21, 2012; published June 21, 2012.
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