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Rubisco is composed of eight small subunits coded for by the nuclear RBCS multigene family and eight large subunits coded for
by the rbcL gene in the plastome. For synthesis of the Rubisco holoenzyme, both genes need to be expressed coordinately. To
investigate this molecular mechanism, the protein synthesis of two subunits of Rubisco was characterized in transgenic rice
(Oryza sativa) plants with overexpression or antisense suppression of the RBCS gene. Total RBCS and rbcL messenger RNA
(mRNA) levels and RBCS and RbcL synthesis simultaneously increased in RBCS-sense plants, although the increase in total
RBCS mRNA level was greater. In RBCS-antisense plants, the levels of these mRNAs and the synthesis of the corresponding
proteins declined to a similar extent. The amount of RBCS synthesized was tightly correlated with rbcL mRNA level among
genotypes but not associated with changes in mRNA levels of other major chloroplast-encoded photosynthetic genes. The level
of rbcL mRNA, in turn, was tightly correlated with the amount of RbcL synthesized, the molar ratio of RBCS synthesis to RbcL
synthesis being identical irrespective of genotype. Polysome loading of rbcL mRNA was not changed. These results demonstrate
that the availability of RBCS protein up-regulates the gene expression of rbcL primarily at the transcript level in a quantitative
manner for stoichiometric assembly of Rubisco holoenzyme.

A number of key photosynthetic components in
chloroplasts are multisubunit protein complexes com-
posed of both nucleus- and chloroplast-encoded subunits
(Malkin and Niyogi, 2000). For their proper assembly
and the formation of photosynthetic machinery, gene
expression between these cellular compartments must
be well coordinated, and photosynthetic organisms have
signaling systems between the nucleus and chloroplasts
for this purpose (Pesaresi et al., 2007; Woodson and
Chory, 2008; Waters and Langdale, 2009; Stern et al.,
2010). It is also understood that the availability of
nucleus-encoded subunits modulates the gene expression
of chloroplast-encoded subunits at translational levels.

The photosynthetic carbon-fixing enzyme Rubisco
has been extensively used for the model system, as
Rubisco is composed of only two kinds of subunits, a

nuclear multigene family-encoded small subunit (RBCS)
and a chloroplast-encoded large subunit (RbcL; Dean
et al., 1989; Spreitzer, 2003). In higher plants and green
algae (Chlamydomonas reinhardtii), Rubisco holoenzyme
is a hexadecamer composed of eight RBCS and eight
RbcL subunits. Rubisco is the most abundant leaf pro-
tein in C3 plants and catalyzes the first steps in photo-
synthesis and photorespiration (Ellis, 1979; Lorimer,
1981; Evans, 1989; Makino et al., 1992), these rates being
determined by Rubisco activity under conditions of
saturating light and current atmospheric CO2 and O2
levels (Evans, 1986; Makino et al., 1988).

When the gene expression of RBCS was suppressed
in higher plants such as tobacco (Nicotiana tabacum;
Rodermel et al., 1988; Hudson et al., 1992), the C4 plant
Flaveria bidentis (Furbank et al., 1996), and rice (Oryza
sativa; Makino et al., 1997), the amounts of RBCS and
RbcL proteins declined in a coordinated manner. In
RBCS-suppressed tobacco, polysome loading of rbcL
mRNA was reduced without a change in rbcL mRNA
level (Rodermel et al., 1996; Wostrikoff and Stern, 2007),
suggesting repression of the translation of rbcL mRNA.
It has been suggested that a repressor motif in unas-
sembled RbcL protein, otherwise not accessible, inter-
acts with rbcLmRNA for the repression of its translation
(Wostrikoff and Stern, 2007). Translational suppression
of rbcL has also been observed in Chlamydomonas
spp. with suppression of RBCS gene by its deletion
(Khrebtukova and Spreitzer, 1996). These results
demonstrate that the gene expression of rbcL un-
dergoes negative-feedback regulation at translational
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levels in response to the availability of RBCS protein.
This mechanism is similar to that first described for the
hierarchical synthesis of the cytochrome b6/f complex
within a chloroplast in Chlamydomonas spp., namely, the
control by epistasy of synthesis (Kuras and Wollman,
1994; Choquet et al., 1998; Choquet and Vallon, 2000;
Boulouis et al., 2011).

A similar mechanism is operative for other photo-
synthetic components in Chlamydomonas spp. For ex-
ample, in the synthesis of the F1 subunit of chloroplast
ATP synthase, oligomers of chloroplast-encoded sub-
units a and b repressed the translation of subunit
b when these subunits were not assembled with a
nucleus-encoded subunit g (Drapier et al., 2007). Syn-
thesis of the chloroplast-encoded cytochrome f was
repressed when a nucleus-encoded subunit Rieske
iron-sulfer protein was deleted or its assembly with
cytochrome f was disrupted by a point mutation (de
Vitry et al., 2004). These studies imply that transla-
tional modulation of chloroplast-encoded genes plays
a key role in the stoichiometric assembly of various
chloroplast multimetric protein complexes.

On the other hand, when endogenous RBCS was
overexpressed in rice, the rbcL mRNA level also in-
creased concomitant with a drastic increase in the total
RBCS mRNA level (Suzuki et al., 2007, 2009a, 2009b).
Rubisco content increased to an extent similar to that
of the rbcL mRNA level. In addition, the rbcL mRNA
level declined to a level similar to that of total RBCS
mRNA in RBCS-suppressed rice plants with the anti-
sense technique or the RNA interference technique for
individual RBCS genes (Suzuki et al., 2009a, 2009b;
Ogawa et al., 2012). These results imply that the coor-
dinated expression of two genes is not fully explained
by the translational modulation of the rbcL gene.

To explore the molecular mechanism of Rubisco
synthesis in detail, the coordinated gene expression of
RBCS and rbcL was characterized in transgenic rice
plants with an overexpression or suppression of RBCS.
Young, expanding leaves were used as samples, be-
cause Rubisco synthesis is the most active and Rubisco
degradation is inactive during the development of rice
leaves (Mae et al., 1983; Makino et al., 1984; Suzuki
et al., 2001). Syntheses of RBCS and RbcL proteins were
separately determined, and their relationships with the
mRNA levels of RBCS and rbcL were quantitatively
analyzed. Polysome loading was also examined as an
index for the translational status of these genes. We

obtained evidence for the positive regulation of tran-
script levels of rbcL by the availability of RBCS protein
in the synthesis of the Rubisco holoenzyme.

RESULTS AND DISCUSSION

The Synthesis of Rubisco Subunits Is Coordinated in a
Quantitative Manner in RBCS-Transgenic Rice Plants

Rubisco activities, Rubisco and total nitrogen (N)
contents, and Rubisco N/total N ratios were deter-
mined in RBCS-sense (lines 26-8 and 35-4; Suzuki et al.,
2007), RBCS-antisense (line AS-71; Makino et al., 2000),
and wild-type rice plants (Table I). Rubisco activities
were 1.5- to 1.7-fold higher in RBCS-sense plants and
76% in RBCS-antisense plants in comparison with wild-
type plants. Similar result was obtained for Rubisco
contents. In order to examine whether Rubisco con-
tents were specifically changed in the transgenic
plants, total N contents and Rubisco N/total N ratios
were measured. Total N contents were used as an in-
dex for organic N contents. It is shown that most of the
organic N is used as protein N in leaf tissue (Peoples
and Dalling, 1988). Total N did not greatly differ
among the genotypes, although the values in trans-
genic plants were slightly higher. Rubisco N/total
N ratios were 1.3- to 1.4-fold higher in RBCS-sense
plants and declined to 65% in RBCS-antisense plants.
These results indicated that the amount of Rubisco was
specifically increased in RBCS-sense plants but declined
in RBCS-antisense plants. Since expanding leaves were
used as samples, the Rubisco N/total N ratios were
different from our previous results obtained from the
uppermost, fully expanded leaves of rice (Makino et al.,
2000; Suzuki et al., 2007, 2009a). The Rubisco N/total
N ratios in the uppermost, fully expanded leaves of the
same plants were 25.9%6 0.4%, 31.5%6 0.6%, 30.8%6
0.6%, and 11.0% 6 0.8% for wild-type plants, RBCS-
sense plants (lines 26-8 and 35-4), and RBCS-antisense
plants (AS-71), respectively. These values were equiv-
alent to those in our previous studies.

The amounts of RBCS and RbcL synthesized per unit
of leaf fresh weight were determined by the incorpo-
ration of 15N label by these subunits. RBCS synthesis
was 1.6- to 2.1-fold higher in RBCS-sense plants and
about 55% in RBCS-antisense plants (Fig. 1A). The
amounts of RbcL synthesis were almost identical to
those of RBCS synthesis irrespective of genotype, being

Table I. Rubisco activities, Rubisco protein and total N contents, and Rubisco N/total N ratios

These values were determined in young, expanding leaves of wild-type plants and RBCS-sense (26-8 and 35-4) and RBCS-antisense (AS-71)
plants. Asterisks indicate statistically significant differences from the values of wild-type plants by Dunnett’s test (P , 0.05). Data are presented
as means 6 SE (n = 3). FW, Fresh weight.

Line Rubisco Activity Rubisco Protein Content Total N Content Rubisco N/Total N

mmol CO2 kg
21 FW s21 mmol active site kg21 FW mol kg21 FW %

Wild type 0.126 6 0.008 0.092 6 0.002 0.423 6 0.003 16.8 6 0.2
26-8 0.184 6 0.006* 0.127 6 0.000* 0.446 6 0.004 22.1 6 0.2*
35-4 0.220 6 0.024* 0.152 6 0.016* 0.501 6 0.017* 23.5 6 1.8*
AS-71 0.096 6 0.002 0.065 6 0.001 0.471 6 0.016 10.8 6 0.5*
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1.5- to 1.9-fold higher in RBCS-sense plants and about
60% in RBCS-antisense plants (Fig. 1B). These results
indicate that the synthesis of Rubisco subunits is coor-
dinated in a quantitative manner in young, expanding
leaves of RBCS-sense and antisense rice plants to main-
tain stoichiometry between the subunits. It has been
suggested in Chlamydomonas spp. that degradation of
RBCS plays a role in the maintenance of stoichiometry
between Rubisco subunits when the level of RbcL was
decreased by blocking chloroplast protein synthesis
(Schmidt and Mishkind, 1983). However, it was un-
known how the synthesis and/or degradation of RbcL
and RBCS are coordinated when RBCS is overproduced
either in Chlamydomonas spp. or in higher plants.

The Transcript Level of rbcL Is Modulated to Synthesize
RbcL Equivalent to RBCS

Four out of five members of the RBCS multigene
family that are mainly expressed in leaf blades (Suzuki
et al., 2007, 2009a, 2009b) were determined on a leaf fresh
weight basis. In RBCS-sense plants, total RBCS mRNA
levels were 2.7- to 3.1-fold higher than in wild-type
plants, because of drastic increases in the mRNA level
of the transgene RBCS2 without changes in the levels
of other members (Fig. 1C). rbcL mRNA levels also in-
creased 1.5- to 1.9-fold of the wild-type level, but the
difference was smaller than that in total RBCS mRNA
levels (Fig. 1D). The total RBCS mRNA level in RBCS-
antisense plants was about 50% of the wild-type level,
because the mRNA level of each member of RBCS de-
clined (Fig. 1C). The rbcL mRNA level also declined to
about 65% of the wild-type level (Fig. 1D). The 18S ri-
bosomal RNA per total RNA was determined as an in-
ternal standard, and no statistically significant difference
was found among the genotypes (data not shown).

To examine the relationships between the synthesis
of Rubisco subunits and the corresponding mRNA
levels, the relationships between the amounts of RBCS
and RbcL syntheses and their corresponding mRNA
levels were analyzed (Fig. 2). In each graph, a dashed
line passing through the origin and the wild-type data
are drawn to quantitatively predict the amounts of
protein synthesis as a function of the mRNA levels on
the assumption that this relationship remains constant
in the wild-type plants. When the relationships be-
tween Rubisco contents and the mRNA levels of total
RBCS and rbcL at their maxima were analyzed in
leaves of rice plants grown under different N nutrition
levels, data approximately fell on the line passing
through the origin and the control N data (Suzuki
et al., 2007). Although RBCS synthesis was positively
correlated with the total RBCSmRNA levels irrespective
of genotype, RBCS synthesis measured in RBCS-sense
plants was 60% to 64% of that predicted from the wild-
type data, whereas RBCS synthesis measured in RBCS-
antisense plants was almost identical to the predicted
value (Fig. 2A). RbcL synthesis and the rbcL mRNA
level were also positively correlated with each other
irrespective of genotype (Fig. 2B). Measured RbcL
synthesis was very close to that predicted from the
wild-type data (95%–115%).

In addition, polysome loading of Rubisco transcripts
was examined after fractionation with the Suc gradient
as an index for their translational status. In wild-type
plants, the pattern of mRNA distribution showed two
peaks in RBCS2, -3, and -5 and a single peak at lighter
fractions in RBCS4 (Fig. 3, A–D). In rbcL, a single peak
with a small shoulder at lighter fractions was observed
in the middle of the fractions (Fig. 3E). In RBCS-sense
plants, substantial changes in the distribution pattern
were not observed even in the transgene RBCS2. In
RBCS-antisense plants, drastic changes were also not
observed, although a slight shift to lighter fractions
was observed in RBCS2 (Fig. 3A), which was used
for antisense suppression. Although a similar tendency

Figure 1. Protein synthesis and the mRNA levels of Rubisco. Protein
synthesis of RBCS (A) and RbcL (B) and transcript levels of RBCS (C)
and rbcL (D) were determined in expanding young leaves of wild-type
(WT), RBCS-sense (26-8 and 35-4), and RBCS-antisense (AS-71) plants.
Values are expressed per unit of leaf fresh weight (FW). Data are
presented as means 6 SE (n = 3). Asterisks indicate statistically signif-
icant differences from the values of wild-type plants by Dunnett’s test
(P , 0.05). In C, white, light gray, dark gray, and black columns rep-
resent transcript levels of RBCS2, -3, -4, and -5, respectively.

Figure 2. Relationships between protein synthesis and transcript levels
of Rubisco. A, RBCS synthesis versus total RBCS mRNA level. B, RbcL
synthesis versus rbcL mRNA level. Circles, squares, diamonds, and
triangles represent the wild-type plant (WT), RBCS-sense line 26-8,
RBCS-sense line 35-4, and RBCS-antisense line AS-71, respectively.
Data are taken from Figure 1. A dotted line is drawn through the origin
and data from wild-type plants. FW, Fresh weight.
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was found for rbcL (Fig. 3E), the extent was not as
great as that observed by Rodermel et al. (1996) with
RBCS-antisense tobacco, where the distribution of
rbcL mRNA drastically shifted to lighter fractions. The
amounts of total RNA were highest in fraction 5 irre-
spective of genotype (Fig. 3F). The distribution pattern
was similar irrespective of genotype and was inde-
pendent of the pattern of mRNA distribution.

Since mRNA levels and protein synthesis were tightly
correlated to each other without a change in polysome
loading in rbcL, it is indicated that RbcL synthesis is
primarily determined by rbcL mRNA level in RBCS-
transgenic rice plants. Since the amounts of RBCS and
RbcL synthesized were almost identical irrespective of
genotype (Fig. 1, C and D), it is also indicated that rbcL
mRNA level is adjusted to synthesize RbcL equivalent to
RBCS. It is understood that translational modulation of
chloroplast-encoded subunits plays a key role in the
assembly of chloroplast multimetric proteins (Rodermel
et al., 1996; de Vitry et al., 2004; Drapier et al., 2007;
Wostrikoff and Stern, 2007). In the case of Rubisco, it has
been suggested that gene expression of rbcL undergoes
negative-feedback regulation by excessive RbcL protein
in tobacco (Rodermel et al., 1996; Wostrikoff and Stern,
2007). The reason for the discrepancy between these and
our studies is not clear. It may be that transcriptional
and translational regulations differ in importance in
terms of Rubisco synthesis in different plant species. It
has previously been suggested that these regulations
are not mutually exclusive (Rodermel, 1999). For ex-
ample, we have found in Arabidopsis (Arabidopsis
thaliana) plants that the suppression of one or two
major RBCS genes led to decreases in rbcL and total
RBCS mRNA levels, although the decline in rbcL
mRNA level was relatively smaller (Izumi et al., 2012).
This finding suggests that modulation of rbcL mRNA
level is also operative in Arabidopsis but that the ex-
tent is weaker than in rice and the translational regu-
lation contributes to a greater extent. In addition, it has
been suggested that nuclear factors are involved in the

assembly of a specific chloroplast multisubunit pro-
tein complex at a posttranslational level. For example,
maize (Zea mays) transposon mutants lacked the cy-
tochrome b6/f complex, although each subunit was
normally synthesized (Voelker and Barkan, 1995). It is
still unknown whether such a mechanism is operative
for the assembly of Rubisco holoenzyme.

On the other hand, increases in the amounts of RBCS
synthesized were much lower than those of the total
RBCS mRNA levels in RBCS-sense plants (Fig. 2A),
suggesting posttranscriptional down-regulation of RBCS
synthesis. However, since polysome loading of RBCS
mRNAs did not greatly differ among the genotypes (Fig.
3, A–D), it is unlikely, at least, that gene expression of
RBCS is primarily modulated at translation initiation.
Although the mechanism for the down-regulation of
Rubisco synthesis in RBCS-sense plants is still unclear, it
has been reported that the rate of translation was inde-
pendent of polysome loading of the mRNA in some
cases (Fütterer and Hohn, 1996). For example, protein
synthesis of Rubisco rapidly declined when illuminated
amaranth (Amaranthus hypochondriacus) seedlings were
transferred to dark conditions (Berry et al., 1988). Light
intensity did not affect polysome loading of the leaf
catalase mRNA in rye (Secale cereale; Schmidt et al.,
2002), although its protein turnover rate increased in
a dose-dependent manner along with light intensity
(Hertwig et al., 1992). In these cases, it has been sug-
gested that translational initiation and elongation
are modulated in a coordinated manner.

The Availability of RBCS Up-Regulates Transcript Levels
of rbcL

In order to examine the interaction of gene expres-
sion of RBCS with that of rbcL, relationships between
rbcL mRNA levels and the amounts of RBCS synthe-
sized and RBCS mRNA level were analyzed. A dashed
line passing thorough the origin and the wild-type

Figure 3. Polysome loading of Rubisco mRNAs.
Transcript levels of each fraction were expressed
as percentages of the sum of all fractions. A to E
show the data of RBCS2, -3, -4, and -5 and rbcL,
respectively. F shows the distribution of total RNA
among the fractions. Symbols are the same as in
Figure 2. Asterisks indicate statistically significant
differences from the values of wild-type plants
(WT) by Dunnett’s test (P , 0.05).
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data are also drawn in each graph. The rbcL mRNA
level and RBCS synthesis were positively correlated
with each other irrespective of genotype (Fig. 4A).
Measured rbcL mRNA levels were close to those pre-
dicted from the wild-type data (83%–115%). On the
other hand, although rbcL and total RBCS mRNA
levels were also positively correlated with each other,
rbcL mRNA levels measured in RBCS-sense plants
were about 50% of the predicted values (Fig. 4B). These
results show that rbcL mRNA level is tightly coupled
not with total RBCSmRNA level but with the amounts
of RBCS synthesized. petA (cytochrome f apoprotein),
atpB (b-subunit of chloroplast ATP synthase), psbA
(reaction center protein of PSII), and psaA (reaction
center protein of PSI) were selected as reference genes
of chloroplast-encoded major photosynthetic compo-
nents. The expression levels of these genes were not
affected by changes in the amounts of RBCS synthe-
sized (Fig. 5). Therefore, it is indicated that the avail-
ability of RBCS protein primarily up-regulates rbcL
mRNA level in a specific, quantitative manner for
stoichiometric assembly of Rubisco holoenzyme in rice.
This means that a nucleus-encoded subunit can play a
role as a positive regulator for gene expression of its
chloroplast-encoded assembly partner in the synthesis

of chloroplast multimetric protein complexes, as pre-
dicted previously by Ellis (1977).

It is still an open question how the rbcL mRNA level
is positively regulated by the RBCS protein. One pos-
sible explanation is enhancement of the transcription
of rbcL. Chloroplast photosynthetic genes are tran-
scribed by plastid-encoded RNA polymerase (PEP).
PEP presumably requires nucleus-encoded s factors,
which determine the promoter specificity of the major
PEP (Lysenko, 2007; Lerbs-Mache, 2011). Thus, the s
factors regulate the first step of chloroplast gene ex-
pression. However, the function of s factors is likely to
be redundant, and a specific one(s) for rbcL has not
been reported. Protein factors such as CSP41
(Bollenbach et al., 2009) and NARA5 (Ogawa et al.,
2009) have been reported to be involved in the tran-
scription of rbcL via PEP in Arabidopsis, but they also
affect the mRNA levels of genes for other chloroplast
photosynthetic components. Thus, a pathway of spe-
cific transcriptional activation of rbcL has not yet been
clarified. The stability of an mRNA also affects its
steady-state level. In Chlamydomonas spp., nucleus-
encoded factors that stabilize a specific chloroplast
mRNA by preventing 59-to-39 exonucleolytic degrada-
tion has been found for genes encoding light-harvesting
and electron transport components in the thylakoid
membrane such as petA (Loiselay et al., 2008; Boulouis
et al., 2011), psbD (Kuchka et al., 1989; Nickelsen et al.,
1999), and psbB (Monod et al., 1992; Vaistij et al., 2000a,
2000b). An mRNA-stabilizing factor has also been
found for rbcL, but its role in higher plants may be
marginal because a defect in its ortholog in Arabi-
dopsis only slightly affected the amount of Rubisco
(Johnson et al., 2010). Thus, major factors that stabilize
rbcL mRNA have not yet been identified in higher
plants. Unknown factors may be involved in the pro-
cess of the coordinated gene expression between RBCS
and rbcL.

CONCLUSION

In summary, we demonstrated in young, expanding
leaves of rice that the availability of RBCS protein

Figure 4. Relationships between RBCS and rbcL. A, rbcL mRNA level
versus RBCS synthesis. B, rbcL mRNA level versus total RBCS mRNA
level. Data are taken from Figure 1. Symbols and lines are the same as
in Figure 2. FW, Fresh weight, WT, wild type.

Figure 5. Relationship between mRNA levels of other chloroplast photosynthetic components and RBCS synthesis. A to D show
the results of petA, atpB, psbA, and psaA, respectively. These transcript levels are expressed as relative values where the data
from the wild-type plants (WT) are defined as 1. Symbols are the same as in Figure 2. Data are presented as means 6 SE (n = 3).
FW, Fresh weight.
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primarily up-regulates rbcL mRNA level, which deter-
mines the amount of RbcL synthesized, and that,
consequently, the stoichiometry between RBCS and
RbcL is maintained. Which factor(s) mediates between
RBCS protein and rbcLmRNA level and to what extent
transcriptional and posttranscriptional processes con-
tribute to adjustments of the expression of Rubisco
genes are questions of interest to be studied. In addi-
tion, since the amount of Rubisco synthesized drasti-
cally changes during leaf development (Mae et al.,
1983; Makino et al., 1984; Nikolau and Klessig, 1987;
Bate et al., 1991; Suzuki et al., 2001, 2010; Imai et al.,
2008), it is also of interest whether the rbcL mRNA
level is regulated by RBCS protein in the leaves at
different developmental stages.

MATERIALS AND METHODS

Plant Culture and 15N Labeling

Rice (Oryza sativa ‘Notohikari’) was transformed with RBCS2 comple-
mentary DNA in the sense orientation under the control of its own promoter
(Suzuki et al., 2007). From these varieties, T3 progeny of lines Sr-26-8 and
Sr-35-4 were used here. Rice transformed with RBCS2 complementary DNA in
the antisense orientation (line AS-71 with about 40% of wild-type Rubisco in
mature leaves; Makino et al., 2000) and nontransformed rice ‘Notohikari’ were
also used. Plants were grown hydroponically in an isolated and temperature-
controlled greenhouse (Suzuki et al., 2009a) with slight modification. The
greenhouse was maintained with a 14-h photoperiod (5 AM to 7 PM) under
natural sunlight conditions supplemented with six 400-W metal halide lamps,
day/night temperatures of 25°C/20°C, and 60% relative humidity. The final
concentration of N in nutrient solution (Makino et al., 1988) was increased to
3 mM (1.5 mM NH4NO3). Plants were labeled with 15N for the measurements of
RBCS and RbcL synthesis. When 11th leaves became one-third of their final
length, the plants were fed with nutrient solution without N. A solution of
(15NH4)2SO4 (30.5 atom % excess) was then added to the nutrient solution to
feed 0.94 mmol of N per plant. The next day, the pH of the nutrient solution
was adjusted to 5.5 to 6.0 and the plants were fed with the same amount
of (15NH4)2SO4 again. The following day, the 11th leaves were collected,
weighed, immediately frozen in liquid N2, and stored at 280°C until analysis.
All samples were collected between 11 AM and 1 PM.

Determination of Total N and Rubisco Protein and Activity

Frozen leaves were homogenized in sodium phosphate buffer, and their
N contents were determined with Nessler’s reagent after Kjeldahl digestion as
described by Suzuki et al. (2007). Rubisco content was determined by form-
amide extraction of Coomassie Brilliant Blue R-250-stained bands corre-
sponding to the large and small subunits of Rubisco separated by SDS-PAGE
using calibration curves made with purified rice Rubisco (Makino et al., 1985)
or by image analysis using Multi Gauge version 3.1 (Fuji Film). Rubisco ac-
tivity was measured spectrophotometrically by coupling 3-phosphoglyceric
acid formation with NADH oxidation at 25°C as described by Nakano et al.
(2000) with slight modifications. Prior to the assay, sample homogenate was
treated with Na2SO4 at 4°C for 30 min and then desalted (Parry et al., 1997).
A final concentration of 250 mM Na2SO4 was found to be best for the removal of
sugar-phosphate inhibitors with respect to Rubisco activity (data not shown).
For desalting, a Zeba Spin Desalting Column (Thermo Scientific) was used.

Measurement of Rubisco Synthesis

RBCS and RbcL were purified by preparative SDS-PAGE (Suzuki et al.,
2010). The amounts of RBCS and RbcL were calculated from the amounts of
Rubisco holoenzyme and the ratio of molecular mass between RBCS and
RbcL, since these subunits in unassembled form did not accumulate highly,
even when gene expression of the other was suppressed (Rodermel, 1999).
15N abundances of these proteins were measured by emission spectography

(Yoneyama et al., 1975) using a 15N analyzer (N-151; JASCO), and the amounts
of RBCS and RbcL synthesized were calculated as described by Mae et al.
(1983).

RNA Analysis

Sample leaves were homogenized with a small amount of acid-washed
quartz sand in the presence of liquid N2 using a mortar and pestle. An
aliquot was used for the extraction of total RNA according to Suzuki et al.
(2004) with slight modification (Suzuki et al., 2009a). Another aliquot was
used for the analysis of polysome loading. Samples were prepared ac-
cording to Sugimoto et al. (2004) with slight modifications. Heparin was
removed from all the solutions used. A sample (0.8 mL) was layered onto
8 mL of Suc gradient (15%–55%) and centrifuged at 32,000g for 140 min at
4°C using an ultracentrifuge model 55P-72S equipped with a RPS40T rotor
(Hitachi Koki). Twelve 0.69-mL fractions were collected by gentle pipet-
ting from the top of the gradient and transferred into new tubes. After the
addition of 69 mL of a solution of 5% (w/v) SDS, 0.2 M EDTA (pH 8), and
2 mL of nucleic acid carrier (Ethachinmate; Nippon Gene), RNA was
extracted from each fraction from the step of chloroform-isoamyl alcohol
extraction, all the steps being carried out at room temperature. The ob-
tained RNA pellet was dissolved in nuclease-free water, isopropanol
precipitated, washed with 75% (v/v) ethanol, and dissolved in 100 mL of
nuclease-free water. RNA concentration was determined by A260. The
mRNA levels of RBCS multigene family and rbcL were determined by real-
time quantitative PCR after reverse transcription (Ogawa et al., 2012). In
the case of polysome analysis, equal volumes of RNA samples (less than
300 ng of RNA) were reverse transcribed with the PrimeScript RT Reagent
Kit with gDNA Eraser (Takara). The RBCS2 mRNA levels in RBCS-
antisense plants were determined by amplification of the region including
the open reading frame followed by agarose gel electrophoresis and SYBR
Green detection (Suzuki et al., 2007). The primer pairs used for other than
Rubisco genes were as follows: 59-TGAATGTGGGTGCTGTTCTTATTT-39
and 59-TCGGGCGGCGCTAAT-39 for petA; 59-GGGAGCTGGAGTAGG-
TAAAACAGTA-39 and 59-CCCCCGTGAGCTTTAGCAA-39 for atpB;
59-GGCATACCATCAGAGAAACTTCCT-39 and 59-GTTGCAGCTGCTACTG-
CTGTTTT-39 for psbA; and 59-GAGGCTCATAAAGGCCCATTT-39 and 59-GAG-
CATGCCATGACGTTGTT-39 for psaA.

Sequence data from this article can be found in GenBank/EMBL data-
bases under the following accession numbers: RBCS2, Os12g0274700;
RBCS3, Os12g0291100; RBCS4, Os12g0292400; RBCS5, Os12g0291400; rbcL,
OrsajCp033; petA, OrsajCp041; atpB, OrsajCp032; psbA, OrsajCp002; and
psaA, OrsajCp025.
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