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SUMMARY

With development of massively parallel sequencing technologies, there is a substantial need for developing
powerful rare variant association tests. Common approaches include burden and non-burden tests. Burden
tests assume all rare variants in the target region have effects on the phenotype in the same direction and
of similar magnitude. The recently proposed sequence kernel association test (SKAT) (Wu, M. C., and
others, 2011. Rare-variant association testing for sequencing data with the SKAT. The American Journal of
Human Genetics 89, 82–93], an extension of the C-alpha test (Neale, B. M., and others, 2011. Testing for an
unusual distribution of rare variants. PLoS Genetics 7, 161–165], provides a robust test that is particularly
powerful in the presence of protective and deleterious variants and null variants, but is less powerful than
burden tests when a large number of variants in a region are causal and in the same direction. As the
underlying biological mechanisms are unknown in practice and vary from one gene to another across the
genome, it is of substantial practical interest to develop a test that is optimal for both scenarios. In this paper,
we propose a class of tests that include burden tests and SKAT as special cases, and derive an optimal test
within this class that maximizes power. We show that this optimal test outperforms burden tests and SKAT
in a wide range of scenarios. The results are illustrated using simulation studies and triglyceride data from
the Dallas Heart Study. In addition, we have derived sample size/power calculation formula for SKAT with
a new family of kernels to facilitate designing new sequence association studies.
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1. INTRODUCTION

Advances in high-throughput sequencing technology are reshaping the landscape of medical and human
genetics research. In contrast to genome-wide association studies (GWAS), which involves genotyping
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preselected single-nucleotide polymorphisms (SNPs) that are relatively common, these new sequencing
technologies enable us to also genotype rare genetic variants. Rare genetic variants, here defined as vari-
ants with minor allele frequency (MAF) < 1–5%, have been shown to play a crucial role in complex trait
etiology (Cohen and others, 2004). Despite their importance, testing for associations between rare vari-
ants and traits has proven challenging. Since standard individual variant tests, typically used for analysis
of SNPs, are underpowered to detect rare variant effects due to the low allele frequencies and the large num-
bers of rare variants in the genome, region-based analysis has become the standard approach for analyzing
rare variants in sequencing studies (Li and Leal, 2008).

The earliest and most commonly used class of region-based rare variant tests are the burden tests,
which collapse or summarize the rare variants within the region as a single genetic variable which can
then be tested for association with any trait of interest (Li and Leal, 2008; Madsen and Browning, 2009;
Morris and Zeggini, 2010; Price and others, 2010). For example, the combined multivariate and collapsing
method (Li and Leal, 2008) collapses information on all rare variants within a region by counting the
number of rare alleles. Many extensions and variations on these methods exist. A key limitation of burden
tests is that they suffer a substantial loss of power in the presence of large number of non-causal variants
or in the presence of both protective and deleterious variants (Neale and others, 2011).

Recognizing the inherent limitations of burden-based methods, Wu and others (2011) recently pro-
posed the sequence kernel association test (SKAT), which builds upon the kernel machine regression
framework, to test rare variants associations. As a kernel machine-based test, SKAT aggregates genetic
information across the region using a kernel function and uses a computationally efficient variance com-
ponent test to test for association. Wu and others (2011) also showed that SKAT is a generalization of the
classical C-alpha test (Neyman and Scott, 1966; Neale and others, 2011).

Although SKAT offers improved power over burden-based tests in many cases, if a large proportion
of the rare variants in a region are truly causal and influence the phenotype in the same direction, then
burden tests can have higher power than SKAT (Basu and Pan, 2011). This scenario can arise in several
current sequencing studies, e.g. whole exome sequencing studies. This is because standard evolutionary
principles and population genetics models indicate that majority of rare missense mutations are moderately
deleterious (Kryukov and others, 2007). In addition, bioinformatic tools are often used to restrict testing
to variants that are likely harmful variants. However, such prior knowledge is often lacking in practice.
The underlying biological mechanisms vary from one gene to another across the genome and often
unknown. It is hence of substantial practical interest to develop a data-adaptive test that is optimal for
both scenarios when scanning the genome in genome-wide sequencing association studies.

In this paper, by exploiting the relationship between burden-based tests and SKAT, we propose a data-
adaptive optimal test within a class of tests that include both burden tests and SKAT as special cases.
Specifically, we consider a class of tests that is an arbitrary linear combination of burden test and SKAT
statistics, and identify the optimal test within this class to maximize power. We show that this new class of
tests can be formulated as a generalized family of SKAT tests by incorporating a correlation structure of
variant effects through a family of kernels. It reduces to the burden tests when the effects of variants are
perfectly correlated. We derive the optimal test (SKAT-O) by estimating the correlation parameter in the
kernel matrix to maximize the power, which corresponds to the estimated weight in the linear combination
of the burden test and SKAT test statistics that maximizes power. We derive the theoretical distribution
of the SKAT-O test statistic, which allows us to calculate the p-value analytically with high accuracy in
the tail. This is advantageous for analyzing genome-wide sequencing data by avoiding computationally
intensive methods, such as resampling or permutation, to calculate p-values, especially in the tail required
to reach genome-wide significance.

In addition, we also consider the problem of designing future sequencing association studies. In partic-
ular, to design a new sequence association study, it is important to be able to estimate the required sam-
ple size to achieve proper statistical power. Although power and sample size calculation can be done via
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simulation, this computer-intensive approach is not desirable. Therefore, we derive the analytical formula
for the statistical power of SKAT under the newly proposed family of kernels, and by inverting the power
function, we can compute the necessary sample size to adequately power future studies.

2. OPTIMAL TEST

For simplicity, we assume that we are interested in testing whether the rare variants in a single region are
associated with a complex trait. In a large-scale study of multiple regions, the same methods can be applied
with the appropriate adjustment of multiple testing.

2.1 Rare variants testing methods

Assume that n subjects are sequenced in a region with p genotyped rare variants. For the i th subject,
let yi denote a phenotype variable, Gi = (gi1, . . . , gip) the genotypes for the p variants (gi j = 0, 1, 2 for
0, 1, or 2 copies of the minor allele), Xi = (xi1, . . . , xiq) the covariates for which we would like to adjust
(e.g. demographic or environmental variables). To relate genotypes to continuous/categorical phenotypes,
we use the generalized linear model (GLM), such that yi independently follows an exponential family
distribution with first two moments E(yi )=μi and Var(yi )= φv(μi ), and a link function

g(μi )= Xiα + Giβ, (2.1)

where v(·) is a variance function. α and β = (β1, . . . , βp)
′ are the vectors of regression coefficients for the

covariates and rare variants, respectively. Under the GLM, the association between the p rare variants and
the phenotype y can be tested by evaluating the null hypothesis that H0: β = (β1, . . . , βp)

′ = 0. However,
the standard p degree of freedom (d.f.) test may lose power when p is large. To reduce the d.f., additional
assumptions need to be made.

Popular burden-based tests reduce the d.f. by making the assumption that each β j is a function of the
MAFs such that β j =w(m j )=w jβ0, where m j is the MAF of the j th variant. Then (2.1) becomes

g(μi )= Xiα + β0

p∑
j=1

w j gi j , (2.2)

and the association between the genetic variants and the phenotype can be tested by conducting a 1 d.f.
test with H0: β0 = 0. We refer to this test as the weighted counting burden test (WBT). The WBT assumes
that all variants are causal with the same direction of association and common β0. Violation of these
assumptions can result in a significant loss of power.

SKAT takes a different approach to reducing the d.f. It assumes that each β j independently follows
an arbitrary distribution with mean zero and variance w2

jψ , where w j is a fixed number that may depend
on MAF. Under this assumption, the null hypothesis H0 : β = 0 is equivalent to H0 : ψ = 0, i.e. variance
component test in generalized linear mixed models by treating β as random effects. Suppose X is the n × q
covariates matrix, G = [G1, . . . ,Gn]′ is the n × p genotype matrix, W = diag[w1, . . . , wp] is a p × p
diagonal matrix of weights and K = GWWG′ is an n × n weighted linear kernel matrix. Wu and others
(2011) proposed to use a class of flexible weight functions of the MAF using the beta density function
as w j = Beta(MAF j , a1, a2), where the parameters a1 and a2 are pre-specified, and MAF j are estimated
using the sample MAF of the j th variant.

We define the working vector by y∗ = Xα + �(y − μ), where � = diag{g′(μi )}, and the variance
matrix by V = diag{φv(μi )[g′(μi )]2}. Their estimates under the null hypothesis are ỹ = Xα̂ + �̂(y − μ̂),
�̂ = diag{g′(μ̂i )}, and V̂ = diag{φ̂v(μ̂i )[g′(μ̂i )]2}, respectively, where α̂ is an q × 1 vector of estimates
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of α, μ̂ is an n × 1 vector of estimates of μ and φ̂ is an estimate of φ. All estimates are obtained under the
null hypothesis. Following Zhang and Lin (2003), the score test statistic of the variance component ψ is

Q = (ỹ − Xα̂)′V̂−1KV̂−1(ỹ − Xα̂)= (y − μ̂)′�̂V̂−1KV̂−1�̂(y − μ̂). (2.3)

When g(·) is a canonical link function, (2.3) can be simplified to Q = (y − μ̂)′K(y − μ̂)/φ̂2. For binary
and Poisson data, φ = 1.

2.2 New family of kernels

As shown in the previous section, the weighted linear kernel is constructed under the assumption that β j s
are independent. If a large percentage of variants in the target region are associated with the phenotype
with the same direction of effect, burden tests can outperform SKAT because the current kernels used by
SKAT do not account for correlation in β. Therefore, we propose a new family of kernels that explicitly
incorporates correlation among the variant effects.

We propose to allow β to follow a multivariate distribution with exchangeable correlation structure.
Then the correlation matrix of β is Rρ = (1 − ρ)I + ρ11′. With this correlation structure, the SKAT test
statistic is a function of ρ:

Qρ = (y − μ̂)′�̂V̂−1KρV̂−1�̂(y − μ̂), (2.4)

where Kρ = GWRρWG′. When ρ = 0, Kρ results in the weighted linear kernel SKAT. When ρ = 1, SKAT
test statistic is

Qρ = (y − μ̂)′�̂V̂−1GW11′WG′V̂−1�̂(y − μ̂)=
⎡⎣ n∑

i=1

yi − μ̂i

φ̂v(μ̂i )g′(μ̂i )

p∑
j=1

w j gi j

⎤⎦2

,

which is equivalent to the square of the score test statistic of WBT. Thus, both tests can be framed within
this new family of kernels. In fact, one can easily show that Qρ is a linear combination of SKAT and burden
test, i.e. Qρ = (1 − ρ)QSKAT + ρQburden.

For a fixed ρ, Qρ follows a mixture of χ2 distributions (Liu and others, 2007, 2008; Tzeng and Zhang,
2007). Specifically, if (λ1, . . . , λm) are the eigenvalues of V̂−1/2KρV̂−1/2, then the null distribution of Qρ

can be closely approximated by
∑
λ jχ

2
1, j , where {χ2

1, j } are independent χ2
1 random variables. To reduce

small sample bias, the restricted maximum likelihood (REML) estimator of the variance component can
be used (Zhang and Lin, 2003). Define P = V̂−1 − V̂−1X̃(X̃′V̂−1X̃)−1X̃′V̂−1, where X̃ = [1 X], we use the
eigenvalues of P1/2KρP1/2 to obtain the null distribution of Qρ . A p-value can be obtained by matching
moments (Liu and others, 2009) or by inverting the characteristic function (Davies, 1980).

To understand the role of the parameter ρ, we derive in Supplementary Appendix C (supplementary
material available at Biostatistics online) the analytic relationship between ρ and the given regression
coefficient β as a function of the proportion of causal variants in a region (i.e. the proportion of the β
coefficients that are non-zero) and the proportion of causal variants that are protective (i.e. the proportion
of the non-zero β coefficients that are negative), assuming the magnitude of the causal variant effects as a
function of the MAFs. We illustrate this relationship and its use in the power calculation section.

2.3 Optimal test (SKAT-O)

In practice, we rarely have any information about ρ. Thus, we need a procedure to select ρ to maximize
power. The resulting optimal test corresponds to a best linear combination of SKAT and burden tests that
maximizes power. This is in general a challenging problem because ρ disappears under the null hypothesis.
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Davies (1987) studied this problem and proposed to use a maximum of score test statistic as a test statistic.
This approach, however, is not directly applicable here due to the different kurtoses of the Qρs. As ρ
increase, the null distribution of Qρ has a heavier tail, and adjustment for this is difficult.

We employ an different approach and use the minimum of p-values as a test statistic rather than the
score statistics. Specifically, the test statistic is

T = inf
0�ρ�1

pρ, (2.5)

where pρ is the p-value computed based on Qρ . T can be obtained by simple grid search across a range
of ρ: set a grid 0 = ρ1 <ρ2 < · · ·<ρb = 1, then the test statistic T = min{pρ1 , . . . , pρb}.

2.3.1 Null distribution of the test statistic. In order to obtain the null distribution of T and conduct
a hypothesis test, let Z = V̂−1/2GW and z̄ = (z̄1, . . . , z̄n)

′, where z̄i =∑p
j=1 zi j/p. M = z̄(z̄′z̄)−1z̄′ is a

projection matrix onto a space of spanned by z̄. We further let

τ(ρ)= p2ρz̄′z̄ + 1 − ρ

z̄′z̄

p∑
j=1

(z̄′z. j )2,

where z. j is the j th column of Z, and Qρ1 , . . . , Qρb are the score test statistics computed with different
ρv, (v = 1, . . . , b). Then we show in Supplementary B (supplementary material available at Biostatistics
online) that under the null hypothesis Qρv is asymptotically the same as

(1 − ρv)

(
m∑

k=1

λkηk + ζ

)
+ τ(ρv)η0 = (1 − ρ)κ + τ(ρv)η0, (2.6)

where {λ1, . . . λm} are non-zero eigenvalues of Z′(I − M)Z, ηk(k = 0, . . . ,m) are i.i.d χ2
1 random vari-

ables, κ =∑m
k=1 λkηk + ζ , and ζ satisfies the following conditions:

E(ζ )= 0, Var(ζ )= 4 trace(Z′MZZ′(I − M)Z),

Corr

(
m∑

k=1

λkηk, ζ

)
= 0, and Corr(η0, ζ )= 0.

Since the Pearson correlation between κ and η0 is zero, we can approximate Qρ as the mixture of two
independent random variables. We can approximate the distribution of κ by using the characteristic func-
tion inversion method (Davies, 1980) after adjusting for the extra variance term of ζ . Letting qmin(ρv)

denote the (1 − T )th percentile of the distribution of Qρv for each ρv , the p-value based on the test
statistic T is

1 − P(Qρ1 < qmin(ρ1), . . . , Qρb < qmin(ρb))

= 1 − E[P(κ <min{(qmin(ρv)− τ(ρv)η0)/(1 − ρv)}|η0)],

which can be obtained by one-dimensional numerical integration, which can be easily calculated. When we
compute pρv and qmin(ρv), we approximate each marginal distribution of Qρv by modifying the moment-
matching method of Liu and others (2009). In particular, instead of matching the first 3 moments, we
match the mean, variance and kurtosis to improve the approximation in the tail area. To adjust for small
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sample bias, one can use REML estimates of the variance components, such that Z = P1/2GW. The fol-
lowing algorithm provides the detailed description of the proposed method.

Step 1: Set a grid 0 = ρ1 <ρ2 < · · ·<ρb = 1.
Step 2: Compute Qρ1 , . . . , Qρb , Z, and M. Here Z = P1/2GW.
Step 3: Compute λks, τ(ρv), and

μQ =
m∑

k=1

λk, σζ = 2
√

trace(Z′MZZ′(I − M)Z), and σQ =
√√√√2

m∑
k=1

λ2
k + σ 2

ζ .

Step 4: Calculate pρv , T and qmin(ρv)s using the modified moment matching approximation.
Step 5: Numerically integrate F(δ(x)|λ) f (x |χ2

1 ), where

δ(x)= (min{(qmin(ρv)− τ(ρv)x)/(1 − ρv)} − μQ)

√
σ 2

Q − σ 2
ζ

σQ
+ μQ,

f (x |χ2
1 ) is a density function of χ2

1 , and F(δ(x)|λ) is a distribution function of a mixture of chi-square
distribution,

∑
λkχ

2
k . The p-value is found as

p-value = 1 −
∫

F(δ(x)|λ) f (x |χ2
1 ) dx .

3. SAMPLE SIZE AND POWER CALCULATIONS FOR DESIGNING SEQUENCING ASSOCIATION STUDIES

Estimating the necessary sample size to adequately power a study is an important part of designing new
sequencing association studies. In this section, we derive the analytical formula for the statistical power of
SKAT. We restrict our interest to continuous traits study designs and dichotomous traits study designs, such
as case–control study designs, since both are commonly used designs in association studies. We further
note that we consider only SKAT with fixed ρ, since at the design stage, researchers generally specify
anticipated alternative hypotheses, i.e. a specific ρ based on the scenario they have in mind. The detailed
power calculation method can be found in Supplementary Appendix A (supplementary material available
at Biostatistics online). The required sample size to achieve a fixed power level can be easily computed by
inverting the power function.

The proposed formula can be used to calculate statistical power efficiently for specified sample sizes
and α level, given prior information on the genetic architecture of the genomic region of interest. Also
required are the proportion of causal variants within the region (i.e. the fraction of non-zero β coefficients),
and the proportion of causal variants that are protective (i.e. the fraction of non-zero β coefficients that are
negative). Both of these can be easily posited by investigators based on prior belief, and detailed discussions
are provided in Wu and others (2011). What is more challenging to specify is the particular ρ value to be
used in power calculations. As discussed in Section 2.2 and Supplementary Appendix C (supplementary
material available at Biostatistics online), if the proportion of nonzero βs is p1, the proportion of positive
βs among the non-zero βs is p2, and the magnitude of the causal variant effects is a function of the MAFs,
the optimal ρ can be estimated as

ρ = p2
1(2p2 − 1)2. (3.1)

Note that the power computed with this theoretical estimate of ρ will differ slightly from the power of the
optimal test (2.5) which is based on the data driven optimal ρ, since we are fixing ρ to obtain the power.
However, our simulation studies (Section 4.3) suggest that this difference tends to be small.
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4. SIMULATIONS AND REAL DATA ANALYSIS

4.1 Type I error rate

For all simulations, sequence genotypes were generated from 10 000 chromosomes over 1 Mb regions by
the calibrated coalescent model with mimicking the linkage disequilibrium structure of European ancestry
samples (Schaffner and others, 2005). Continuous phenotypes were generated from the null linear model

yi = 0.5X1 + 0.5X2 + εi , εi ∼ N (0, 1),

and binary phenotypes were generated from the null logistic model

logit P(yi = 1)= α0 + 0.5X1 + 0.5X2,

where X1 was a continuous covariate generated from N (0, 1), X2 was a binary covariate generated from
Bernoulli(0.5) and α0 was chosen to make penetrance 0.01. For binary trait simulations, we generated
retrospective case−control data with half being cases and half being controls. Since the average length of
a gene is around 3 kb, we randomly selected 3 kb regions across the 1-Mb chromosome. For each model,
we generated a total of 10 000 datasets.

We applied 6 different methods to each of the simulated datasets: proposed test with default w j =
beta(MAF j ; 1, 25) weights (SKAT-O); SKAT-O with flat weights (rSKAT-O); original SKAT (ρ = 0) with
beta(1, 25) weights (SKAT); SKAT (ρ = 0) with flat weights (rSKAT); counting-based burden test (N);
and weighted counting burden test (W ). For rSKAT-O, rSKAT, and counting-based burden test (N), only
variants with observed MAF< 0.03 were used. The equal size grid of 11 points (from 0 to 1) were used to
obtain test statistics of the SKAT-O and rSKAT-O to search for optimal ρ. Table 1 shows that all 6 methods
well-controlled type I error rates with α= 0.05 and α= 0.01.

To investigate type I error rates at very stringent genome-wide α levels, we conducted extensive sim-
ulations under a slightly different setting (Supplementary Appendix D, available at Biostatistics online).
Table 2 shows that SKAT-O can accurately control type I error with moderate α levels, but produces slightly
inflated type I error rates at very small α levels.

Table 1. Type I error estimates of six different methods to test an association between randomly
selected 3 kb regions with continuous and binary traits. Each entry represents type I error rate esti-
mates as the proportion of p-values smaller than α under the null hypothesis based on 10 000 simu-

lated datasets

Sample size Level α SKAT-O SKAT rSKAT-O rSKAT N W

Continuous trait
2000 0.05 0.051 0.051 0.050 0.048 0.048 0.047

0.01 0.009 0.009 0.009 0.009 0.009 0.009
5000 0.05 0.051 0.049 0.054 0.050 0.049 0.051

0.01 0.011 0.010 0.011 0.009 0.009 0.009
Dichotomous trait
2000 0.05 0.051 0.049 0.049 0.048 0.047 0.047

0.01 0.011 0.009 0.012 0.010 0.010 0.011
5000 0.05 0.047 0.043 0.046 0.044 0.047 0.048

0.01 0.010 0.009 0.010 0.008 0.009 0.010
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Table 2. Type I error estimates of SKAT-O to test an association between randomly selected 3 kb
regions with continuous and binary traits at stringent α level. The sample size was 2000. Each
entry represents type I error rate estimates as the proportion of p-values smaller than α under the

null hypothesis based on 107 simulated phenotypes

Level α Continuous traits Binary traits

10−3 1.1 × 10−3 1.1 × 10−3

10−5 1.7 × 10−5 1.2 × 10−5

2.5 × 10−6 4.1 × 10−6 3.3 × 10−6

4.2 Power

As with the type I error simulations, we randomly selected 3 kb regions from the broader 1 Mb region, but
we then randomly chose causal variants from among the variants with true MAF< 0.03. The continuous
phenotype were simulated from

yi = 0.5X1 + 0.5X2 + β1g1 + · · · + βs gs + εi , εi ∼ N (0, 1)

and dichotomous phenotypes were simulated from

logit P(yi = 1)= α0 + 0.5X1 + 0.5X2 + β1g1 + · · · + βs gs,

where (g1, . . . , gs)were selected causal variants. Covariates X1 and X2 follow the same distribution in the
type I error simulation, and α0 was chosen to make prevalence 0.01.

We considered simulations in which 10%, 20%, or 50% of rare variants were causal. Since it is assumed
that rarer variants are more likely to have large effect sizes, we set β j = c| log10(m j )|, where m j is the
MAF of the j th variant. For continuous trait simulations, we set c = 0.6, when 10% of the rare vari-
ants were causal, which gives maximum β = 2.4 for variants with MAF = 10−4. We used c = 0.3 and
c = 0.2, when 20% and 50% of the rare variants were causal to compensate for the increased number of
causal variants. For dichotomous trait simulations, we set c = ln 13

4 = 0.64, when 10% of the rare vari-
ants were causal, which gives maximum OR = 13 for variants with MAF = 10−4. We scaled down c with
larger percentages of causal variants. We allowed the sample size to vary as n = 1000, 2000, and 5000.
Datasets were generated 1000 times for each configuration. We applied the same 6 methods used in the
type I error simulations to each dataset, and power was estimated as the proportion of p-values less than
α= 2.5 × 10−6.

Figure 1 shows the empirical power under all considered configurations when non-zero β coefficients
are all positive, i.e. causal variants are all in the same directions. When the percentage of causal SNPs
was low, both the original SKATs (SKAT and rSKAT) and the proposed SKAT-O (SKAT-O and rSKAT-O)
had higher power than the burden tests. When the proportion of causal SNPs increased, the burden tests
performed better, and the original SKAT has lower power than burden tests when 50% of variants are
causal. The SKAT-O and rSKAT-O perform better (when 20% of rare variants are causal) or similar to
the burden tests (when 50% of rare variants are causal). This suggests that the performance of SKAT-O is
closer to the burden tests in the presence of a larger proportion of causal variants. The higher power of the
weighted test over the unweighted test also suggests that appropriate weighting can increase the power.

We also conducted simulations in which 20% of causal variants have negative βs (and 80% have positive
βs). Results for these simulations are presented in Figure 2 and show that as expected, burden tests lose
a significant amount of power since the effects of the causal variants cancel out due to the presence of
negative β coefficients. Both the original and the new optimal SKAT and rSKAT outperform the burden
tests no matter where the percentage of causal variants is small or large. In this case, the performance
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Fig. 1. Empirical power of SKAT-O and competing methods at α = 2.5 × 10−6 using simulation studies when region
size = 3 kb and β± = 100/0. Top panel considers continuous phenotypes and bottom panel considers dichotomous
phenotypes. From left to right, the plots consider the setting in which 10% of rare variants were causal, 20% of rare
variants were causal, and 50% of rare variants were causal. The detailed simulation setups are described in “Simulations
and Real Data Analysis”.

of SKAT-O is closer to SKAT. When 10% or 20% of variants were causal variants, SKAT-O and rSKAT-
O had slightly lower power than SKAT and rSKAT. With 50% of variants being causal, SKAT-O and
rSKAT-O had slightly higher power than SKAT and rSKAT. Compared to Figure 1, SKAT and rSKAT
did not suffer any power loss in continuous trait simulation and had slightly lower power in dichotomous
trait simulation which resulted from lower enrichment for causal variants due to fixed prevalence and the
presence of protective variants. However, burden tests lose considerable power due to the fact that causal
variants β coefficients are in mixed directions. In addition, we present the ρ values selected by SKAT-O
in Supplementary Figure S4 (supplementary material available at Biostatistics online), which shows that
SKAT-O generally selects large ρ values when the percentage of causal variants is high and β± = 100/0
and selects small ρs when either the percentage of causal variants is low or β± = 80/20. Overall, our
simulation results confirm that the proposed SKAT-O performed very well under broad circumstances.

4.3 Sample size and power calculation

We investigated the effect of different ρ values on the power under various models (Supplementary
Appendix E, available at Biostatistics online). Supplementary Figures S2 and S3 (supplementary material
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Fig. 2. Empirical power of SKAT-O and competing methods at α= 2.5 × 10−6 using simulation studies when region
size = 3 kb and β± = 80/20. Top panel considers continuous phenotypes and bottom panel considers dichotomous
phenotypes. From left to right, the plots consider the setting in which 10% of rare variants were causal, 20% of rare
variants were causal, and 50% of rare variants were causal. The detailed simulation setups are described in “Simulations
and Real Data Analysis”.

available at Biostatistics online) show that the test with ρ = 0 (original SKAT) or ρ = 1 (burden tests) can
have reduced power, depending on the model assumptions. For example, if only 10% of the variants are
causal, then the test with ρ = 1 is significantly less powerful than the test with ρ = 0. In contrast, when 50%
of the variants are causal and all of the non-zero β coefficients are positive, the test with ρ = 0 had lower
power than the test with ρ = 1. In all scenarios, ρ computed from the proposed formula (ρ = estimated)
was most powerful. The figures also show that the theoretical power under the theoretical optimal ρ closely
approximates the empirical power of SKAT-O verifying the adequacy of using equation (3.1) to select ρ
for power and sample size calculations.

We also conducted simulations to evaluate the accuracy of the power calculation formula given ρ values,
and details can be found in Supplementary Appendix F (supplementary material available at Biostatistics
online).

4.4 Real data application

We applied the proposed SKAT-O and other competing methods to the resequencing data from the Dallas
Heart Study (Victor and others, 2004) to test for association between serum triglyceride (TG) levels and
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Fig. 3. Single variant analysis results of Dallas Heart Study data. (a) Histogram of minor allele frequencies of 92
variants with MAF< 0.03. (b)–(d) Plots of log 10(MAF) versus t-statistic values of each variant of ANGPTL3, 4, and
5 genes. The dashed line represents the 95% confidence interval of no-association.

rare variants in 3 genes (ANGPTL3, ANGPTL4, and ANGPTL5). The resequencing dataset has sequence
information on 93 observed variants in the 3 genes from each of 3476 individuals in three ethnic groups
(white = 1043, black = 1832, and hispanic = 601) (Romeo and others, 2007). A total of 35, 32, and 26
variants reside in the ANGPTL3, ANGPTL4, and ANGPTL5 genes, respectively. All variants except one
have MAF< 0.03. The histogram of the estimated allele frequencies of the 92 variants with MAF< 0.03
is presented in Figure 3(a) and clearly indicates that the majority of variants are very rare.

We first performed single-variant association analysis between each variant and log-transformed TG
level to explore whether there were variants with different directions of effect. Specifically, we regressed
the trait value on the variant while adjusting for gender and ethnicity and computed the t-statistic based on
the regression coefficient (Figures 3(b)–(d)). There is no clear evidence that ANGPTL3 and ANGPTL5
have variants with opposite effects; however, since some of the t-statistics for the variants in ANGPTL4
have opposing signs and relatively large magnitude, suggesting that there is the potential for variants to
have different directions of effect.

We conducted two different analyses. First, we pooled all 93 variants from across the 3 genes and tested
for their cumulative effect on log TG level. Second, we considered each gene separately and tested the
association between rare variants in each gene and log TG level. We again applied the 6 methods used
in the simulation studies with adjusting gender and ethnicity. The results (Table 3) show that when the
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Table 3. Analysis of Dallas Heart Study sequence data. Each entry represents a p-value from each method
after adjusting gender and ethnicity. The selected ρ values by SKAT-O and rSKAT-O are presented in the

parentheses. “ALL” indicates analysis results of joint test of all 93 variants in 3 genes

Gene SKAT-O rSKAT-O SKAT rSKAT N W

Continuous TG level
ALL 1.8 × 10−5 (ρ = 0.1) 4.6 × 10−5 (ρ = 0.2) 9.5 × 10−5 2.9 × 10−4 7.2 × 10−5 2.3 × 10−4

ANGPTL3 2.6 × 10−3 (ρ = 0.5) 1.3 × 10−3 (ρ = 1) 8.9 × 10−3 6.2 × 10−3 1.1 × 10−3 1.9 × 10−3

ANGPTL4 1.7 × 10−4 (ρ = 0) 8.5 × 10−4 (ρ = 0.1) 9.5 × 10−5 6.9 × 10−4 4.9 × 10−3 3.1 × 10−2

ANGPTL5 3.4 × 10−1 (ρ = 1) 5.0 × 10−1 (ρ = 1) 7.6 × 10−1 8.5 × 10−1 3.3 × 10−1 2.0 × 10−1

Dichotomous TG level
ALL 1.1 × 10−4 (ρ = 0.1) 2.8 × 10−4 (ρ = 0.1) 1.4 × 10−4 2.4 × 10−4 2.2 × 10−3 2.7 × 10−3

ANGPTL3 4.7 × 10−2 (ρ = 0.4) 3.2 × 10−2 (ρ = 0.8) 4.7 × 10−2 4.1 × 10−2 2.3 × 10−2 3.6 × 10−2

ANGPTL4 1.6 × 10−4 (ρ = 0) 3.6 × 10−4 (ρ = 0.1) 9.4 × 10−5 3.3 × 10−4 3.1 × 10−3 2.2 × 10−2

ANGPTL5 4.6 × 10−1 (ρ = 0) 3.1 × 10−1 (ρ = 0) 3.0 × 10−1 1.9 × 10−1 8.7 × 10−1 4.0 × 10−1

variants in all three genes were pooled to form a single region for analysis, SKAT-O was by far the most
powerful. Our individual variant analysis results suggested that the variants in ANGPTL3 and ANGPTL5
may affect log TG unidirectionally so it is unsurprising that the burden tests (W,N) had comparable or
better performance than SKAT and rSKAT for testing the variants in ANGPTL3 and ANGPTL5. Also
as expected due to the apparent presence of variants with opposing effects, SKAT and rSKAT performed
better than the burden tests for testing the association between ANGPTL4 and log TG level. However,
SKAT-O and rSKAT-O performed very well across all settings and had only slightly larger p-values than
the best test for the particular setting.

Although log TG is a continuous variable, purely for illustration we also dichotomized the log TG level
by taking the the highest and lowest quartiles of each of the six sex-ethnicity groups and using high/low
log TG as a dichotomous outcome. The results were qualitatively similar to the results keeping log TG
continuous (Table 3).

5. DISCUSSION AND CONCLUSION

In this paper, we propose a new family of kernels that incorporates correlation among the effects of causal
variants. Based on this new family of kernels, we develop the optimal testing procedure that uses the
minimum p-values from different kernels as a test statistic. In simulation and real data analysis, we show
that the proposed optimal test often outperformed the existing burden test and weighted linear kernel SKAT.
In addition, we derived sample size/power formula for SKAT for designing new sequence association
studies.

In whole exome or whole-genome sequencing studies, we scan the genome by testing a large number of
genes. We cannot expect all the genes/regions to follow the same genetic model of association: some are
likely to have many causal variants with the effects in the same direction while others may have few causal
variants or the causal variants may have the effects in different directions. A good example is the Dallas
Heart Study data in which ANGPTL3 and 4 seem to follow different genetic association models. Thus,
the proposed SKAT-O can be an attractive choice for many situations, because it adapts to the underlying
biological model by selecting ρ based on the data.

We note that the proposed kernels consider only the compound symmetry covariance structure for
the effect of rare variants. The simple structure of compound symmetry allows us to efficiently compute
p-values of the optimal test. For example, it would take only 3–4 h to analyze a whole exome sequencing
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study with 20 000 genes and 2000 samples on a laptop. Extension of the method to accommodate other
correlation structures is a problem of future interest.

The power/sample size calculation formula presented in this paper is derived with fixed ρ, and thus we
acknowledge that this formula may not be applicable for the proposed SKAT-O. To derive power/sample
size formula for the optimal test is challenging due to the ζ term, and we suggest a practical approach to
pre-select ρ based on assumptions on underlying genetic structure of association. In particular, researchers
can use the simple formula we developed in this paper to select a proper ρ parameter based on the expected
effects of the variants in power calculations. We note that for simplicity, this formula was derived under
the assumption that the magnitudes of the non-zero β coefficients are equal to the weights used in the test.
However, our simulation studies show that the power is robust to this assumption and is not very sensitive to
modest changes in ρ, and the proposed approach can closely approximate the empirical power of SKAT-O.

As shown in simulation and real data analysis, proper weighting can improve power to detect rare
variants association. In this paper, we use the beta(1, 25) density function as a weight function that has
been proposed by Wu and others (2011). Since the weight is fixed prior to conducting the association test,
the type I error rate is not inflated. It is possible, however, the power can be lost if the weight is misspecified.
Although an attractive solution is to choose the weight adaptively using data and obtain p-values through
permutation or resampling, the computationally expense is not desirable, particularly for for genome-wide
studies, and it remains of interest to select the weight that maximizes power.

6. SOFTWARE

The software can be found at (http://www.hsph.harvard.edu/research/skat/).

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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