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SUMMARY

In recent years, genome-wide association studies (GWAS) and gene-expression profiling have generated
a large number of valuable datasets for assessing how genetic variations are related to disease outcomes.
With such datasets, it is often of interest to assess the overall effect of a set of genetic markers, assembled
based on biological knowledge. Genetic marker-set analyses have been advocated as more reliable
and powerful approaches compared with the traditional marginal approaches (Curtis and others, 2005.
Pathways to the analysis of microarray data. TRENDS in Biotechnology 23, 429–435; Efroni and others,
2007. Identification of key processes underlying cancer phenotypes using biologic pathway analysis.
PLoS One 2, 425). Procedures for testing the overall effect of a marker-set have been actively studied
in recent years. For example, score tests derived under an Empirical Bayes (EB) framework (Liu and
others, 2007. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel
machines and linear mixed models. Biometrics 63, 1079–1088; Liu and others, 2008. Estimation and
testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression
via logistic mixed models. BMC bioinformatics 9, 292–2; Wu and others, 2010. Powerful SNP-set
analysis for case-control genome-wide association studies. American Journal of Human Genetics 86,
929) have been proposed as powerful alternatives to the standard Rao score test (Rao, 1948. Large
sample tests of statistical hypotheses concerning several parameters with applications to problems
of estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 44, 50–57). The
advantages of these EB-based tests are most apparent when the markers are correlated, due to the
reduction in the degrees of freedom. In this paper, we propose an adaptive score test which up- or
down-weights the contributions from each member of the marker-set based on the Z-scores of their
effects. Such an adaptive procedure gains power over the existing procedures when the signal is sparse
and the correlation among the markers is weak. By combining evidence from both the EB-based score test
and the adaptive test, we further construct an omnibus test that attains good power in most settings. The
null distributions of the proposed test statistics can be approximated well either via simple perturbation
procedures or via distributional approximations. Through extensive simulation studies, we demonstrate
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that the proposed procedures perform well in finite samples. We apply the tests to a breast cancer genetic
study to assess the overall effect of the FGFR2 gene on breast cancer risk.

Keywords: Adaptive procedures; Empirical Bayes; GWAS; Pathway analysis; Score test, SNP sets.

1. INTRODUCTION

With rapid advances in high throughput technology, modern genetic studies have provided datasets
that can be used to identify genetic variants associated with various diseases such as cancer, auto-
immune diseases, cardiovascular diseases, and psychiatric disorders (e.g. Baum and others 2007; Frayling
2007; Hunter and others 2007; Rioux and others 2007; Yeager and others 2007; Sullivan and others 2008;
Wallace and others 2008). These studies, while providing valuable resources for investigating the genetic
risk of diseases, impose a grand challenge in identifying important genetic variants, due to the large number
of genetic markers under investigation.

The standard approach to screening for important genetic markers is based on single-marker marginal
analyses, which may suffer from low power and poor reproducibility (Vo and others, 2007). The lack of
power is in part attributed to the fact that multiple genetic markers may relate to the phenotype simul-
taneously, and most have weak or no effects. To overcome such difficulties, biological knowledge-based
methods have been advocated to integrate prior information into statistical learning (Brown and others,
2000). One useful strategy is through marker-set analysis, where a set of genetic markers are assembled
based on prior knowledge such as multiple variants in a gene or a pathway. The results from marker-
set analysis are often more reliable, reproducible, and powerful than the results from individual marker
analysis (Curtis and others, 2005; Efroni and others, 2007; Wu and others, 2010), and have attractive
interpretations.

To identify marker-sets associated with disease outcomes, one may test for the overall effect of a marker-
set, of dimension p, on the phenotype of interest. A convenient way to do this is via a standard p-degrees
of freedom (DF) Rao score test (Rao, 1948) for the significance of the global effect. However, when p
is not small, such a test may have little power, especially when the markers are correlated. One may also
consider combining p-values of univariate tests to obtain an overall assessment (Zaykin and others, 2002;
Lin, 2005; Nyholt, 2004; Moskvina and Schmidt, 2008). Such an approach often works well when the
signal is extremely sparse, but may not be powerful when multiple markers jointly affect the outcome.
To improve the power of the standard score test, modified score tests have been derived under an empir-
ical bayes (EB) framework (Carlin and Louis, 1997) for various types of models (Thomas and others,
1992; Commenges, 1994; Goeman and others, 2005; Liu and others, 2007, 2008; Wu and others, 2010).
Such modifications achieve the power gain by taking advantage of the between-marker correlation and
thus reducing the effective DF of the test. However, when the true signals are sparse and/or when the
markers within a set have weak correlations, these tests also suffer from a lack of power. For example,
in the case–control National Cancer Institute Cancer Genetic Markers of Susceptibility (CGEMs) study
(Hunter and others, 2007) to be discussed in Section 4, one is interested in studying the association between
the FGFR2 gene and breast cancer risk. There are 41 typed single-nucleotide polymorphisms (SNP) in
FGFR2, including those within a 30-kb region of the gene. As the number of SNPs is not small and many
of these SNPs have weak linkage disequilibrium (LD), i.e. week correlation, the standard score test and
the EB-based test will suffer loss of power.

To overcome these difficulties, we propose an adaptive score test procedure that incorporates the
strength of the signals from the individual markers within a set. The adaptive procedure, defined in
Section 2, rescales the marker values by the Z-score of an initial estimator of their association with the
outcome and thus down-weights the non-informative markers. We study its theoretical distribution and pro-
vide simple procedures for approximating the null distribution of the test statistic. Our numerical studies
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suggest that the adaptive test performs well with respect to both empirical size and power when the true
signals are relatively sparse and the markers are weakly correlated. However, when the true signals are not
sparse and the correlation among the markers is high, the adaptive procedure suffers from the variability in
the initial estimator and thus may perform worse compared with the EB score test. In Section 3, we derive
an automatic omnibus procedure that combines information from both types of score tests. In Section 4, we
examine the overall effect of the FGFR2 gene on the risk of breast cancer using the data from the CGEMS
study. Findings from our numerical studies in Section 5 indicate that the omnibus test pays little price for
selecting between the EB and adaptive tests. Some concluding remarks are given in Section 6.

2. METHODS

2.1 Data structure and standard score tests

Suppose data consist of n independent and identically distributed random vectors, {(Yi , Vi , Ui ), i =
1, . . . , n}, where Yi is the response, Vi = (Vi1, . . . , Vip)

T is the set of new markers under investigation,
and Ui = (Ui1, . . . , Uipu ) represents other covariates such as confounders with Ui1 = 1, for the i th sub-
ject. To test the overall effect of the marker set V on the response Y conditional on U, e.g. the overall
effect of the 41 SNPs in the FGFR2 gene on breast cancer risk, we consider the quasilikelihood model
(McCullagh and Nelder, 1989) with

E(Yi | Wi ) = μ(θT
0 Wi ) = μ(αT

0 Ui + βT
0 Vi ), var(Yi | Wi ) = σ 2V(θT

0 Wi ), (2.1)

where Wi = (UT
i , VT

i )T, μ(·), and V(·) are pre-specified mean and variance functions, and θ0 = (αT
0 ,βT

0 )T

is the vector of unknown effects for U and V. Common examples of model (2.1) includes linear, logistic,
Gamma, and Poisson regression.

Our primary interest lies in testing whether the set of genetic markers V is associated with Y after
adjusting for confounders U. That is, we aim to test the null hypothesis,

H0 : β0 = 0. (2.2)

In standard statistical theory, score-type testing first fits the model under H0, producing an estimate α̃QL

that is the solution to the quasilikelihood score equation under H0, defined as follows. Let μ̇(x) be the
derivative of μ(x), G1(x) = μ̇(x)/V(x) and G2(x) = {μ̇(x)}2/V(x). Then α̃QL solves

n−1
n∑

i=1

G1(α
TUi ){Yi − μ(αTUi )}Ui = 0. (2.3)

An estimate of σ 2 under H0 is

σ̂ 2 = (n − pu)
−1

n∑
i=1

{Yi − μ(α̃T
QLUi )}2/V(α̃T

QLUi ). (2.4)

The standardized score statistic is then defined as

S̃v = n−1/2
n∑

i=1

G1(α̃
T
QLUi ){Yi − μ(α̃T

QLUi )}Vi . (2.5)

There are two ways to form a test statistic based on (2.5). Let Ĉww = n−1
∑n

i=1 G2(α̃
T
QLUi )Wi WT

i , partition

Ĉww with top left block pu × pu matrix Ĉuu , bottom right block p × p matrix Ĉvv , and non-diagonal blocks



Efficient adaptive score test of genotype–phenotype associate 779

Ĉuv and Ĉvu , and Ĉv|u = Ĉvv − ĈvuĈ
−1
uu Ĉuv . The standard score test statistic is

Q̃ = S̃T
v (σ̂ 2

Ĉv|u)−1S̃v, (2.6)

and under H0, it is asymptotically central χ2
p. The local power of this score test is also well known

(Harris and Peers, 1980; Rao, 2005). See Martinez and others (2010) for a recent explication.
The simplicity of the standard score test is convenient, but comes at potentially considerable cost

because of the p-DF. In genomic applications, p is typically not small and some markers in a set have
no effects. For example, there are p =41 SNPs in the FGFR2 gene. Such a large DF carries with it a
potential loss of power, as we see in our simulations (Section 5).

Another way to use the score statistic (2.5) is to employ an EB framework by imposing a working
assumption that the {β0 j , j = 1, . . . , p} are independent and follow an arbitrary distribution with mean 0
and variance τ . We hence test the null hypothesis (2.2) by testing whether τ = 0. The working distributional
assumption, while useful for deriving a globally valid testing procedure, is not required to hold. This leads
to the score test

Q̂ = ‖S̃v‖2
2 =

p∑
�=1

S̃2
v�, (2.7)

where for any vector a, a� denotes the �th element of a, and ‖a‖q denotes the Lq vector norm. These types of
score test statistics have been shown previously to be powerful alternatives to the standard score test under
various settings (Goeman and others, 2005; Liu and others, 2007; Kwee and others, 2008; Wu and others,
2010). The distribution of (2.7) is given in Section 2.3.

2.2 An efficient adaptive score test

As shown in the simulation Section 5, the EB-based score test (2.7) is quite powerful when the signal is
not sparse. However, for settings when the signal is sparse and the markers are weakly correlated with each
other, this test has limited power due to the high DF paid for the non-informative markers. To overcome
such a difficulty, we propose an adaptive score statistic that incorporates information on the signal strength
of each marker. Specifically, we first obtain an initial root-n consistent estimator of β0, denoted by β̂.
Without loss of generality, we assume that the vector of element-wise variances of n1/2(β̂ − β0), κ

2, can be
consistently estimated by κ̂

2. Our proposed rescaling factor is Ẑ = n1/2β̂ � κ̂ , where � represents element-
wise division. Here, Ẑl is the Z -statistic for testing β0� = 0, which reflects the strength of the signal β0�

relative to the noise. The adaptive score test is then constructed by rescaling S̃v in Q̂ element-wise by Ẑ
such that non-informative markers will be down-weighted towards zero, thus effectively eliminating these
markers from the score statistic. We define our adaptive score test statistic as

Q̂A = Q̂A(Ẑ) = ‖S̃v � Ẑ‖2
2 =

p∑
�=1

(S̃v� Ẑ�)
2, (2.8)

where � denotes element-wise product. If the �th component β̂� of β̂ is not significantly different from
zero, this clearly shows that the �th marker plays little role in the test statistic.

For the initial estimator, one may obtain β̂ as the standard quasilikelihood estimator. Specifically, let

θ̂QL = (α̂
T
QL, β̂

T

QL)T be the solution to S̄(θ) = 0, where

S̄(θ) =
[

S̄u(θ)pu×1

S̄v(θ)p×1

]
= n−1

n∑
i=1

G1(θ
TWi ){Yi − μ(θTWi )}Wi (2.9)
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is the quasilikelihood score equation under the alternative. A simple choice for the variance estimator of
n1/2(β̂� − β0�) is

κ̂2
� = σ̂ 2B̂T

v�ĈwwB̂v�, (2.10)

where σ̂ 2 could be estimated under H0 as in (2.4), B̂v� is the �th row vector of [−Ĉ
−1
v|uĈvuĈ

−1
uu , Ĉ

−1
v|u] and

Ĉv|u = Ĉvv − ĈvuĈ
−1
uu Ĉuv . Then one may let β̂ = β̂QL and Ẑ = β̂� � κ̂ in the adaptive score test (2.8),

where κ̂ = (κ̂1, . . . , κ̂p)
T.

When p is not small and the signals are moderate or weak, β̂QL may have large variation and

thus may lead to power loss for the test rescaled with β̂QL. To overcome such difficulties, we pro-

pose to improve the power by considering a ridge penalized quasilikelihood (PQL) estimator θ̂RQL(λ) =
{α̂RQL(λ)T, β̂RQL(λ)T}T, where θ̂RQL(λ) is the solution to S̄(θ) − λ(01×pu ,β

T)T = 0, and λ is a tuning

parameter with λ → λ0 � 0. The estimator β̂QL corresponds to the maximum PQL estimator under the
random effects model β0 ∼ N (0, (nλ)−1

Ip×p) (Green, 1987; Breslow and Clayton, 1993). In practice,
one may choose an optimal λ̂ based on procedures such as generalized cross-validation. The adaptive
score test (2.8) may also be constructed based on β̂ = β̂RQL(λ̂) along with the variance estimators κ̂2

� =
σ̂ 2{B̂(λ̂)

v� }T
ĈwwB̂(λ̂)

v� , where B̂(λ̂)
v� is the �th row vector of [−{Ĉv|u + λ̂Ip×p}−1

ĈvuĈ
−1
uu , {Ĉv|u + λ̂Ip×p}−1].

2.3 Distribution of the test statistic under the null and under the local alternative

In the Appendix of the supplementary material available at Biostatistics online, we derive the distributions
of the test statistics (2.7)–(2.8) under H0 and more generally under the local alternative H1n : β0 = n−1/2b0.
Define

Cww =
[
Cuu Cuv

Cvu Cvv

]
=

[
E{G2(α

T
0 U)UUT} E{G2(α

T
0 U)UVT}

E{G2(α
T
0 U)VUT} E{G2(α

T
0 U)VVT}

]
. (2.11)

Cv|u = Cvv − CvuC
−1
uu Cuv , z0 = b0 � κ , and s0 = Cv|ub0. Furthermore, let εw denote a N (0, σ 2

Cww) random vector, B(λ0)
v� and Av�, respectively, denote the �th row of B

(λ0)
v = [−{Cv|u +

λ0Ip×p}−1
CvuC

−1
uu , {Cv|u + λ0Ip×p}−1] and Av = [−(CT

uvC
−1
uu )T, Ip×p]. Then Q̂A converges to

QA(b0) = ‖(s0 + Avεw) � (b0 + B
(λ0)
v εw) � κ‖2

2

=
p∑

�=1

(s0� + εT
wAv�)

2(z0� + κ−1
� εT

wB(λ0)
v� )2 (2.12)

in distribution. The same arguments as given in the Appendix of the supplementary material available at
Biostatistics online can be used to show that under H1n , the EB-score test statistic (2.7) converges in distri-
bution to Q(b0) = ‖s0 + Avεw‖2

2. Under H0, b0 = 0 and thus Q̂A in (2.8) and Q̂ in (2.7) converge in dis-
tribution to QA(0) = ∑p

l=1 Z2
l (AT

vlεw)2 and Q(0) = ∑p
l=1(A

T
vlεw)2, respectively, where Zl = κ−1

l εT
wB(λ0)

vl .

2.4 Implementation

In general, it is straightforward to approximate the null distribution of Q̂A in (2.8) via perturba-
tion by repeatedly generating realizations of Q̂∗

A = ‖(Âv ε̂
∗
w) � (B̂(λ̂)

v ε̂
∗
w) � κ̂‖2

2, where Âv and B̂
(λ̂)
v are

defined by replacing C
(λ0)
ww with its empirical counterpart, and where ε̂

∗
w = n−1/2

∑n
i=1 G1(α̃

T
QLUi ){Yi −

μ(α̃T
QLUi )}WiNi and N = (N1, · · · ,Nn)

T is a vector of independent N (0, 1) random variables. This is
because asymptotically, the distribution of ε̂

∗
w given the observed data and the unconditional distribution

of εw are asymptotically the same. Mimicking the Satterthwaite approximation, we find that in our
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numerical studies, the null distribution of
√

Q̂A can be well approximated by a rescaled χ2 distribution,

i.e.
√

Q̂A ∼ c0χ
2
d0

. The scale parameter c0 and the degrees of freedom d0 can be estimated by matching

the first two moments of
√

Q̂∗
A. Similarly, the null distribution of the standard score test Q̂ in (2.7) can be

approximated by Q̂∗ = ‖Âv ε̂
∗
w‖2

2.

2.5 Theoretical differences between the tests

Some insight as to the difference between our adaptive test and the ordinary score test can be gained by
considering the case that there are no additional confounders, so that U = 1 and λ0 = 0. In this case, Av =
[0p×1, Ip×p], B

(λ0)
v = [0p×1, a−2

0 �vIp×p)
−1], s0 = a2

0�vb0 and a2
0 = G2[μ−1{E(Y )}], where �v = var(V).

Since E(V) = 0, Cvu = C
T
uv = 0p×1. Thus B

(λ0)
v εw ∼ N (0, σ 2a−2

0 �−1
v ) and Avεw ∼ N (0, σ 2a2

0�v). Now,
let ξ 2

l denote the lth diagonal element of �−1
v , Dv = diag(ξ1, . . . , ξp), write �−1

v = DvRvDv and letZ(z0) ∼
N (z0, Rv). It follows that κl = σa−1

0 ξl and (b0 + B
(λ0)
v εw) � κ ∼Z(z0). Therefore, we may simplify the

distribution of QA(b0) as

(a0σ)−2QA(b0) = ‖{D−1
v R

−1
v Z(z0)} � Z(z0)‖2

2.

Furthermore, if V is uncorrelated, then Rv = Ip×p, ξ 2
� = var(V�)

−1 and (a0σ)−2QA(b0) are equivalent
to

∑p
�=1 var(V�)Z�(z0)

4. On the other hand, the distribution of (2.7) scaled by (a0σ)−2 can be written as∑p
�=1 var(V�)Z�(z0)

2. Thus, for the orthogonal case, asymptotically, the EB score statistic Q̂ is a weighted
sum of p independent 1-DF χ2 random variables with non-centrality parameters z2

0; whereas the adaptive
score statistic is a weighted sum of p-independent squared 1-DF χ2 random variables with non-centrality
parameters z2

0.

3. AN EFFICIENT ADAPTIVE OMNIBUS TEST

3.1 Theoretical local power calculations

To compare the performance of the EB score test and the adaptive test, we consider the simple setting of
linear regression with σ 2 = 1, U = 1 for an intercept and V is multivariate normal with mean zero, unit
variance, and a common correlation ρ. In Figure 1, we present the power curves under the local alternative
for ρ = 0.0, 0.2 and 0.5 for two extreme settings: (i) when signals are sparse with b0 = (b, 0, . . . , 0)T and
(ii) when all covariates contribute equally with b0 = (b, . . . , b)T/

√
p. It appears that the adaptive procedure

outperforms the EB score test under the sparse setting, but the phenomenon is reversed for the setting where
the signals are equally contributed from all p covariates. The relative performance of the adaptive and EB
score test procedures also varies with the correlation ρ. The lower the correlation is, the more advantage
the adaptive procedure has.

3.2 Omnibus test and implementation

In general, the relative performance of the EB-based score test and the adaptive procedure depends on
the sparsity of b0 and the between-marker correlation. In practice, without prior information on these
factors, it is unclear which procedure should be chosen for a given dataset. To overcome this diffi-
culty, we propose to automatically combine evidence between the EB score test and the adaptive test
by taking the minimum p-value and comparing to its null counterpart. Specifically, let P̂ = Ŝ(Q̂) and
P̂A = ŜA(Q̂A) be the respective p-values based on the EB score test and the adaptive score test, where
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Fig. 1. Theoretical power curve for the adaptive (solid curves), EB-score (dotted curves), and omnibus combining Q̂
and Q̂A (dot dashed curves) tests under local alternatives with various levels of correlations (corr.): 0.0 (thin gray
curves); 0.2 (black curves); and 0.5 (thick gray curves).

Ŝ(q) and ŜA(q) are estimators of S(q) = pr{Q(0) > q} and SA(q) = pr{QA(0) > q}, respectively. Then
the omnibus test is based on the minimum p-value, P̂min = min(P̂, P̂A) which converges in distribution to
Pmin = min[S{Q(0)}, SA{QA(0)}] under H0. Our simulation studies in Section 5 indicate that the omnibus
test pays a relatively low price with respect to power for utilizing two tests. Our theoretical power analysis
under the aforementioned two settings also supports this finding as shown in Figure 1.

In practice, the null distribution of P̂min can be approximated easily via perturbation methods. Let
{(Q̂(b), Q̂(b)

A ), b = 1, . . . , B} denote B perturbed realization of {(Q̂∗, Q̂∗
A), b = 1, . . . , B}, where for each

b, Q̂(b) and Q̂(b)
A are perturbed with the same set of independent normal vector N (b). Then the null dis-

tribution of P̂min can be approximated by the empirical distribution of P̂ (b)
min = min{Ŝ(Q̂(b)), ŜA(Q̂(b)

A )}
across b = 1, . . . , B, where Ŝ(·) and ŜA(·) are obtained by fitting rescaled χ2 distributions to {Q̂(b)}
and {

√
Q̂(b)

A }. When P̂min is very small, it may be challenging to obtain its p-value using resampling,
because a large B would be required to ensure adequate approximation. For such settings, we propose to
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approximate the null distribution of �−1(P̂min) using a normal mixture. Specifically, we fit a ν0-population
normal mixture,

∑ν0
ν=1 πν N (μν, σ

2
ν ), to {P̂ (b)

min, b = 1, . . . , B} and obtain maximum likelihood estimates for
{(πν, μν, σν), ν = 1, . . . , ν0}, denoted by {(π̂ν, μ̂ν, σ̂ν), ν = 1, . . . , ν0}. Then the p-value can be estimated
by 1 − ∑ν0

ν π̂ν�[σ̂−1
ν {�−1(P̂min) − μ̂ν}]. Through our empirical studies, we find that this approximation

works well and hence could be useful when aiming to control for low type I error rates. Similar strategies
could be used to approximate the distribution of �−1(P̂A) to improve the χ2 approximation, especially for
the tail probabilities. Here, the number of components ν0 can be either pre-specified or chosen adaptively
using criteria such as BIC. In practice, we find that ν0 = 3 works well for approximating the distribution
of �−1(P̂min).

4. EXAMPLE: THE FGFR2 GENE FOR THE RISK OF BREAST CANCER

We applied our proposed procedures to assess the association between the FGFR2 gene and the risk of
sporadic postmenopausal breast cancer using the genome-wide association studies (GWAS) data of the
Nurses’ Health Study, which was part of the aforementioned CGEMS study (Hunter and others, 2007).
Using the Illumina HumanHap500 array, this study initially genotyped 1183 women with postmenopausal
invasive breast cancer and 1185 individually matched controls. Data for analysis consist of 1091 cases
and 1110 controls with complete information. Among the loci reported as potentially associated with
breast cancer in Hunter and others (2007) include several SNPs in FGFR2 or its intron 2. Here, we exam-
ine the overall effect of the FGFR2 gene, consisting of 41 typed SNPs, including those within the 30-kb
region of the gene, on the risk of breast cancer. The analysis adjusted for age group, hormone usage, age
at menarche, and the first 4 eigenvectors generated from EIGENSTRAT principal components analysis
(Price and others, 2006) to account for population stratification.

We first fit the data with marginal logistic regression models with one SNP at a time adjusting for these
covariates. The log odds ratio estimates along with their 95% confidence intervals obtained from the 41
marginal models are shown in Supplementary material, Figure S1 (see supplementary material available at
Biostatistics online). Out of these 41 SNPs, 14 SNPs have marginal p-value < 0.05 and 3 SNPs, rs2420946,
rs1219648, rs2981579, with p-value < 10−5. The SNP rs1219648 has been previously shown to be highly
associated with increased risk of breast cancer while both rs2420946 and rs2981579 are in high LD with
rs1219648 (Hunter and others, 2007). An experimental rationale was presented in indicating that this SNP
is part of a haplotype that increases risk for ER+ breast cancer by increasing FGFR2 transcription.

To assess the overall effect of the gene, we employed the aforementioned procedures including the
univariate test using the minimum of these p-values. Since this gene is highly associated with breast cancer
risk, we used 100 000 perturbation samples along with the normal mixture approach to approximate the
p-values. The univariate test gives an overall p-value of 4.0 × 10−5. On the other hand, our adaptive test
gives a p-value of 4.3 × 10−8, the EB score test a similar p-value of 7.2 × 10−7 while the the standard
p-DF score test has no power in detecting the signal with a p-value of 0.12. The omnibus test combining
Q̂ and Q̂A yielded a p-value of 1.8 × 10−7 based on the normal mixture approximation. However, a larger
number of perturbation samples would be required to obtain more accurate estimate of the p-value for
these tests.

5. SIMULATION STUDIES

5.1 Setup and null case

We conducted simulation studies to assess the performance of the proposed score test. For simplicity, we
considered the setting that U = 1. To mimic the GWAS setting, we generated V based on the LD structure of
two genes: (i) the ASAH1 gene with high LD and (ii) the FGFR2 gene with moderate to low LD. Based on
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Table 1. Empirical sizes (in %) at target sizes of 1% and 5% for the score tests when V is simulated
based on the 17 tagSNPs of the ASAH1 gene and 31 tagSNPs of the FGFR2 gene on the illumina
chip. Here Q̃ is the p-DF score test in (2.6), Q̂ is the test (2.7), Q̂A is the test at (2.8) with initial
ridge estimate, “Uni” is the test that is based on the minimum p-value across p univariate tests,
and minA1,...,Ak represents the omnibus test that takes the minimum p-value of the tests based on
A1, . . . , Ak. The p-values are obtained via perturbation (ptb), chi-square approximation (χ2), and

normal mixture approximation (Mix).

Q̃ Q̂ Q̂A minP̂A,P̂ minP̂A,P̂,P̂uni
minP̂,P̂uni

n Size ptb χ2 ptb χ2 Uni ptb χ2 Mix ptb Mix ptb Mix ptb Mix

ASAH1 gene
200 1 0.3 0.2 1.1 1.3 0.8 1.1 1.6 1.3 1.1 1.2 0.9 0.8 0.9 0.8
500 1 0.4 0.3 1.0 1.4 0.8 1.1 1.5 1.3 1.0 1.1 0.7 0.7 0.8 0.8
1000 1 0.7 0.2 0.9 1.1 0.7 1.0 1.3 1.1 1.0 1.1 0.8 0.8 0.8 0.8
200 5 3.1 1.2 5.5 5.4 4.4 5.7 5.6 5.4 5.8 5.6 4.5 4.5 4.4 4.3
500 5 4.3 1.7 5.2 5.1 4.7 5.2 5.2 5.0 5.5 5.2 4.7 4.5 4.6 4.4
1000 5 3.7 1.5 4.6 4.5 4.5 5.2 5.1 4.9 5.0 4.7 4.6 4.5 4.5 4.3
FGFR2 gene
200 1 0.1 0.1 0.7 0.9 0.7 0.6 0.9 0.8 0.6 0.6 0.7 0.7 0.7 0.7
500 1 0.3 0.5 0.9 1.1 1.0 0.9 1.2 1.0 0.9 1.0 1.1 1.0 1.1 1.1
1000 1 0.6 0.6 0.8 1.0 1.0 0.9 1.3 1.0 0.7 0.7 0.9 0.9 0.9 1.0
200 5 1.7 1.8 5.1 5.2 5.2 4.3 4.4 4.2 4.4 4.2 5.1 5.0 5.1 4.8
500 5 2.8 3.1 5.0 5.1 5.2 4.9 5.0 4.7 4.7 4.5 5.2 5.0 5.2 4.8
1000 5 3.8 3.4 4.6 4.5 5.3 5.1 5.2 4.9 5.0 4.7 5.2 5.0 5.2 4.9

the Illumina 500 K platform, we included p = 14 SNPs of the ASAH1 gene and p = 31 SNPs of the FGFR2
gene, whose LD heat maps are shown in Supplementary material, Figure S2 (see supplementary material
available at Biostatistics online). The response variable Y is generated from the linear regression model
Y = βT

0 V + ε with ε ∼ N (0, 4) generated independent of V. For each configuration, we generated 4000
datasets to calculate the empirical size when the null hypothesis is true and 1000 datasets to calculate the
empirical power when it is not. For each dataset, the resampling procedure was carried out with B = 5000
and B = 1000, for the null and alternative settings, respectively. We considered n = 200, 500, and 1000.

As a benchmark, we also report results on the univariate test, whose significance is determined by
comparing the observed minimum p-value of p univariate tests to its corresponding null distribution. For
each simulated dataset, we carried out the following test procedures: (i) the p-DF score test Q̃; (ii) the EB
based score test Q̂ in (2.7); (iii) adaptive score test in (2.8) rescaled with ridge initial estimator Q̂A; and
(iv) univariate test (Uni). In addition, we consider various omnibus tests based on the minimum p-value
among the two or three p-values from (ii), (iii), and (iv). Note that we considered only ridge estimators as
our initial estimator, since the standard quasilikelihood estimator is unstable due to the high collinearity

between the SNPs. To examine how well the χ2 distribution approximates the null distribution of
√

Q̂A
and Q̂, we also provided the empirical size and power based on the approximation. We also examined the
performance of the normal mixture approximation to the distribution of the omnibus test statistics as well
as the distribution of Q̂A. Unless noted otherwise, p-values for all other test statistics are based on the
perturbation procedure, which can conveniently account for various types of correlations.

First, to examine the validity of our proposed testing procedure in finite samples, we generated data
under H0 model with β0 = 0 to assess the size of the score test. As shown in Table 1, the empirical sizes of
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Fig. 2. Empirical power (in %) for various tests using the ASAH1 gene under local alternatives averaged over all the
choices of ι’s. (a) q = 12, bASAH1 = 3.5 (14% sparsity); (b) q = 7, bASAH1 = 4.1 (50% sparsity); (c) q = 2, bASAH1 =
7.1 (86% sparsity); and (d) q = 1, bASAH1 = 10.6 (93% sparsity).

the aforementioned tests at type I error rate of 1% and 5% are summarized in Table 1. Across all the config-
urations, the empirical sizes are close to the nominal levels for all procedures except for the standard p-DF
test, which is often overly conservative due to the correlation among the V. Furthermore, it appears that the

χ2-based approximation works reasonably well in practice for approximating the distribution of
√

Q̂A at

type I error rate 5%. However, it appears that at a lower error rate of 1%, the χ2 approximation is slightly
anti-conservative, while the normal mixture approximation appears to provide a better approximation and
works well for approximating the distribution of other minimum p-value test statistics.

5.2 Power comparisons

For empirical power analyses, we let β0 = n−1/2bG[01×ι, 11×q , 01×(p−q−ι)]T, for ι = 0, . . . , p − q, and G
indexes either ASAH1 or FGFR2. Hence ι + 1 represents the starting position the causal variants, q deter-
mines the sparsity of the signal, and bG reflects the strength of the signal. We consider 4 choices of q and
bG : (i) dense signal q = 
0.8p�, bASAH1 = 3.5, bFGFR2 = 2.8; (ii) moderately sparse signal q = 
0.5p�,
bASAH1 = 4.1, bFGFR2 = 3.5; (iii) sparse signal q = 
0.1p�, bASAH1 = 7.1, bFGFR2 = 5.4; and (iv) single
causal variant q = 1, bASAH1 = bFGFR2 = 10.6. The pattern of the results is similar across the three sample
sizes and hence we present only results for n = 500.

Since the SNPs in the ASAH1 gene are generally in high LD with each other, we summarize the power
of the tests averaged over the entire range of ι in Figure 2. As we expect from the theoretical analysis, the
EB test is the most powerful under the dense signal setting with 14% sparsity. For the sparse settings, the
adaptive test is at least as powerful as other procedures. Across all settings, the standard p-DF test is the
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Fig. 3. Empirical Power (in %) for various tests using the FGFR2 gene under local alternatives averaged over the set of ι
with low ℘(·) (low) and the set of ι with moderate ℘(·) (moderate). For settings of q and b were considered: (a) q = 25,
bFGFR2 = 3.5 (19% sparsity); (b) q = 16, bFGFR2 = 2.8 (48% sparsity); (c) q = 4, bFGFR2 = 5.4 (87% sparsity); and
(d) q = 1, bFGFR2 = 10.6 (97% sparsity).

least powerful. The most robust test is the omnibus test based on minP̂,P̂A , the minimum p-value from Q̂

and Q̂A, which always has power similar to the best among (a)–(d).
For the FGFR2 gene, the LD is generally weak among the SNPs, but the correlation structure

changes over different regions. To gauge the general pattern of how the correlation might affect the test
performances, we let ℘(ι) denote the average correlation between the causal and non-causal SNPs for a
given ι and summarize the power by averaging over different levels of ℘(ι). In Figure 3, we present the
power averaged over the set of ι with low ℘(·) and the set of ι with moderate ℘(·). When ℘(·) is low
and the signal is moderately sparse, the adaptive test is more powerful than its competitors. For example,
when the sparsity is 19%, the average power is 54% for the EB test and 60% for the adaptive test while
the univariate test has a power of 40%. The univariate test is generally less powerful except when there is
only a single causal variant and ℘(·) is low. When ℘(·) is moderate, the EB test and the adaptive test have
more similar performances and the univariate test generally is less powerful. Similar to the results for the
ASAH1 gene, the test based on minP̂,P̂A almost always achieves power close to the best among (a)–(d),
except for when ℘(·) is low with extreme sparsity. Other omnibus tests based on minP̂,P̂A,P̂uni

and minP̂,P̂uni

can be less powerful whenever the univariate test does not work well, where P̂uni denotes the p-value based
on the univariate test. For example, for the FGFR2 gene with 19% sparsity and low ℘(·), the powers of
the univariate test and the omnibus test that includes the univariate test is only ∼ 43%, while the power of
minP̂,P̂A is close to 57%.
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6. DISCUSSIONS

In this paper, we proposed an adaptive score test procedure to test for the effect of a set of genetic markers,
by rescaling the design matrix of the genetic markers with an initial estimator of the marker effects. When
compared with the EB score test in (2.7), the adaptive test in (2.8) has higher power when the signal is
sparse and the between marker correlation is low. The null distribution of Q̂A can be estimated via a

simple Monte-Carlo procedure. In practice, we find that the null distributions of Q̂ and
√

Q̂A can also be

approximated well by skewed χ2 distributions with DF, dQ̂ and dQ̂A , respectively. Furthermore, under the

local alternative, the distributions of Q̂ and
√

Q̂A can be approximated by non-central χ2 distributions
with non-centrality parameters, γQ̂ and γQ̂A , respectively. However, providing theoretical justification for

why such an approximation works well for
√

Q̂A is challenging and warrants further research.

The χ2 approximations allow us to assess the relative performance of these two testing procedures
by comparing (dQ̂, γQ̂) to (dQ̂A , γQ̂A) under various settings. In simulation studies (results not reported)
with a compound symmetry correlation structure for V with correlation ℘, we compared how ℘ and signal
sparsity affect the results. The adaptive test is most effective when ℘ is low and sparsity is high, since under
such settings dQ̂ ≈ dQ̂A but γQ̂A > γQ̂ . As ℘ increases, dQ̂ decreases quickly, but dQ̂A remains almost
constant. As the sparsity of the signal increases, γQ̂ decreases while γQ̂A increases but the magnitude of

change in the non-centrality parameters appears to be slower with larger ℘, particularly for Q̂. Thus, when
the correlation increases, the EB-based test gains power by maintaining low DF while the adaptive test
pays the price for having higher DF, in part due to the increased difficulty in estimating β0.

To get more intuition behind these relative performances, we consider the local alternative β0 = n−1/2b0

and the setting with orthogonal normal design, U = 1, and σ 2 = 1. Due to the complexity of the power
functions, we focus on the setting when p is not small for the ease of approximation. One can show that√

Q̂A/c0 is approximately χ2 with

dQ̂A ≈ 3

4
p and γQ̂A ≈

√
d2

Q̂A
+ 3p

16
(6‖b0‖2

2 + ‖b0‖4
4) − dQ̂A ≈ 3

4
‖b0‖2

2 + 1

8
‖b0‖4

4,

while Q̂ ∼ χ2
p and γQ̂ = ‖b2

0‖2
2, where c0 ≈ 4/

√
3p. Comparing the non-sparse case with b0 =

(b, . . . , b)T/
√

p to the sparse case with b0 = (b, 0, . . . , 0)T, one finds that the EB test has the same
power at these two local alternatives since ‖b0‖2

2 = b2 in both cases. On the other hand, the adaptive
test has much greater power in the sparse setting since γQ̂A ≈ b2 + 1

8 (b4 − 2b2) for the sparse case and

b2 + 1
8p (b4 − 2pb2) in the non-sparse case. Hence when signal is sparse and b is not small, the adaptive

test gains power by amplifying the strong signals, which is reflected in the increased non-centrality param-
eter γQ̂A . On the other hand, when signal is not sparse, b4 − 2pb2 could be substantially smaller than 0
and hence leads to a power loss when compared with the EB test.

In general, the ridge-rescaled adaptive test has more power than the test rescaled by the standard quasi-
likelihood estimator, especially when the correlation among the V is high. The omnibus test which com-
bines information from both the EB-based score test and the adaptive test appears to pick out the winner
with relatively little price paid for selecting the better one, at least for the settings we have examined. It
will be interesting to extend the proposed procedures to accommodate the rare variants from next gener-
ation sequence studies. When the minor allele frequencies of the rare variants are too low, the proposed
weight vector Ẑ based on simple initial estimators may be unstable. Alternative weights that account for
rare variants and may increase power warrants further research.
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As shown in the data example section, when the p-value is extremely small, it remains numerically
difficult to obtain a good estimate of the tail probability for the omnibus test due to the requirement of a
large number of perturbations. On the other hand, our proposed perturbation procedure would enable us to
easily obtain the overall type I error-adjusted p-values when multiple marker sets are under investigation.
By generating the same set of N for all the marker sets, one can obtain the null distribution of the minimum
p-value across all marker sets and compare the observed p-value to this null distribution to estimate the
adjusted p-value. For approximating the tail probabilities, we find that a normal mixture works well for
approximating the distribution of the minimum p-value, both under H0 and under the alternative.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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