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Abstract

We derive a new method to estimate the age specific incidence of an infection with a differential mortality, using individual
level infection status data from successive surveys. The method consists of a) an SI-type model to express the incidence rate
in terms of the prevalence and its derivatives as well as the difference in mortality rate, and b) a maximum likelihood
approach to estimate the prevalence and its derivatives. Estimates can in principle be obtained for any chosen age and time,
and no particular assumptions are made about the epidemiological or demographic context. This is in contrast with earlier
methods for estimating incidence from prevalence data, which work with aggregated data, and the aggregated effect of
demographic and epidemiological rates over the time interval between prevalence surveys. Numerical simulation of HIV
epidemics, under the presumption of known excess mortality due to infection, shows improved control of bias and variance,
compared to previous methods. Our analysis motivates for a) effort to be applied to obtain accurate estimates of excess
mortality rates as a function of age and time among HIV infected individuals and b) use of individual level rather than
aggregated data in order to estimate HIV incidence rates at times between two prevalence surveys.
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Introduction

Accurate HIV incidence estimates are essential for determining

public health priorities and assessing the impact of interventions in

order to monitor the HIV epidemic, but because HIV infections

are silent events, estimation of HIV incidence is difficult [1]. The

most direct approach to estimating HIV incidence is through

observational studies, in which subjects are periodically monitored

for HIV infection, but such studies are time consuming and

expensive, and may provide biased estimates. Another approach

that has attracted considerable attention [2–6] is the use of HIV

tests that can discriminate recent infections, based on a single

specimen. The theoretical underpinnings of this approach have

recently been put on a sound footing under general assumptions

[7] but in practice the tests themselves, despite recent progress

[8,9] have not yet evolved to the point where they yield

consistently informative estimates [10–13]. Numerous ways have

also been proposed to relate incidence to (possibly multiple) cross-

sectional measures of prevalence [14–25]. Most of these use age-

specific prevalence from only one survey [14,16–18,22], others

rely on long time series [15,23,26].

Among the methods that use multiple unlinked cross-sectional

surveys, three methods warrant a closer look. They are variations

on the theme of interpreting two successive age structured

prevalence surveys into estimates of parameters of a population

dynamic model which aggregates the effects of infection and

mortality over the time between the two surveys. Brunet and

Struchiner [24] derived a fundamental formula, which also forms

the core of the present work, expressing the incidence as a function

of excess mortality rates and prevalence, in an age and time

structured susceptible-infected (SI) model. Their method of

estimating incidence is based on smoothing data from repeated

age structured prevalence surveys and estimates of cumulative

excess mortality rates. Hallett et al. [19] proposed a variation on

this theme, now commonly cited, and used to estimate HIV

incidence in sub-Saharan African settings [19,27,28], which is

based on the assumption of constant incidence within age bins,

and during the period between two surveys [19]. Brookmeyer and

Konikoff [29] proposed yet another variation, which parameterises

the different mortalities of the infected and susceptible population

into a survival ratio.

In this paper, we propose an alternative approach based on

serostatus observations over a range of times and ages, such as for

example multiple age-structured prevalence surveys. It entails

viewing infection, ageing, and death as continuous processes at

any point in time, and merely using available serostatus data to

obtain the best possible estimate of the rate of change of

prevalence at an age and time of interest, we circumvent the

need to calculate artefactual aggregated summary parameters.

Thus, the fundamental equation first used for this purpose by

Brunet and Struchiner [24] can be applied more systematically.

We use a simulated epidemic to assess applicability to the case of

HIV. The special case of a pure birth cohort is also invoked, to
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demonstrate subtleties of the assumptions and approximations,

and to facilitate comparison of methodological choices. The

performance of the introduced estimator is compared to those

proposed by Brunet and Struchiner [24], Hallet et al. [19] and

Brookmeyer and Konikoff [29].

Methods

General Framework
Consider, in an age structured population, a non remissible

infection which induces a difference in mortality rate. This can be

embodied in an SI-type model (See Text S1, Appendix A) with a

‘force of infection’ or incidence rate, i.e. as the number of infections per

susceptible person-time, l a,tð Þ. The idea that people of age a at time t

become the people of age azd after a period of duration d, to the

extent that they survive, is a core tenet of what is usually referred

to as ‘population renewal’. Making no assumptions about transmission

dynamics, and merely parameterising the process of ageing,

infection, and death, through rates, leads, as demonstrated by

Brunet and Struchiner [24,30], to

l(a,t)~
1

1{p(a,t)

L
Lt

p(a,t)z
L
La

p(a,t)

� �
zD(a,t)p(a,t) ð1Þ

where p(a,t) and D(a,t) represent the prevalence and excess

mortality rate of the infected individuals respectively. In the SI

model, people aged a at time t move out of the susceptible

population at the total rate l a,tð Þzm a,tð Þ, where m(a,t) is the

background mortality rate. Individuals who become infected enter

the infected class, and people of the infected class move out of that

class at the rate m a,tð ÞzD a,tð Þ. In reality, individuals will have

particular infection times, and it is possible to consider further

discriminating the infected population by ‘time since infection’

(sometimes called ‘duration’) and to explicitly have mortality rates

depend on this additional parameter. The simplified model does

not disregard this fact, but requires that the excess mortality

parameter properly accounts for it. The point behind the

simplification is to map the model onto observable data, and time

since infection is not observable – if it were, we would have simple

ways of estimating recent incidence rate from the distribution of

times since infection.

The model equations treat all population counts, and hence

prevalence, as smooth functions of age and time. Initially, this is

conceived as a closed population, but in a more general setting,

where the population is subject to migration, D(a,t) can still be

defined, namely as the difference in net attrition rate between the

infected and uninfected individuals. This is discussed in Text S2

(Section IV).

Equation (1) shows that only the difference in mortality rate

between the infected and uninfected population is needed, to turn

knowledge of prevalence into knowledge about incidence. In

practice, estimates of the ‘excess’ mortality rate may be inextricably

linked to estimates of the background mortality rates, and the

nuances of how these estimates are to be obtained are beyond

the present work. Brunet and Struchiner [24] suggested using the

integral form of equation (1) to estimate a ‘locally averaged incidence’,

whereas we focus on the instantaneous incidence. In the

remainder of this paper, we develop a method for processing

prevalence data, and do not explore in any detail the methods for

estimating the excess mortality rates, D(a,t).

Formula (1) implies that partial derivatives of the prevalence, with

respect to age and time, are required to calculate the incidence

rate. In practice, only individual HIV serostatus observations are

recorded. One way to estimate the derivatives in equation (1) is to

use the Maximum Likelihood Estimation (MLE) method. We

assume that at least two cross-sectional surveys were conducted

between t1 and t2 among individuals with ages between a0 and

amax. To estimate the derivatives at a,tð Þ in a0,amaxð Þ| t1,t2ð Þ, we

choose an appropriate rw0 (inclusion window) and for any

observed individual i aged a(i) in a{r,azrð Þ at time t(i), we

approximate his/her probability of being infected at that time by

keeping the terms of the Taylor expansion which are linear in age

and time:

p(a ið Þ,t(i))~a a,tð Þzb a,tð Þ a ið Þ{a
� �

zc a,tð Þ t ið Þ{t
� �

ð2Þ

In the idealised scenario of two cross-sectional surveys

instantaneously executed at time t1 and time t2, the time when

the individual i was surveyed, t(i), is either t1 or t2, and the

individuals are assumed to be independent. The MLE method can

thus be applied to the individual serostatus data to yield maximum

likelihood estimates of a a,tð Þ, b a,tð Þ and c a,tð Þ, which, as shown in

Text S1 (Appendix B), are the estimates of p(a,t),
L
La

p(a,t), and

L
Lt

p(a,t), respectively. Inserting these estimates in equation (1)

together with the excess mortality rate, D(a,t), gives an estimate of

the incidence rate at a,tð Þ. Note that

N this approach is in principle extensible in response to

availability of data, so that higher order terms in the Taylor

expansion may be kept, reducing bias at the cost of increased

variance

N there is no binning of data, and no assumptions about

prevalence being piecewise constant or having any other

special properties.

N One repeats the whole process for every value of a and t at

which an estimate is to be made, and the inclusion window r

can in principle be chosen for each value of (a, t)

N There is no need for sampling to be population representative

in age structure, as there is no averaging being done, which

would require a weighting scheme.

Case of a Birth Cohort
The general ideas of the previous section can be applied to the

estimation of incidence rate in a birth cohort. If we consider

individuals of the same age at time t1 followed up until t2, and then

assume that the prevalence changes linearly with time, we obtain

an explicit expression for our estimator of the incidence rate at any

time t in t1,t2ð Þ (see Text S1, Appendix C). In the case where

t~
t1zt2

2
, we obtain the t1,t2ð Þ-estimator given by:

l̂l~
2

t2{t1

p̂p2{p̂p1

1{p̂p2{p̂p1

z
1

2
p̂p2zp̂p1ð ÞD ð3Þ

where p̂pk is the maximum likelihood estimation of the prevalence

at time tk(k~1,2), and D~D tð Þ is the excess mortality rate. We

show in Text S1 (Appendix B) that equation (3) converges to the

true incidence rate when the time gap between the two surveys

tends to zero, in which case the variance diverges in practice.

There, for the special case of a birth cohort, we give the equation

satisfied by the maximum likelihood estimator of the incidence

rate which, in general, cannot be solved analytically.

HIV Incidence Inference
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Comparison to Method of Brunet and Struchiner
Assuming that the excess mortality rate is always positive,

Brunet and Struchiner [24] showed that the incidence rate at age a

can be approximated in the interval t1,t2ð Þ by using the integral

form of equation (1). Their formula expresses the incidence rate as

a function of the integral of the excess mortality rates (which is

assumed to be known) and the prevalence at time t1 and t2. They

suggested a weighted smoothing procedure performed by the

lowess program to create a smooth surface from the observed

prevalence, and to use this smoothed prevalence in their formula

[24]. Brunet and Struchiner’s method differs fundamentally from

the approach suggested in this article in that it uses the integral

form of equation (1) to estimate a locally averaged incidence,

whereas the approach suggested here focuses on the instantaneous

incidence. The estimated incidence given by their approach

converges to the true incidence rate l a,t2ð Þ as t1 tends to t2, and

thus can in principle provide a good approximation of the

incidence rate when the prevalence is observed, with high

accuracy, very frequently. However, when estimating prevalence

shortly after a previous estimate, there may be insufficient

precision to resolve the small changes. On the other hand, when

the time gap is large, it is less likely that the incidence rate is

constant as the method assumes.

Comparison to Method of Hallett et al
Hallett et al. [19] have developed a method based on

simplifying assumptions about population renewal under the

pressure of incidence and mortality (closely related approximations

to exposure times), the assumption of piecewise constant incidence

in age and time bins, and a scheme for ‘pasting together’ exposures in

the time between two age-binned prevalence distributions. This

yields an age binned incidence estimate that is applicable to the

time between the two cross-sectional prevalence surveys. Further

details to facilitate comparison and evaluation can be found in

Text S2 (Section III), where we also calculate asymptotic variances

of some closely related estimators for birth cohorts, which are

compared to the asymptotic variance of the proposed MLE based

incidence estimator, through simulations.

Comparison to Method of Brookmeyer and Konikoff
Brookmeyer and Konikoff [29] recently proposed aggregating

the excess mortality rate of the infected population over the

time between two prevalence surveys conducted at t1 and t2.

This involved the creation of an alternative parameter: the

relative survival rate (R), defined as the ratio of 1) the

probability that a person who is HIV infected and alive at

time t1 survives to t2, to 2) the corresponding probability in the

entire population. An estimator was derived by assuming that:

a) the time interval between the two surveys, and/or the

incidence, is small; b) the probability that an initially uninfected

individual who gets infected during the interval between the

surveys, then survives up to the time of the second survey, is the

same as the ‘probability that a person who is uninfected at time t1

survives to calendar time t2’; and c) the survival probability of an

initially uninfected individual is approximately equal to the

weighted average of the survival probabilities of an initially

uninfected and an initially infected individual. We calculated the

exact expressions of the survival probabilities and R by using

the SI model (see Section III-1 in Text S2). In the limit that t2

immediately follows t1, their estimator shall reduce to that of

the present work, but as the time between surveys grows, the

simplifying assumptions noted above introduce differences.

Simulations
We simulated an epidemic with four phases; the age specific

incidence was constant in time (measured in years) in the first

phase (from 0 to 12), increasing in the second (12 to 18), constant

in the third (18 to 24) and decreasing in the last phase (24 to 30).

Two cross-sectional surveys were simulated in each phase: at times

(5, 9), (13, 17), (19, 23) and (26, 30). We used the generated age

and time specific prevalence to simulate the infection status of

individuals in these surveys (see Text S2, Section II, for further

details). Figure 1 illustrates the true age specific prevalence and

incidence rate in our simulated population at times where the

surveys were conducted and at times where the incidence rate is

estimated. The excess mortality rate was specified as a function of

time and age. Data from each survey consisted of age and HIV

status of 4000 individuals: 200 for each age from 15 to 30 years

and 100 for each age from 31 to 49 years. Finally, for each

simulation, we estimated a a,tð Þ, b a,tð Þ and c a,tð Þ by applying

MLE to the simulated data to estimate the simulated incidence at

time t = 7, 15, 21 and 28. The accuracy and precision of the

estimated incidence were investigated by comparing the results of

1000 simulated data sets per scenario, to the input values. The

method of Brunet and Struchiner [24] and the method of Hallett

et al. [19] were also applied to the simulated data.

In the particular case of a population with a common birth date,

we used the closed form of the prevalence (see equation (C2) in

Text S1 Appendix C) to simulate the prevalence of an infection

with differential mortality in a population at time t~t2 given three

parameters: a) the prevalence at the beginning of the observation

period (t~t1); b) the (constant) incidence rate between the two

surveys; and c) a constant excess mortality rate. We used the

simulated prevalence and the excess mortality rates to estimate the

incidence rate using the t1,t2ð Þ-estimator, the estimator proposed

by Hallett et al. for birth cohorts (H-estimator) and the estimator

proposed by Brookmeyer and Konikoff (B-estimator). This allowed

us to measure the bias of these estimators. In the limit of large

sample sizes we also compare the standard deviations of these

estimators to the standard deviation of the optimal estimator (the

numerical solution of equation (C2)).

Sensitivity analysis was performed to assess the effect of the

magnitude of incidence rate and the duration between the two

surveys on estimates of the incidence rate. Scenarios with non-

constant incidence rate were also constructed to investigate the

effect of the assumption of constant incidence rate on the estimate

of incidence rate. In the latter case, the prevalence was simulated

under the hypothesis of varying incidence.

Simulations were run using the R programming language [31].

Software in the form of R code, together with a sample input data

set and complete documentation, is freely available at http://www.

incidence-estimation.com/page/r-code-set-for-manuscript-201203.

Results

Figures 2, 3 and 4 display the simulated and estimated incidence

rates as a function of age for the method developed in this paper,

the method of Brunet and Struchiner and the method of Hallet

et al. The median of 1000 point estimates is represented by the

cross symbol and the error bars represent the central 95 percentile

range.

To facilitate direct comparison of the performance of the three

methods in figures 2–4, we propose an ad-hoc metric of ‘success’ in

recovering, through estimation, the incidence rate which was used

in the simulation. We define a successful estimate, for the use of

two cross sectional prevalence surveys, as one in which the central

95 percentile range of point estimates, based on 1000 randomly

HIV Incidence Inference

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e44377



generated data sets, includes the mean of the input incidence rates

used in the interval between surveys. Then, focusing on the

incidence rate in ages up to 30 years, we can see that the ‘success

rate’, as just defined, for the three methods, across all age and time

points reported in figures 2–4, are: 93% (56/60) for the new

method of this paper, 53% (32/60) for the method of Brunet and

Struchiner, and 33% (4/12) for the method of Hallet et al.

Figure 5a shows the true incidence rate for a wide range of

scenarios where the initial prevalence is 10%. In these scenarios,

where both the excess mortality rate and the final prevalence are

less than 30%, the incidence rate cannot exceed 10% per annum if

the time gap is equal to 5 years. Figure 5b indicates that the

absolute error of the t1,t2ð Þ-estimator lays in the range 20.002 to

0.005, for the scenarios represented in Figure 5a.

Additionally we provide a wider view of the ranges of possible

relative errors in Figure 6 when the incidence rate or the time gap

between the measures of prevalence is fixed. Figures 6a and 6b

show that the t1,t2ð Þ-estimator is relatively small when the excess

mortality is less than 40%. The error is zero at ‘endemic equilibrium’,

i.e. when the incidence rate equals excess mortality rate multiplied

by the initial prevalence. In the same way, Figures 6c and 6d show

that the error is positive and increases for large values of the initial

prevalence and excess mortality rates.

Many scenarios were investigated to compare performances of

the t1,t2ð Þ-estimator, the H-estimator and the B-estimator in the

Figure 1. The simulated incidence and prevalence. Simulated age-specific incidence and prevalence at times were the surveys were simulated
and at midpoint of intervals of interest.
doi:10.1371/journal.pone.0044377.g001
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case of a pure birth cohort. Table 1 contains what we hope is an

informative selection of 13 of these scenarios. Note the variability

in the parameter values used to generate these scenarios which are

provided in the first six rows. The 7th, 8th and 9th rows show the

values of the three estimates under these conditions. The ratios of

the standard deviation of each of the estimators to the standard

deviation of the optimal estimator (the numerical solution of

equation (C2)) are available in the last three rows. It appears that:

a) the H-estimator tends to underestimate the incidence rate, the

magnitude of the error being dependent on the excess mortality

rate and the initial prevalence; b) reducing the interval between

prevalence surveys reduces the bias (scenarios # 8, 10 and 11); c)

reducing the excess mortality rate reduces the bias of all the

studied estimators (scenario #2); d) the bias of the B-estimator is

comparable to the bias of the H-estimator, e) the relative error of

the t1,t2ð Þ-estimator does not exceed 3%; f) the asymptotic

standard error of the t1,t2ð Þ-estimator was comparable to the

standard error of the optimal estimator of the incidence rate; and

g) the asymptotic standard error of the B-estimator was lower than

the asymptotic standard error of the t1,t2ð Þ-estimator while the

asymptotic standard error of the H-estimator was higher than

the standard error of the optimal estimator except when the

background mortality rate was very small.

Non-constant incidence rate appears to have only a modest

impact on our method. In the case of an increasing incidence

rate with a constant slope l= t2{t1ð Þ (with l and t2{t1 taken

from the scenarios described in Table 1), and the incidence rate

equals to l at time t2zt1ð Þ=2 , we observed that the t1,t2ð Þ-

Figure 2. Incidence rates using the MLE approach. The number of replications was 1000 for all the analyses and confidence limits (95% CL)
were obtained by the percentile method. The inclusion window rð Þ was chosen as follow. a) Period 1, 2 and 3: for times in the interval 4,18ð Þ, r~1 for
each age from 15 to 16, r~2 for each age from 17 to 22, r~3 for each age from 23 to 35, and r~4 for ages greater than 35. b) Period 4: for times in
the interval 25,31ð Þ, r~1 for each age from 15 to 16, r~2 for each age from 17 to 22, r~4 for each age from 23 to 35, and r~8 for ages greater than
35.
doi:10.1371/journal.pone.0044377.g002
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estimator overestimated the incidence rate with a relative error

less than 4%. Similarly, under the assumption of decreasing

incidence rate with a constant slope of l= t2{t1ð Þ (with l and

t2{t1 taken from the scenarios described in Table 1), and the

incidence rate equal to l at time t2zt1ð Þ=2 , we observed that

the t1,t2ð Þ-estimator underestimated the incidence rate with a

relative error less than 9%.

Additionally, we performed sensitivity analysis for all the

scenarios to see how well the t1,t2ð Þ- and the B- and H- estimators

performed with an imperfect knowledge of the excess mortality

rate (D). When we increased D by 20%, the t1,t2ð Þ-estimator

overestimated the incidence rate by no more than 9% while it

underestimated the incidence rate by no more than 14% when we

decreased D by 20%. In similar conditions, the H-estimator and

the B-estimator underestimated the incidence rate with an error

varying from 3% to 40%.

Discussion

The method of estimating incidence rates which we have

developed is fundamentally comprised of

N an exact relationship (equation (1)) which formally expresses

the force of infection (incidence rate) in terms of the excess

mortality rate of the infected state and the current value and

rate of change (with respect to age and time) of prevalence; and

N direct estimation of each component of the right hand side of

this relationship.

We specifically explored the use of Maximum Likelihood

Estimation and a Taylor Series expansion for estimating the

required prevalence and its derivatives from individual-level

serostatus data, and left open the question of how best to estimate

the excess mortality rate in the infected state. This is essentially an

Figure 3. Incidence rates using the approach of Brunet and Struchiner [24]. The number of replications was 1000 for all the analyses and
confidence limits (95% CL) were obtained by the percentile method.
doi:10.1371/journal.pone.0044377.g003
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instantaneous and individual level formulation of what was cast in

aggregated form in previous work, most notably that of Brunet and

Struchiner [24], which assumed constant incidence between

surveys, and the later work, using additional assumptions, of

Hallett et al. [19] and Brookmeyer and Konikoff [29]. Perhaps the

fundamental difference in approach is that previous efforts to

estimate incidence within this broad paradigm have been based on

the idea of a formal solution to a complex dynamical problem, in

which a later population state is expressed explicitly in terms of an

earlier population state and dynamical rules presumed to have

been in effect over the intervening time. This cannot be done in

closed form, and indeed is ill posed as dynamical rules can vary in

the time interval, hence the use of simplifying assumptions. The

present work avoids these difficulties by extracting the estimator

directly from the dynamical rules/equations, rather than from a

‘solution’.

A consequence of using formal estimation techniques directly on

unaggregated serostatus data is that questions of averaging, and

hence of weighting, which complicated bin-based analyses, simply

do not arise, and neither does the need for age-representative

sampling of study populations. In Text S2 we show how this

approach, under additional assumptions, yields key formulas

previously used to estimate HIV incidence [18,23] or more

generally, to estimate incidence of infections with differential

mortality [20,25].

Also, estimating incidence rate for a particular age, at a

particular point in time, does not require knowledge of the excess

mortality rate in an entire interval as in Brunet et al. [24] or the

additional assumptions in Hallett et al. [19] and Brookmeyer or

Konikoff, such as that incidence rate was small, remained stable in

the interval between the surveys and was constant in age bins, or

that individuals who become infected between the two surveys

Figure 4. Incidence rates estimated in age bins using the approach of Hallett et al. [19]. The number of replications was 1000 for all the
analyses and confidence limits (95% CL) were obtained by the percentile method.
doi:10.1371/journal.pone.0044377.g004
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survive up to the last survey. Our mathematical analysis (see

Section III-1 of Text S2) and numerical simulations showed that

these other estimators appear to have significant bias, even with

perfect knowledge of prevalence and mortality, sometimes with an

inappropriately small formal variance.

Incidence rates can thus, in principle, be estimated for any

age, at any time, as long as there is sufficient serostatus and

mortality data within a suitable inclusion zone around this point

in the age/time domain. The inclusion window can be varied to

provide an intuitively straightforward trade-off between variance

(less variance with more data) and bias (more bias as data further

from the point of interest is interpreted with the low order terms

in the Taylor series). While the nature of the trade off is clear

enough, and the example calculations suggest the use of

serostatus data within 2–5 years of the age of interest (see Figure

S4 in Text S2), an experimenter in possession of a single data set (as

opposed to a simulator with access to arbitrarily many, in addition to

the correct answer) cannot directly use this idea to self-diagnose

the optimal value of this inclusion criterion. Simulating a num-

ber of different scenarios (all of which produce data sufficiently

like the real data), will support the choice of robust inclusion

criteria.

In this study, we reported 95 percentile ranges of point estimates

obtained from a large number of generated data sets. This only

makes sense when using simulated data. In a real world context,

where serological statuses are observed only once, the bootstrap

method described in Text S2 (Section V) can be used to calculate

confidence intervals when the sample size is large. When the

asymptotic normality is violated, however, the bootstrap method

consisting of sampling the individuals with replacement can still be

used.

Useful incidence estimates will require sufficiently representative,

and numerous, individual HIV serostatus data, and, more

problematically, sufficiently accurate and precise excess mortality

rate estimates; the challenge being that mortality among HIV

infected individuals is related to the incidence in the past, virus sub-

type, the availability of Antiretroviral treatment (ART) in the

population, etc. Equation (1) suggests that an error in the measure of

the excess mortality rate is expected to induce bias in the incidence

rate estimate which is of magnitude approximately equal to the bias

on the excess mortality rate multiplied by the prevalence. Hence, given

a reasonable external mortality rate estimate, the bias should be

smallest amongst younger people, where the excess mortality rate is

low. The problem of error induced by inaccuracy and imprecision of

excess mortality rates is inherent to all methodology aiming at

Figure 5. Incidence and absolute error of the t1,t2ð Þ-estimator. Contour lines for the true incidence (in percentage) and contour lines for the
absolute error (in percentage as well) for the MLE approach in a cohort study in the case where the initial prevalence, p1 is 0.1 and the time between
the two surveys is 5 years.
doi:10.1371/journal.pone.0044377.g005
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estimating HIV incidence from prevalence data, and suggests that

this be the focus of substantial additional research, both for the

usually primary aim of elucidating the impact of HIV, and for the

purpose of stabilising incidence estimates.

Some methodologies for estimating reliable excess mortality

rates due to HIV/AIDS have been suggested [32]. Indeed, the

estimation of differential mortality is easier for countries where

causes of deaths are registered. For developing countries, where

deaths records are difficult to access, the verbal autopsy can be

used [32]. That method is increasingly used and was shown able to

provide reliable mortality rates and detect HIV-related deaths

[32–34]. What is less clear, and warrants further investigation, is

how this data is best analysed to yield differential mortality rates

stratified by age and (calendar) time, as opposed to stratified by age

and time since infection. Furthermore, the increasing availability of

ART, will impact the excess mortality associated with HIV

infection for years to come.

It is worth noting that our approach can in principle be applied

in the more general setting where the population is subject to in-

and/or out-migration. In this case, the excess mortality is replaced by

the difference, between infected and uninfected populations, in the

‘net attrition rates’, which would then need be known with sufficient

accuracy and precision, much as the base case requires knowledge

of differential mortality (for further details on accounting for

migration/immigration, and the impact of ART, see Section IV of

Text S2). Of course, the method is also not restricted solely to the

area of HIV incidence estimation and can be used to estimate the

incidence rate of any non-remissible infection with differential

mortality.

The accurate estimation of HIV incidence will remain a very

important issue in public health for many years into the

foreseeable future. Given that following cohorts of individuals

over time is time consuming, expensive and administratively

intensive, and furthermore at risk of yielding biased estimates, a

method which allows for the accurate estimation of incidence from

Figure 6. Relative error of the t1,t2ð Þ-estimator as a function of the initial prevalence. Contour lines for the relative error (in percentage) on
the incidence when using the MLE approach in a birth cohort in the case where the duration between the two surveys or the initial prevalence, p1

varies.
doi:10.1371/journal.pone.0044377.g006
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cross sectional surveys is of great value. The method proposed in

this paper makes no assumptions regarding the epidemiological

scenario and in the case of an infinite amount of data, is exact. The

only factors which limit the performance of the method are the

quality/quantity of the HIV serostatus data, and excess mortality

estimates, both of which have been increasing significantly. The

three point plan outlined at the beginning of this section provides a

break with the artefacts of previous approaches to the use of

prevalence and mortality data for estimating HIV incidence, and a

systematic framework within which limitations can be better

diagnosed as data is analysed.

Supporting Information
Text S1 contains a simple derivation of Equation (1) the

maximum likelihood equations. Derivation of key formulas and

technical details of the simulations are given in the Text S2 which

also contains an equivalent model and derivation of the equations

of some published models to estimate HIV incidence rates from

prevalence data. Text S2 also contains description and numerical

results of ad hoc methods using aggregated prevalence data to

estimate incidence rate as a function of age and ends with a

description of the ways to estimate confidence limits of the curve of

incidence.

Supporting Information

Text S1 Appendix. Derivation of Equation (1) and description

of the maximum likelihood equations

(DOC)

Text S2 Supplementary Materials for (A General HIV
Incidence Inference Scheme Based on Likelihood of
Individual Level Data and a Population Renewal Equa-
tion). Derivation of key formulas, details of the simulations,

description and numerical results of ad hoc methods using

aggregated prevalence data to estimate incidence rate as a

function of age and description of the ways to estimate confidence

limits of the curve of incidence.

(DOC)
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Table 1. Performances of the estimators of the incidence rates of an infection with a differential mortality in the case of a birth
cohort with constant incidence as well as constant background and excess mortalities.

Scenarios 1 2 3 4 5 6 7 8 9 10 11 12 13

Data

m 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02

m 0.1 0.0 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2

t22t1 5 5 5 5 5 5 5 3 5 3 3 5 5

p1 0.1 0.1 0.05 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1

p2 0.24 0.30 0.21 0.29 0.19 0.14 0.24 0.19 0.18 0.12 0.19 0.24 0.19

l 0.05 0.05 0.05 0.05 0.05 0.02 0.05 0.05 0.05 0.02 0.05 0.05 0.05

Incidence estimates

l̂l 0.049 0.050 0.049 0.050 0.049 0.020 0.049 0.050 0.049 0.020 0.050 0.049 0.049

lH 0.039 0.048 0.039 0.040 0.032 0.016 0.039 0.043 0.039 0.017 0.043 0.039 0.031

lB 0.038 0.044 0.037 0.039 0.032 0.016 0.038 0.042 0.036 0.017 0.042 0.038 0.032

Ratio* of the se

se l̂l
� �

=se l̂l0

� �
0.97 0.98 0.97 0.98 0.95 0.98 0.97 0.99 0.97 0.99 0.99 0.97 0.94

se lH
� �

=se l̂l0

� �
1.16 0.93 1.13 1.20 1.35 4.50 1.16 1.85 1.09 7.83 2.66 2.64 1.80

se lB
� �

=se l̂l0

� �
0.69 0.78 0.67 0.71 0.60 0.76 0.69 0.78 0.66 0.84 0.78 0.69 0.60

We used the exact prevalence for the simulations.
m: background mortality rate;
m: excess mortality rate;
t2{t1 : time between the two surveys;
p1 : initial prevalence, at t~t1 ;
p2 : initial prevalence, at t~t2 ;
l: simulated incidence;

l̂l: incidence rate estimated using the t1,t2ð Þ-estimator;

lH : incidence rate estimated using the H-estimator which was proposed by Hallett et al. [19] for birth cohort;

lB : incidence rate estimated using the B-estimator which was proposed by Brookmeyer and Konikoff. [29];

l̂l0 : incidence rate estimated using the optimal estimator obtained by solving the maximum likelihood equations (see equation (C2) in Text S1, Appendix C).
se: Standard error; here, the standard deviations were estimated using the delta method; the ratios were calculated under the assumption that the numbers of
individuals in the two surveys are the same.
*: Ratio of the se to the se of the optimal estimator.
doi:10.1371/journal.pone.0044377.t001
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