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Short-term information processing,
long-term responses: Insights by
mathematical modeling of signal
transduction

Early activation dynamics of key signaling mediators can be predictive for cell

fate decisions

Annette Schneider, Ursula Klingmüller and Marcel Schilling�

How do cells interpret information from their environment and translate it into

specific cell fate decisions? We propose that cell fate is already encoded in

early signaling events and thus can be predicted from defined signal proper-

ties. Specifically, we hypothesize that the time integral of activated key sig-

naling molecules can be correlated to cellular behavior such as proliferation

or differentiation. The identification of these decisive key signal mediators

and their connection to cell fate is facilitated by mathematical modeling. A

possible mechanistic linkage between signaling dynamics and cellular func-

tion is the directed control of gene regulatory networks by defined signals.

Targeted experiments in combination with mathematical modeling can

increase our understanding of how cells process information and realize dis-

tinct cell fates.
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Introduction

The transmission and processing of
information is an essential element of
multicellular organisms to ensure the
coordinated function of different cells

and cell types. Fundamental cell fate
decisions such as differentiation, pro-
liferation, and programmed cell death
(apoptosis) are tightly regulated by
signals that cells receive from their
environment. These signals are proc-

essed by complex intracellular signaling
networks to finally result in distinct cel-
lular behavior.

The encoding of the input infor-
mation into post-translational modifi-
cations of signaling molecules and the
subsequent decoding into defined
outputs is a highly nonlinear process.
It involves multiple steps and regulation
mechanisms including positive and
negative feedback loops as well as cross-
talk between different signal inputs.
An increasingly employed strategy to
examine these complex relations is
mathematical modeling, facilitating
the simultaneous analysis of various
signaling events [1, 2]. Understanding
cellular information processing can
help gain insights into the cause of
uncontrolled signaling in diseases such
as cancer and to develop improved treat-
ment regimes. Even though complete
comprehension of cell fate decisions
remains challenging, progress is being
made to unravel the cellular signaling
code.

Short-term signaling determines
long-term cell fate

One approach to dissect cellular
decision making is to link distinct sig-
naling patterns with cell fate. However,
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whereas the initial activation of cellular
signaling occurs within minutes to
hours, the adaptation to a certain cellu-
lar behavior frequently involves pro-
found structural changes within the
cells that require a timeframe of hours
to days. It is unclear at what time point
an individual cell is committed to a
specific cell fate.

A first step to get insight into the
mechanism of cell fate decision is the
identification of correlations between
processes related to information proc-
essing and cell behavior. If such corre-
lations exist, then it is likely that the
underlying mechanisms are also con-
nected physically. Already in the
1980s it was reported that processes at
the receptor level can predict cell pro-
liferation in response to epidermal
growth factor (EGF): mathematical mod-
eling revealed that there is a linear
relationship between proliferation and
the number of EGF receptor-ligand com-
plexes at steady state [3]. Later, refined
receptor models including growth factor
binding and internalization were used
to analyze strategies to control cell pro-
liferation [4]. Similarly, mathematical
models of the trafficking dynamics of
the IL-2 and IL-4 receptor could predict
T cell proliferation [5, 6].

A question that remained open was
how events at the receptor level are
processed in the cell. An important dis-
covery was the notion that, in contrast
to most of the receptor studies men-
tioned above, it is the dynamics of intra-
cellular signal transduction rather than
the steady state that is the key mechan-
ism to encode information [7]. A famous
example is the finding that rat adrenal
medulla cells react differently depend-
ing on the duration of extracellular sig-
nal-regulated kinase (ERK) activation:
sustained ERK activation that is induced
by stimulation with nerve growth factor
(NGF) leads to neurite outgrowth,
whereas transient ERK activation fol-
lowing EGF stimulation results in pro-
liferation [8]. A connection between
signaling dynamics and receptor occu-
pancy was made by a study analyzing T
cell activation as a function of ligand
bound T cell receptors: T cells with a
low number of stimulated T cell recep-
tors showed a transient intracellular
Ca2þ signal and failed to be activated,
but when a certain threshold of occu-
pied T cell receptors was reached, the

intracellular Ca2þ signal was sustained
and the cells were activated to secrete
IFN-g [9]. Further evidence for the
importance of the temporal dynamics
of signaling pathways was provided
recently. Several groups have combined
quantitative dynamic data with math-
ematical modeling, strongly suggesting
that the dynamics of the initial signaling
response can be predictive for cell fate
decisions.

One example is the reaction of
erythroid progenitor cells to the cyto-
kine erythropoietin (Epo). These cells
require small amounts of Epo to survive,
whereas high Epo concentrations
initiate cell proliferation. This behavior
is reflected in intracellular signaling pat-
terns. Low Epo concentrations are suffi-
cient to activate STAT5, and the amount
of phosphorylated STAT5 in the nucleus
during the first hour after Epo treatment
was shown to directly correlate with
survival of erythroid progenitor cells
[10]. High Epo concentrations addition-
ally result in the phosphorylation of
ERK. Congruently, the amount of acti-
vated ERK during the first hour could be
linked to the proliferation degree of
erythroid progenitor cells [11]. Both
studies benefited from mathematical
modeling to solve the problem that
physiological responses, such as sur-
vival, can already be triggered by
stimulus at concentrations that are very
low and not sufficient to elicit an
experimentally measurable signaling
response. Only with the help of model
simulations was it possible to connect
the measured signaling dynamics with
cell fate decisions that were measured at
much lower stimulus concentrations.
An important prerequisite for perform-
ing such predictions is to establish a
model that is able to describe the dose
dependency of the signaling pathway
[12].

Similarly, in a human cancer cell
line treated with the pro-apoptotic cyto-
kine TNF-a in combination with the pro-
survival factors EGF or insulin, apop-
totic responses have been linked to
short-term signaling. Using partial
least-squares regression analysis it
was demonstrated that signaling events
up to 90 minutes after receptor acti-
vation correlated best with apoptosis-
survival decisions [13]. This suggested
that signaling activities at early times
encode much of the information needed

to specify life or death decision. Another
study analyzing apoptosis mediated by
TNF-related apoptosis-inducing ligand
(TRAIL) showed that the time between
TRAIL exposure and apoptosis is highly
variable. However, this cell-to-cell vari-
ability could be attributed mostly to the
rate of conversion of the BID protein to
the truncated version tBID by the
enzyme caspase-8 [14]. This knowledge
allowed the time to cell death in single
cells to be accurately predicted by fol-
lowing caspase activity over time.

Finally, particular signaling pat-
terns were connected to migration and
proliferation in the context of cancer
development. In growth factor-treated
breast cancer cells with different onco-
gene expression levels, partial least-
squares regression analysis identified
quantitative combinations of signals
occurring between 5 and 30 minutes
that strongly correlated with cell pro-
liferation and migration [15].

In summary, with the help of math-
ematical modeling several studies could
directly correlate the dynamics of early
signaling with long-term cellular
responses. This suggests that cell fate
is determined long before it is apparent
in cellular behavior.

Cellular responses can be
decoded by focusing on the
integral of key mediators

The dynamics of a typical intracellular
signal are defined by several properties:
the time of the maximum signaling
peak, the duration of the signal and
the peak amplitude [16]. Which of these
features determines a specific cell fate
and could therefore be employed to pre-
dict the cellular response beforehand?

We propose that a signal property
that comprises both the kinetics and the
magnitude of the signal can be linked to
the physiological output of the cell: the
integral of the signaling curve. This
quantity represents the integrated sig-
naling response over time (Fig. 1) and
can be calculated by computing the area
under the curve, with the signal at time
point 0 treated as offset. The integral
describes how many signaling mol-
ecules are active over a certain time.
Provided that the output behavior is
slow compared to the signaling process,
the output is an integrator of the
upstream signal andmeasures how long

..... Insights & Perspectives A. Schneider et al.

Bioessays 34: 542–550,� 2012 WILEY Periodicals, Inc. 543

H
y
p
o
th
e
s
e
s



and with which intensity the signal has
been on [17]. Since the accomplishment
of cell fate decisions is a slow process,
using the integral of the signaling curve
to predict cell fate is reasonable. For
theoretical studies such as sensitivity
analysis using the integral as a variable
to define signaling dynamics is already a
standard method [18].

In the studies mentioned above that
analyzed the responses of erythroid pro-
genitor cells to Epo, it was the integral of
activated STAT5 and ERK, respectively,
that could be correlated to survival and
proliferation [10, 11]. In line with this
result, the integrated ERK activity
induced by fibronectin was previously
shown to be proportional to DNA syn-
thesis in CHO cells [19]. Additionally, the
analysis of cytokine-induced apoptosis

in colon adenocarcinoma cells revealed
that signaling could only be linked to
the apoptotic response when derived
metrics were used for the model predic-
tions, such as the integral or steady state
levels of key proteins [13]. To explain
this, the authors hypothesized that
the critical signaling information is
embedded in the cumulative activities
and rates of change of key signals rather
than in the ordering of signaling events.

These studies pointed towards a cor-
relation between specific signal proper-
ties and cell fate. How can we elucidate
the underlying mechanism? To reveal
the mechanistic link between cause
and effect it is not sufficient to collect
more data, since with this approach
we will only find more correlations.
Instead, we could try to reduce the prob-

lem by identifying which properties of
the signaling kinetics are really import-
ant. To answer this question, the system
has to be challenged by targeted pertur-
bations to specifically affect a certain
signal property. For instance, it was
demonstrated that the amplitude of a
signal depends on the activity of
kinases, whereas the duration of a sig-
nal depends on phosphatases [16].
These signal properties might be specifi-
cally altered by overexpression or
inhibition of the kinases and/or phos-
phatases involved. Mathematical model-
ing could support the identification of
conditions, allowing for optimal dis-
crimination between different scenarios.
Connecting the different signaling
kinetics with physiological readouts
could then validate the hypothesis that
the integrated response of a specific sig-
nal can determine cell fate. This knowl-
edge could be a basis to find the
mechanistic connection between signal
integration and cellular behavior.

A related open question is the integ-
ration time of the signal. Theoretically,
this corresponds to the time interval
during which the area under the curve
is to be computed. In practical terms,
this represents the time by which the
cell is committed to its long-term fate.
In the last paragraph, we discuss
possible molecular mechanisms to set
this threshold.

Figure 1. The integrated activation curve of a key mediator can predict cell fate. A: Scheme
of an exemplary signaling pathway, in which stimulation with two different ligands leads to
activation of distinct signaling molecules. This information is summarized by a key mediator
protein and processed by a signal integrator, resulting in a specific cell fate. Lines with open
circles: reaction catalysis; crossed circle: unspecified source or sink. Layout according to
Systems Biology Graphical Notation [39]. B: Activation dynamics of the signaling molecules
shown in (A). The two different ligands stimulate different signaling molecules both of which
can activate the same downstream molecule. Since this molecule summarizes the infor-
mation from both upstream signaling molecules and transfers it to another molecule, it func-
tions as a key mediator. The integral of the activated key mediator, defined as the area under
the signaling curve, is illustrated by the filled area. This quantity directly correlates with the
dynamic behavior of a long-living signal integrator and is thus a decoder for the information
from the input signals. Potential signal integrators are stable mRNA molecules and the
proteins they encode, which then execute the specific cell fate.

A) B)
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Distinct key mediators process
specific cellular information

Another crucial issue is to choose the
right key signal that is directly corre-
lated to cell fate. A signaling network
consists of many reactions and certainly
a specific cell fate is dependent on many
of them [20]. However, it should be
possible to identify key mediator
proteins such as ERK that summarize
the information of the several upstream
signaling pathways and thus determine
the cell’s response to input signals [21].
Mathematical modeling facilitates the
identification of key mediators, and
complex signaling networks can be
reduced to much simpler computational
models that are directly connected to
biological outcomes [22].

The situation is even more complex
when a cell is subjected to diverse
stimuli. Proteins that have been ident-
ified to be a key mediator for a certain
stimulus are not necessarily a key
mediator for a combination of different
stimuli. For instance, following TNF-a
stimulation early Akt signaling was
related to anti-apoptotic decisions, but
only when the cells lacked a functional
TGF-a autocrine circuit [12]. Similarly, in
adenovirus-infected cells treated with a
combination of IFN-g and TNF-a, acti-
vated Akt was predictive for apoptosis,
but not when PI3-kinase was inhibited
[23]. These examples show that it is cru-
cial to critically evaluate the correct key
signaling mediator for each stimulus
condition. Nevertheless, the excitation
of a system with different input signals
is a useful method to gain insight into
the wiring of the network. An approach
to disentangle the network structure,
and thus to identify a key mediator for
a certain condition, is the separation of
the signaling network into defined
modules. These modules are connected,
for example, by crosstalk, but may be
analyzed independently from each other
[24]. Even if two pathways operate in
parallel and are interlinked via cross-
talk, mathematical modeling can help
to modularize this network into smaller
entities. As a simplification, the output
of onemodule can then be considered as
the input to the next module (Fig. 2A)
[25].

If a signaling molecule that was
identified as the key mediator under a
certain stimulus or stimulus combi-

nation (Fig. 2B, left and middle panel)
does not correlate with cell fate once
another stimulus is present, then the
second stimulus probably affects a
module downstream or parallel of the
first stimulus (Fig. 2B, right panel). As
mentioned above, the integral of acti-
vated ERK is linked to DNA synthesis
and proliferation, but this is only the
case if downstream or parallel modules
are not perturbed. For instance, in the
study analyzing proliferation in response
to fibronectin, the integral of ERK acti-
vation was no longer proportional to
DNA synthesis if the cells were addition-
ally stimulated with insulin. This dem-
onstrated that the signaling crosstalk
underlying the response synergism did
not converge at ERK activation. Instead,
the signaling molecule IRS-1 was shown
to be activated both by fibronectin and
insulin and was suggested to be a point
of signaling crosstalk [19].

The principle can be further illus-
trated by the following example: growth
factors stimulate proliferation by induc-
ing cyclin D expression via activated
ERK. If cyclin D levels exceed a certain
threshold, leading to hyperphosphory-
lation of the Rb protein, cell fate is com-
mitted to DNA synthesis and cell
division. This point of no return is
referred to as the restriction point of cell
cycle [26]. However, anti-proliferative
signaling through TGF-b triggers the
inhibition of Rb phosphorylation, and
in this way counteracts cell division
[21, 27]. Thus, under these conditions,
it is no longer the ERK module that is
predictive for cell fate, but rather the Rb
module that is further downstream.

Simultaneous stimulations with
different factors can reveal whether a
second signal or perturbation affects
the predictive power of a defined key
mediator. If a second stimulus interferes
at a level upstream of, or parallel to, the
key mediator, it alters the dynamic
behavior of the key mediator. If the cel-
lular response changes in the same
direction, the key mediator is still con-
nected to cell fate (Fig. 2B, middle
panel). Based on this, successive stimu-
lations could answer the question of
whether there is a critical time window
after which the second stimulus no lon-
ger influences cell fate because enough
activated key mediators have been accu-
mulated by this stage to direct the cell
into a specific behavior.

The black box: The connection
between signaling and
cell behavior

Little is known about how a distinct cell
behavior is eventually established after
a signal has been received. Certainly, for
most processes synthesis of new
proteins that fulfill regulatory or struc-
tural function is required. The timely
expression of these proteins can be
ensured by organized transcriptional
networks, commonly referred to as gene
regulatory networks (GRN). In GRNs
the interaction of distinct transcription
factors results in the establishment of
a specific transcriptional state, main-
tained by repression of some genes
and activation of others. For instance,
in developmental biology GRNs are ana-
lyzed to understand the commitment to
a specific cell type, and several motifs
controlling individual subcircuits in
GNRs have been described [28, 29].
Similar to the situation in signal trans-
duction, the analysis of the properties of
different regulatory motifs and how they
interact is facilitated by mathematical
modeling [29, 30]. However, although
our understanding of signaling on the
one side and gene regulation on the
other is increasing, little is known about
the connection of the two. How does
the establishment or stabilization of a
specific state in a GRN depend on the
dynamics of signal transduction? And
finally, how is the coordinated expres-
sion of selected genes transferred into
a specific cellular function? We have
taken the first steps in answering these
questions by identifying the correlative
nature of certain processes, but how
they are mechanistically connected still
remains to be clarified.

Nevertheless, progress is being
made in connecting signaling properties
with transcriptional networks. As men-
tioned before, we speculate that the
integral of an activated key mediator
is connected to the fate of the cell. In
general, this information has to be
decoded by one or several signaling
integrators. Likely candidates for these
integrators are mRNAs and their protein
products that might control distinct sub-
circuits of a GRN and thus execute a
specific cell fate. Ultimately, the signal
integrator might be manifested in the
network dynamics that in turn are dic-
tated by the structure of the GRN. This
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A)

B)

Figure 2. The definition of a key mediator can be dependent on the stimulation condition. A: Example of a network structure that is separated
into different modules and processes information dependent on the signaling input. Lines with open circles: reaction catalysis; lines with
perpendicular bars: reaction inhibition; crossed circle: unspecified source or sink. Layout according to Systems Biology Graphical Notation
[39]. B: Integration of different inputs in different modules for the network shown in (A). In the left panel, a specific ligand leads to the
activation of a key mediator that is the output of module 1. Since there is no perturbation downstream of module 1, the integral of the key
mediator is directly proportional to the concentration of the signal integrator. The cell might decide for cell fate A if, for example, the concen-
tration of the signal integrator exceeds a certain threshold. In the middle panel, the ligand is combined with a perturbation, which might be a
second ligand or a specific inhibitor of a signaling molecule. This combination results in a decreased integral of the key mediator summarizing
module 1, and consequently to the decision for cell fate B. Thus, submodule 1 is still predictive for cell fate. This is not the case for the
situation depicted in the right panel. Here, the costimulation does not alter the integral of the key mediator of module 1. On the other hand,
cell fate is no longer correlated to module 1. Hence, the perturbation takes places downstream of module 1 and cell fate decision is depend-
ent on module 2.
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would imply that the whole network
constitutes the integrator, not single
molecules. Based on recent studies,
we propose two possible mechanisms
that might be responsible for the decod-
ing of the integrated signaling response.
Basically, they interpret two properties
that comprise the integral: the magni-
tude and the duration of a signal (Fig. 3).

First, if the signal results in the
expression of a stable transcription fac-
tor, then the integral is proportional to
the concentration of this transcription
factor. The successive accumulation of a
particular set of transcription factors
could change the balance in a GRN that
has more than one metastable state,
thereby stabilizing one or other of the
possible states [31]. Indeed, the signal-
mediated increase of a transcription fac-
tor was recently linked to a GRN execut-
ing a binary choice between two cell
fates [32]. Specifically, the strength of
B cell receptor (BCR) signaling was con-
nected to the decision of B cells to either
change the immunoglobulin (Ig) reper-
toire or develop further into an anti-
body-secreting plasma cell. High
versus low signal intensities evoked by

different antigen affinities resulted in
high versus low levels of the transcrip-
tion factor IRF4. A combination of
experimental data and mathematical
modeling demonstrated that these dif-
fering levels of IRF4 decide B cell differ-
entiation by controlling the duration of
an obligate transcriptional state promot-
ing Ig diversification: high IRF4 levels
shortened this state and favored fast
transmission to the plasma cell state.
Thus, IRF4 served as a sensor of BCR
signaling strength, translating it into a
binary cell fate decision [32]. The under-
lying networkmotif of this example is an
incoherent feed forward loop, in which
an activated protein X activates both Y
and Z, but Y inhibits Z (Fig. 3A).
Mathematical analyses recently demon-
strated that an incoherent feed forward
loop is able to decode fold changes of
the signal input, which then determines
the amplitude and duration of the
response [33]. Since the integral is the
fold change computed over time, it is
reasonable that it can be decoded by a
comparable network structure.

A second possible mechanism to
compute an accumulating or steady sig-

nal over time could be the constant
requirement for an activated transcrip-
tion factor to stabilize the transcrip-
tional program or to progress through
several stages to finally reach a stable
condition. In this case, the underlying
network motif could be a coherent feed
forward loop, in which the first acti-
vated molecule X not only activates Y,
but also supports its function to induce
Z [34] (Fig. 3B). An example for this feed
forward mechanism is the response to
bone morphogenic protein (BMP) in the
Drosophila embryo. BMP induces the
expression of the transcription factor
Zen via the latent transcription factor
Smad. Only if BMP signaling continues,
can Zen act together with Smad to
induce another gene, Race [35]. By com-
bining experiments and mathematical
modeling, a similar mechanism was
described to discriminate between tran-
sient and sustained ERK activation via
specific c-Fos expression [36]. Another
study in which a coherent feed forward
might play a role specifically identified
the integral of a signal as being crucial
for determining positional identity in
the neural tube [37]. In neural progen-
itor cells, a gradient of the morphogen
Shh controls the expression of a set of
transcription factors, resulting in the
diversification into different transcrip-
tional domains and consequently cell
types [38]. Dessaud et al. [37] showed
that it is actually not merely the concen-
tration of Shh determining cell fate, but
the cumulative level and duration of
Shh signaling, and thus the integral of
the signaling response. The authors pro-
posed a feed forward model in which

Figure 3. Possible mechanisms for decoding the information from the integrated signaling
response. A: Signal magnitude: in the depicted incoherent feed forward loop motif the active
protein X activates both Y and Z, but Y inhibits Z. Dependent on the amount of X and the
activation sensitivity of either Y or Z, the network stabilizes in favor of Y or Z, and thus for cell
fate A or B. Since the integral of the signal determines the amount of X, it can be directly
correlated to cell fate. B: Signal duration: in the coherent feed forward loop, the first activated
molecule X not only activates Y, but also supports its function to induce Z. Dependent on
the temporal availability of X, only Y is activated or additionally Z, which can be translated to
cell fate A or B. Lines with empty circles: reaction catalysis; lines with perpendicular bars:
reaction inhibition; crossed circle: unspecified source or sink. Layout according to Systems
Biology Graphical Notation [39].

A)

B)
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Abbreviations and definitions

Akt: Protein kinase with multiple isoforms that
has pro-survival activity. Synonym for protein kinase B
(PKB).
BCR (B cell receptor): Immunoglobulin that is expressed
as antigen receptor on the cell surface of individual B cell
clones. The recognition of its cognate antigen triggers the
secretion of mature antibodies.
BID (BH3-interacting domain death agonist): The
cleavage product of BID, tBID, enables the release of
cytochrome c from the mitochondria, which triggers
apoptosis.
BMP (bone morphogenic protein): Secreted proteins
belonging to the TGF-b superfamily that play a role in
embryonic development. Can operate as morphogen.
Crosstalk: The concept that signaling proteins of one
pathway influence the proteins of another pathway.
Crosstalk can take place between signaling networks
activated by different receptors as well as between differ-
ent pathways within a receptor network.
Cyclin D: One of the major proteins regulating cell cycle
progression. Associates with cyclin-dependent kinases,
causing their activation. Activated kinases phosphorylate
Rb protein and thereby promote cell cycle progression.
EGF (epidermal growth factor): Growth factor that
stimulates proliferation of various epidermal and epithelial
cells.
Epo (erythropoietin): Major cytokine regulating erythro-
cyte differentiation and themaintenance of a physiological
level of circulating erythrocytes.
ERK (extracellular signal-regulated kinase): Kinase
with multiple isoforms activated by growth factors and
involved in the regulation of cell proliferation. Belongs to
theMAP (mitogen-activated protein) kinases that sequen-
tially activate each other.
Feed forward loop, coherent: Network motif in which a
regulator X regulates Y and Z, and Y also regulates Z. The
direct regulation of Z by X has the same sign as the
indirect regulation via Y.
Feed forward loop, incoherent:Networkmotif in which a
regulator X regulates Y and Z, and Y also regulates Z. The
direct regulation of Z by X has the opposite sign as the
indirect regulation via Y.
GRN (gene regulatory network): A transcriptional net-
work established by the reciprocal regulation of interact-
ing genes.
IFN-g (interferon gamma): Cytokine with antiviral and
immunomodulatory function.
IL (interleukin): Large class of cytokines mainly playing a
role in the immune system.
Insulin: Hormone involved in regulating blood glucose
levels.
Integral of the signaling curve: The area under the
activation curve of a signaling protein, corresponding to
the integral of the activation function versus time.

IRF4 (interferon regulatory factor 4): One of the nine
transcription factors in the IRF family playing a role in
immune cells.
Mathematical modeling: Analysis of biological networks
by mathematical descriptions, such as ordinary differen-
tial equations. After the parameters of the mathematical
models are calibrated with quantitative biological data,
the models are analyzed and employed for simulations
and predictions.
Morphogen: Secreted protein that by its gradual distri-
bution conveys positional information during embryonic
development.
NGF (nerve growth factor): Growth factor involved in the
development and maintenance of the sympathetic and
sensory nervous systems.
Partial least-squares regression analysis: A statistical
strategy to connect a matrix of variables (X) to a matrix of
responses (Y). Used to find the vector in X that explains
the maximum variance in Y in linear regression methods.
PI3-kinase (phosphoinositide 3-kinase): Kinase with
multiple isoforms that consists of two subunits. Is involved
in the regulation of cell growth, metabolism and prolifer-
ation. Phosphorylates phosphoinositide residues of cell
membrane lipids, which subsequently serve as docking
sites for Akt and many other signaling proteins.
Rb (retinoblastoma protein): Cell cycle inhibitor and
tumor suppressor. Functions by inhibiting transcription
factors that are necessary for cell cycle progression. Is
inactivated by hyperphosphorylation (see cyclin D).
Sensitivity analysis: Mathematical analysis to investigate
relative changes of derived systemquantities as a result of
relative infinitesimal changes in parameter values. It
reveals which parameters have a large impact on the
system.
Shh (sonic hedgehog): Secreted protein that plays a role
in the development of the vertebrate central nervous sys-
tem. Can operate as morphogen.
STAT (signal transducer and activator of transcrip-
tion): Latent transcription factors mainly activated by
cytokine receptors. In their phosphorylated form STAT
proteins translocate to the nucleus and directly activate
gene expression.
TGF-a (transforming growth factor alpha): A member
of the EGF family that can activate the EGF receptor.
Initiates cellular proliferation and migration, for example,
in development and wound healing.
TGF-b (transforming growth factor beta): Growth factor
regulating many cellular functions including cell growth,
adhesion, migration, differentiation, and apoptosis.
TNF-a (tumor necrosis factor alpha): Cytokine binding
to specific death receptors. Depending on the context, it
can stimulate apoptosis, proliferation, or induce an inflam-
matory response.
TRAIL (TNF-related apoptosis-inducing ligand):
Cytokine binding to a specific death receptor and thereby
inducing apoptosis.
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early activation of some genes alters the
transcriptional state of the cell. This
change in turn is a pre-condition for
the induction of other genes occurring
only in case of sustained Shh stimu-
lation. Thus, the positional identity of
a cell is determined by a dynamic mech-
anism, combining the ligand gradient
and the state of the transcriptional net-
work in the responding cell [37].

To sum up, a correlation of signaling
dynamics and cell fate response is fre-
quently observed, but how these proc-
esses are mechanistically connected still
remains to be clarified. Nonetheless,
first insights into the regulatory net-
works determining gene expression
downstream of signal transduction pro-
vide some hints on how the dynamics of
signaling and the organized expression
of particular genes might be connected.
Mathematical modeling can contribute
to our understanding of how different
signaling and gene regulatory motifs are
linked.

Conclusions

Cellular information processing is
crucial for the integration of the signals
that cells receive. Growing evidence
supports our hypothesis that infor-
mation is processed fast, with a time-
frame of minutes to hours. This allows
cells to rapidly react to changes in their
environment. The response to these
changes, represented by different cell
fates, is accomplished in hours to days,
and in most cases includes de novo
gene transcription as well as structural
changes within the cell. The combi-
nation of quantitative experimentation
andmathematical modeling has demon-
strated that it is possible to identify key
mediators of signal processing. We pro-
pose that the integrated activation curve
of these key mediators is frequently
correlated with the cell’s response to a
signal. This might be achieved by a
dynamic control of the GRN, resulting
in the orchestrated expression of
proteins that are necessary to execute a
specific cellular behavior. The principle
of key mediators will allow us not only to
predict cell fate decisions before they are
apparent, but also to gain a basic under-
standing about how a cell commits to a
certain cell fate. This knowledge has

direct implications for the rational design
of new therapeutics to combat cancer
and other diseases associated with
deregulated cell fate decisions.
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