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The importance of spatial pattern in ecosystems has
long been recognized. However, incorporating
patchiness into our understanding of forces regulat-
ing ecosystems has proved challenging. We used a
combination of continuously sampling moored sen-
sors, complemented by shipboard sampling, to
measure the temporal variation, abundance and
vertical distribution of four trophic levels in
Hawaii’s near shore pelagic ecosystem. Using an
analysis approach from trophic dynamics, we
found that the frequency and intensity of spatial
aggregations—rather than total biomass—in each
step of a food chain involving phytoplankton, cope-
pods, mesopelagic micronekton and spinner
dolphins (Stenella longirostris) were the most sig-
nificant predictors of variation in adjacent trophic
levels. Patches of organisms had impacts dispropor-
tionate to the biomass of organisms within them.
Our results are in accordance with resource limit-
ation—mediated by patch dynamics—regulating
structure at each trophic step in this ecosystem,
as well as the foraging behaviour of the top preda-
tor. Because of their high degree of heterogeneity,
ecosystem-level effects of patchiness such as this
may be common in many pelagic marine systems.
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1. INTRODUCTION
Understanding the relative roles of the biological and
physical factors that control populations and commu-
nities is a central challenge in ecology. Trophic
interactions, which in many systems determine distri-
butions and abundances of organisms, are regulated by
a combination of factors [1], including resources [2]
and predators [3]. While some researchers have argued
that environmental heterogeneity must be considered
in assessing the relative roles of ecological forces [1,4],
a widespread and fundamental ecosystem characteristic,
patchiness, or the spatial variability in biomass at rela-
tively small scales, has been difficult to incorporate in
studies of these controls. We examined the relationships
among four trophic levels that are found in distinct,
extreme spatial aggregations [5,6] to examine the relative
importance of biomass and patchiness in the regulation
of a pelagic marine food web.
Received 15 March 2012
Accepted 13 April 2012 813
2. MATERIAL AND METHODS
We measured the temporal variation, abundance and vertical distri-
bution of organisms in Hawaii’s near shore pelagic ecosystem from
20 April to 12 May 2009. Ship-based sampling with a downward-
looking acoustics package and a high-resolution profiler instrumented
with optical, acoustical and hydrographic sensors [5,7,8] was con-
ducted close to continuously sampling instruments moored at the
25 m isobath off leeward Oahu over three, 24 h periods, as well as
during four other days and nights dispersed over the study period. A
moored autonomous profiler collected hydrographic and chlorophyll
fluorescence data every half-hour between the bottom and the surface
with less than 1 cm vertical resolution [7]. A calibrated, moored
upward-looking 200, 420, 740 kHz echosounder collected acoustic
backscatter once per second with a vertical resolution of 1 cm.

From the moored acoustic data, large scatterers with intense echoes
at all frequencies were identified as spinner dolphins (Stenella longiros-
tris) [9] and enumerated by echo counting to calculate their
abundance. The degree of dolphin aggregation at night was quantified
using short-term times-series autocorrelation analysis allowing lags of
up to 5 min. The resulting coefficient ranges from zero, representing
dolphins that are randomly distributed, to one representing highly per-
iodic detections and thus highly aggregated dolphins. The 200 kHz
volume backscatter was used to measure the density and vertical distri-
bution of micronekton [8] that S. longirostris specialize in foraging on
[10]. Net tows with an opening/closing 0.5 m diameter, 200 mm
mesh net provided the identity of zooplankton in discrete aggregations.
Differences in species composition in net tows were correlated with the
frequency response in acoustic scattering: aggregations dominated by
copepods had higher scattering at 740 kHz, whereas aggregations
dominated by amphipods had higher scattering at 420 kHz. Acoustic
scattering at 740 kHz was used to describe the vertical distribution
of copepods, the preferred prey for the mesopelagic micronekton
identified using the profiled camera system [8,11], and integrated to
provide an estimate of copepod biomass.

Thin layers—intense, sheet-like aggregations—of plankton were
detected in the moored datasets. Thin layers were identified as features
with vertical scales of less than 2 m with intensities at least 50 per cent
higher than the surrounding water column [12] using half-hour resol-
ution data. For layers of plankton and micronekton, the peak intensity,
layer thickness and mean density were calculated; and for plankton
layers, their frequency of occurrence was calculated for each sampling
day. The relationships between the biomass in each trophic level and
individual layer characteristics were explored using correlation analy-
sis. Each layer characteristic was also used as the dependent variable
for multiple correlation analysis with the layer characteristics and bio-
mass of the next lower trophic level as independent variables. Finally,
all analyses were repeated to relate phytoplankton characteristics
directly to spinner dolphins. Tolerance values for all independent vari-
ables were greater than 0.20 for each model, indicating no significant
effect of multi-collinearity.
3. RESULTS
Thin layers of phytoplankton fluorescence (figure 1)
were found in an average of 5 per cent of vertical profiles
each day (range 0–20%). Thin layers of zooplankton in
the copepod size range were found in an average of 15
per cent of profiles each day (range 7–33%). Plankton
layer abundance was negatively correlated with inte-
grated biomass for both trophic levels (phytoplankton
r2 ¼ 0.22; zooplankton r2 ¼ 0.19). Mesopelagic micro-
nekton, identified with the shipboard profiler cameras
as primarily myctophid fishes, were found in a discrete,
midwater sound-scattering layer [8]. The density of
mesopelagic micronekton within this layer was nega-
tively correlated with the total water-column
abundance of mesopelagic micronekton (r2 ¼ 0.41)
because of concomitant changes in layer thickness.

The strongest single correlations found between
adjacent trophic levels were positive relationships
between aggregation rates of consumers and their
resources (table 1 and figure 2). These relationships
were significantly stronger than the correlations of bio-
mass between adjacent levels. Multiple correlation
analysis showed that only patch characteristics contrib-
uted significantly to prediction of the next trophic
This journal is q 2012 The Royal Society
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Table 1. Correlation coefficients (r2) describing the relationships between adjacent trophic levels in single and multiple
correlations. Beta values indicate how strongly each predictor variable in the multiple correlation influences the dependent

variable shown with ns indicating no significant contribution at p , 0.05 level; only the most strongly predicted dependent
variable (highest r adjusted for the number of variables) is shown for each level.
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Figure 1. An example of the vertical distribution of each step in the food chain in Hawaii’s near shore pelagic ecosystem
measured at 2300 on 4 May 2009 using instruments moored on the 25 m isobath.
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level. While only the single most significant multiple
correlation for each trophic level is shown in table 1,
all possible dependent variables were examined, and
in no case was biomass a significant predictor variable,
even when biomass was the dependent variable.
4. DISCUSSION
In habitats where experimental manipulation of trophic
levels is not possible, positive correlations in the standing
Biol. Lett. (2012)
biomasses of consumers and resources are used as evi-
dence for regulation of the food web by food limitation
[13]. Our results showing positive correlations between
aggregations at adjacent levels in this pelagic food web
support control of organisms at each step by their food,
or a dominance of bottom-up forcing in this ecosystem,
however, only if patchiness is considered. Similar ana-
lyses using the standing biomass of organisms, the
typical approach to examining forcing of trophic relation-
ships, showed that the biomasses of organisms at
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Figure 2. The single strongest relationships between aggregation
characteristics of adjacent steps in the food chain.
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adjacent trophic levels were consistently more weakly
correlated than aggregations of organisms, and in some
cases were negatively correlated (table 1). Multiple corre-
lation analysis showed biomass never became a
significant predictor variable when patch characteristics
were included as predictive variables, even when standing
biomass was the dependent variable.

The abundance of spinner dolphins in the study site
and their aggregation behaviour can be predicted based
on the aggregation characteristics of phytoplankton to
provide an estimate of the total strength of bottom-up
effects because of the consistent positive correlations
observed at each step of the food chain. While
Biol. Lett. (2012)
phytoplankton biomass was negatively correlated with
dolphin abundance as well as aggregation intensity,
and predicted only 34 per cent and 42 per cent of varia-
bility, respectively, the abundance of thin phytoplankton
layers was positively correlated with both the abundance
and aggregation intensity of spinner dolphins, explain-
ing 54 per cent and 57 per cent of their variability,
respectively. Using multiple, easily measured patch
characteristics, predictive capacity was extremely high
relative to studies examining only biomass (72%
abundance; 83% aggregation) [14,15].

We observed that bottom-up effects explained
increasingly more of the variability in consumer aggre-
gations at increasingly higher trophic levels. This
contrasts with previous efforts that suggest that
resource limitation should have the greatest effects at
the bottom of the food chain while control by preda-
tors should have a greater influence nearer the top of
the food chain [13]. The difference might be explained
by different effects of consumers and resources in open
pelagic systems that are fully connected to the sur-
rounding environment from those that can approach
steady-state equilibria, particularly when considering
temporal scales shorter than the reproductive scales
of consumers, as in the short-term study described
here [16]. At short time scales in open systems,
changes in standing stocks of consumers are not pri-
marily the result of changes in productivity, but are
more likely the result of movement of organisms into
and out of the study area. It is likely that the increas-
ingly strong correlations we observed with movement
up the food chain are associated with a parallel increase
in the mobility of organisms [7,9,17], allowing tighter
coupling between consumers and their prey through
larger scale movements to find and better use food
resources. Behavioural responses may also explain
why the strength and frequency of aggregations of
resources rather than their absolute biomass were
observed to be strongly correlated with consumer as
foraging success is often more strongly related to
local prey density than total prey abundance [18,19].

Our data show that aggregations of organisms can
have effects disproportionate to the biomass of organisms
in them, revealing the role patch dynamics can play in
the regulation of processes in a trophic web. In this
system, patchiness increased the relative importance of
resource limitation at all trophic levels. Ecosystem-level
effects of patchiness such as this may be more
common in pelagic marine systems, where both the habi-
tat and the organisms that live in it show great spatial and
temporal heterogeneity over a range of scales [20], and
there is a great potential for movement, both passive
and active, by consumers in relation to resource distri-
bution. Recent evidence shows that heterogeneity of
food is critical to predator survival and recruitment in
the marine environment when food availability is low
[21] and thus particular attention should be paid to
patchiness whenever resource limitation is being investi-
gated. Quantification of the processes that control
organism abundances in marine systems is necessary
for assessing ecosystem resilience, understanding the
ecological impacts of fishing, effective management of
exploited species, and prediction and mitigation of the
impacts of climate change [22]. The finding that
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characteristics of organism distributions can dramatically
modify how trophodynamics structure marine ecosys-
tems improves our ability to predict populations,
communities and the responses of ecosystems to short-
and long-term environmental change.
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