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Host species switches by bacterial pathogens
leading to new endemic infections are impor-
tant evolutionary events that are difficult to
reconstruct over the long term. We investigated
the host switching of Staphylococcus aureus
over a long evolutionary timeframe by develop-
ing Bayesian phylogenetic methods to account
for uncertainty about past host associations
and using estimates of evolutionary rates from
serially sampled whole-genome data. Results
suggest multiple jumps back and forth between
human and bovids with the first switch from
humans to bovids taking place around 5500 BP,
coinciding with the expansion of cattle domesti-
cation throughout the Old World. The first
switch to poultry is estimated at around
275 BP, long after domestication but still pre-
ceding large-scale commercial farming. These
results are consistent with a central role for
anthropogenic change in the emergence of new
endemic diseases.
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1. INTRODUCTION
Staphylococcus aureus is a leading cause of hospital- and
community-associated human infections. It has also
adapted to other hosts, including wild birds and
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livestock, causing substantial losses to the dairy and
poultry industries [1,2]. Genetic analyses have demon-
strated that livestock-associated strains evolved
adaptively following human-to-animal host jumps,
leading to endemic clones that are largely host-
restricted [2–4]. Some of these strains may also act
as zoonoses for human infection [5]. A better under-
standing of these host jumps, and their ecological
context, is necessary in order to design ways to prevent
the emergence of new pathogens.

Here, we examine the long-term evolutionary history
of S. aureus, using a panel of strains that represents the
breadth of the species’ diversity. To deal with the chal-
lenges of these data, we introduce two methodological
innovations. First, to add a temporal scale to our
phylogeny, we estimate rates of substitution from
whole-genome sequences of S. aureus with known dates
of isolation in the recent past [6–8]. We use these esti-
mates to constrain rates at sites least likely to be affected
by weak purifying selection (which can decrease rates
over the longer term [9]), while also allowing for rate vari-
ation across the tree. Second, we adapt a method from
Bayesian phylogeography [10], to infer uncertain associ-
ations with ancestral hosts. Together, our method
estimates topology, substitution rates, divergence dates,
ancestral host states and number of host switches in a
single simultaneous analysis.
2. MATERIAL AND METHODS
To represent the global diversity of S. aureus, we selected 123
genotypes of multilocus sequence type data [11] (electronic
supplementary material, table S1). Human strains comprised
nasal carriage, common epidemic hospital and community-
associated strains, as well as four divergent sequence types (STs)
of clonal complex (CC) 75 [12]. We also include the major
clones specific to bovid hosts (cattle, sheep and goats) and avian
hosts (poultry, reared and wild birds). Despite no formal evidence
of recombination (electronic supplementary material, methods), we
conservatively excluded two genes with unusual patterns of conser-
vation (electronic supplementary material, figure S1), leaving
an alignment of 2265 bp from five genes. Although our data rep-
resent the global diversity of S. aureus, standard tests do not
provide evidence of sequence saturation (electronic supplementary
material, methods).

Bayesian phylogenetic analyses were performed in BEAST v. 1.7.1
[6] using BEAGLE [13]. We used the HKY85 þ G substitution model,
and the uncorrelated lognormal model of changes in substitution rate
[6], and partitioned our alignment by codon position [14].

To infer a temporal scale, we estimated the rate of nucleotide sub-
stitution using published whole-genome data from ST239, sampled
over a 20-year period [7]. A rate estimate obtained from these data
was used to inform a prior applying only to third codon positions.
Such sites are largely synonymous, and so less affected by weak pur-
ifying selection that is effective over longer timescales (see electronic
supplementary material, methods). To reconstruct host switching,
we applied a phylogeographical model [10], replacing geographical
locations with host types (electronic supplementary material,
methods). Each global strain was classified as human, avian or
bovid, and hosts of ancestral strains were inferred jointly with the
other parameters. We did not distinguish between strains isolated
from the bovid genera Bos, Ovis and Capra because they group clo-
sely within the tree and some strains are found in all three genera.
For any given tree in the Markov chain Monte Carlo (MCMC)
sample, the minimum date of the earliest jump from human to live-
stock corresponds to the oldest node with a livestock host state.

For our data, prior information strongly suggests that the ances-
tral host state was human, namely, the pseudogenization in animal
strains of proteins involved in human colonization or pathogenesis
[3,4] and the presence of related outgroup strains in indigenous
human communities [12] and New World monkeys (Staphylococcus
simiae) [15]. Accordingly, we extended published methods to allow
us to constrain the root state in our analyses (electronic supplementary
material, methods).
This journal is q 2012 The Royal Society
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Figure 1. Maximum clade credibility time tree. Node labels are posterior support values more than 80%. CC75 strains are not shown.
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3. RESULTS AND DISCUSSION
Figure 1 shows the maximum clade credibility tree of
our global sample of S. aureus. The four strains from
CC75 form a well-supported outgroup to the other
strains, with an estimated root age of 69 738 BP
(24 678–142 433).

For the livestock-associated strains, figure 1 indi-
cates five human-to-bovid jumps (table 1), which
agrees well with estimates from the complete posterior
sample (median 5.12 jumps; 95% Bayesian credible
interval (BCI): 4.98–7.08), and from reconstructions
using alternative methods implemented in MESQUITE

[16] (electronic supplementary material, methods).
Each of the groups contains Bos, Ovis and Capra
hosts with the exception of CC97 and ST126/694
identified only in cattle (Bos). The bounds on the
ages of the jumps range from 0 to 9000 BP, but all
occurred post-domestication [17,18], suggesting inti-
mate contact between humans and animals as a
principal driver of transmission and subsequent
spread of S. aureus in domesticated animals.
Biol. Lett. (2012)
Incorporating uncertainty in ancient host associations,
and the relative ages of the different jumps, we estimate
the first transmission of S. aureus from human to
bovids at 5512 years ago (BCI: 3656–9007), which
corresponds well to the period of expansion of agri-
culture throughout the Old World—the Neolithic
revolution [17] (figure 2a). The influence of domesti-
cation on human diseases in the agricultural age is
well established [23], but this is the first dating study
to imply its role in the emergence of animal diseases.

We also estimate that two bovid strains have sub-
sequently jumped back into humans (median 2.06;
BCI: 1.98–2.16). The first putative back-jump,
ST25, presumably switched host very recently; ST25
is unique in lacking mecA-mediated resistance to
methicillin but still exhibiting borderline oxacillin
resistance. It has been suggested that the administering
of antibiotics during non-lactating periods as a pro-
phylaxis for mastitis in cattle could have selected for
this borderline resistance phenotype [24]. The other
bovid-to-human jump, involving ST59, occurred
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Figure 2. (a) The estimated date of the first host jump of
Staphylococcus aureus from humans to bovids. Shaded areas
represent the first evidence of independent management of
sheep, goat and taurine cattle herds (10 000–11 000 BP);
morphological responses to domestication (9500–9000 BP)

[17,18]; expansion of bovid herds throughout the Fertile
Crescent (8500–9500 BP) [18,19]; and bovid introduction
to Europe (5000–9000 BP) [17]. (b) First host jump from
humans to avian hosts, with dashed lines representing the
arrival of poultry in America (400 BP) [20]; the expansion

of flocks in North America (140 BP) [21,22]; and the first
factory farms (90 BP) [21].

Table 1. Dates (BP) of the inferred jumps between human
(H), bovid (B) or avian (A) hosts. Dates are median
posterior estimates with Bayesian credible intervals (BCIs)
of the most common recent ancestor of the clade. Large
groups of strain types (ST) are given as clonal complexes

(CC) [2].

direction strains

date of host switch

median 95% BCI

H to B CC97 1832 (879, 3108)

H to B CC133/CC425 3113 (1183, 6113)
H to B CC151/CC130 5429 (3082, 8981)
H to B ST126/694 83 (0, 379)
H to B ST521/688 1134 (192, 2760)
H to A ST385/692 273 (23, 786)

B to H ST59/966/754 456 (62, 1189)
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around 500 BP (table 1). The ST59 clone is a major
epidemic clone in Southeast Asia and many strains
demonstrate mecA-mediated resistance. However, the
date of the host switch predates the introduction of
methicillin and so the resistance phenotype cannot be
due to farm management practices. These instances
demonstrate the benefit of understanding historical
host associations.

In contrast to bovids, the two strain types from poultry
cluster together with approximately 100 per cent prob-
ability (figure 1), and so our data indicate a single
human-to-avian jump that led to the establishment of
an endemic clone (median 1.03; BCI: 0.97–1.21).
We estimate that the first transmission occurred around
274 years ago (BCI: 75–785), well after the domesti-
cation of the modern-day chicken (about 8000 years
ago; figure 2b) [21,25]. The recent age for this host
jump is unexpected given the wide range of domesticated
and wild avian hosts that are infected with these strain
types [4]. This may imply more stringent host species-
dependent barriers for transmission from humans to
birds than to cattle (although our data preclude examin-
ation of very recent host jumps that have not led to
endemic strains, such as the jump of an ST5 strain
around 40 years ago [4]). With current data, we cannot
predict if the initial host was a wild or domesticated
bird, but we speculate that the higher frequency of inter-
actions between humans and domesticated birds may
have provided the opportunities for the initial host
jump. During the period of the inferred jump, poultry
was still farmed by small-holdings [21] but the
poultry industry started to expand considerably about
140 years ago [21,22] presumably contributing to the
dissemination of S. aureus among flocks.
4. SUMMARY
We have employed novel Bayesian methods to investigate
the frequency and timing of S. aureus host switching
events that led to the emergence of global livestock patho-
gens. A correlation of the first human-to-bovid host jump
with the spread of domestication in the Old World is con-
sistent with increased opportunities for human to animal
transmission. However, it is currently unclear whether
our results are general, i.e. whether other pathogens
Biol. Lett. (2012)
associated with both humans and bovids (e.g. Streptococcus
agalactiae) underwent host jumps around the time of the
spread of domestication. This is due to the absence, for
most bacterial pathogens, of datasets that yield reliable
molecular timescales. However, with the increased use
of next-generation sequencing of serially sampled and
ancient data [7,26], this is certain to change in the near
future, and our approach could be used to infer the eco-
logical context of host shifts in a comparative framework.
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research received funding from the European Community’s
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