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Two models, Z Dosage and Dominant W, have
been proposed to explain sex determination in
birds, in which males are characterized by the
presence of two Z chromosomes, and females
are hemizygous with a Z and a W chromosome.
According to the Z Dosage model, high dosage
of a Z-linked gene triggers male development,
whereas the Dominant W model postulates that
a still unknown W-linked gene triggers female
development. Using 33 polymorphic microsatel-
lite markers, we describe a female triploid
Kentish plover Charadrius alexandrinus ident-
ified by characteristic triallelic genotypes at 14
autosomal markers that produced viable diploid
offspring. Chromatogram analysis showed that
the sex chromosome composition of this female
was ZZW. Together with two previously described
ZZW female birds, our results suggest a promi-
nent role for a female determining gene on the
W chromosome. These results imply that avian
sex determination is more dynamic and complex
than currently envisioned.
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1. INTRODUCTION
Birds show striking sexual dimorphism with pronounced
phenotypic differences between males and females. Sex
in birds is determined genetically; males are ZZ and
females are ZW. However, precisely how the phenotypic
sexual dimorphism is initiated, is debated [1–3]. Two
models have been proposed to explain sex determination
in birds [4]. The Z Dosage model postulates that the
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main determinant for sex is located on the Z chromo-
some. This sex determinant interacts with an
autosomal gene and, depending on the ratio between
copies of Z chromosomes and autosomes (Z : A ratio),
the embryo develops as male or female. Z Dosage is
based on the observed ineffective dosage compensation
for Z genes, i.e. their expression is proportional to the
copy number in birds [5,6]. The model is supported
by experimental RNA inhibition of the Z-linked
DMRT1 gene, a major sex determinant in vertebrates
[2]. When DMRT1 was inhibited early in development,
ZZ chicken Gallus gallus embryos subsequently devel-
oped ovaries but no testes. By contrast, the Dominant
W model postulates that the main determinant for
females is located on the W chromosome. For example,
the presence of a gene located on the W chromosome
may antagonistically interact with DMRT1 by altering
methylation of the male hypermethylated region adja-
cent to DMRT1 in chicken [1]. However, such a
‘female gene’ has yet to be described in birds.

Chromosomal aberrations such as aneuploidy can
help to clarify the sex determination mechanism
although they are often already lethal at the embryonic
stage in birds [7]. Triploid chickens with an ZWW gen-
otype are not viable, whereas triploid ZZZ chickens
develop a male phenotype but produce only abnormal
sperm. Triploid ZZW chickens initially develop female
phenotypes but before sexual maturity they develop
male phenotypes [8]. Importantly, these intersexual
chickens fail to produce viable gametes [8].

Here, we report a female putative triploid Kentish
plover Charadrius alexandrinus that reproduced success-
fully in a natural population. We explore the type of its
sex chromosome aneuploidy and discuss the implications
of this case for models of avian sex determination.
2. MATERIAL AND METHODS
The female in question was a regular breeder captured during
incubation in 1997 and 1999 at Tuzla, Turkey (368420 N, 358030 E).
The first clutch in 1997 was predated, but in 1999 the entire clutch
hatched and all family members were sampled for blood. Twenty-
five microlitres of blood were taken from either the brachial vein
(adults) or metatarsal vein (chicks) and stored in Queen’s lysis buffer
[9]. The female and her mate were sexed in the field based on plumage
characteristics and sex-specific pattern of incubation in this species
[10–12]. Molecular sexing using P2/P8 primers to amplify W- and
Z-specific chromohelicase DNA binding protein fragments [13] con-
firmed the phenotypic sexing results of adults and showed that all
three chicks were male. The family was genotyped using 33 microsatel-
lite markers, including two Z-linked and one W-linked locus [14–17].
Genotypes were checked for consistency across two runs. Because no
shorebird genome is yet available we mapped microsatellite locations
to the chicken (WSHUC2) and zebra finch Taeniopygia guttata
(taeGut3.2.4) genome databases following [16].

The three sex-linked markers (two Z-linked and one W-linked)
had low polymorphism and the female was monomorphic at all of
them (electronic supplementary material, S1). Therefore, we per-
formed a peak height ratio analysis to establish composition and
number of sex chromosomes [18]. We amplified products for W-
linked Calex-31 and Z-linked Calex-26 together in a single PCR
with 35 cycles and established the W/Z peak height ratio of the puta-
tive triploid female and 22 females from the same population that
had the same genetic profiles at the sex-linked markers. We then
compared the W/Z peak height ratio of the female in question to
those of the control females.
3. RESULTS
For 17 of the 33 markers, we identified homologues on
nine zebra finch and nine chicken chromosomes (elec-
tronic supplementary material, S1). The female had
This journal is q 2012 The Royal Society
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Figure 1. Peak height ratio of one putative triploid (black

circle) and 22 diploid (open circles) females for Calex-26
(Z-linked) and Calex-31 (W-linked).
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triallelic genotypes at 14 markers and all three
maternal alleles were represented in the offspring at
six markers (electronic supplementary material, S1;
for example, electronic supplementary material, S2).
Eight triallelic markers were mapped to six zebra
finch and eight chicken autosomes. All alleles of the
chicks were assigned to their social parents. Neither
of the chicks nor the male showed triallelic genotypes.
The peak height ratio analysis revealed that the triploid
female differed from the mean peak height ratio of the
22 control females by 4.47 s.d. The W product was
under-represented and reached only 45–66% of the
ratio of the control females, consistent with an ZZW
sex chromosome aneuploidy (figure 1).
4. DISCUSSION
Triploidy is usually lethal at the embryonic stage in
birds [7]. We report a triploid ZZW Kentish plover
that behaved as a female and produced viable diploid
offspring in the wild.

The Z : A ratio is an important feature of the Z
Dosage model [4]. Triploid ZZW chickens that have
an intermediate Z : A ratio of 2 : 3 are sex changers
that start as females but assume phenotypic character-
istics of males before reaching sexual maturity. In
contrast to our plover female these chicken sex chan-
gers do not produce viable gametes [8]. During a
period of 3 years, we observed two reproduction
attempts of this female with the same male. The age
of the female was at least 3 years when it reproduced
successfully and was last seen alive. We consider it unli-
kely that she changed her sex subsequently, long after
onset of sexual maturity and successful reproduction.

The observation of a reproducing ZZW female has
implications for avian sex determination. Despite the
recent support for an important role of DMRT1 in the
sex determination cascade in a bird [2], an effect of a
W-linked gene that triggers femaleness should not be
discarded [3]. This still unknown gene could
Biol. Lett. (2012)
antagonistically interact with DMRT1, for example,
through changes of methylation patterns [1]. In amphi-
bians with a ZW sex determination system, DM-W, a
recently identified truncated paralogue of DMRT1 on
the W chromosome, interacts antagonistically with
DMRT1 and is known to trigger femaleness [19].
DM-W has no known homologue in chickens, although
the current lack of sequence information for the W
chromosome from other birds does not rule out the
presence of a DMRT1 paralogue or other potentially
female-determining genes in other avian lineages.

We suggest that more than one sex determination
mechanism may have evolved in birds and that the cur-
rent description of DMRT1-driven male determination
in birds is incomplete or overly simplistic. In most ver-
tebrate groups, the mechanism of sex determination is
not fully conserved [20]. For example, switches between
environmental and genetic sex determination (ZW or
XY) have occurred frequently during the evolutionary his-
tory of reptiles [21–23]. Previously, two cases of adult
ZZW females were reported in blue-and-yellow macaws
Ara ararauna and great reed warblers Acrocephalus
arundinaceus [24,25], two other non-galliform species.
However, in both previous studies aneuploidy could not
be established for the gonads. The females either did
not have offspring [24] or transmitted only alleles of one
Z chromosome to the offspring [25]. By contrast, we
showed that the triploid plover female transmitted all
three alleles to the offspring for at least six loci. Therefore,
we conclude that her gonads were also triploid.

Observations of ZZW females exclusively in non-galli-
form birds suggest that an alternative sex determination
mechanism may have evolved in this group. This is
further supported by the large interspecific size variation
of bird sex chromosomes [26], and expression differ-
ences of Z-linked genes between galliform and non-
galliform birds [27]. Only recently, for example, a
neosex chromosome was discovered through linkage ana-
lyses that arose from the fusion of the sex chromosomes
with chromosome 4a in the warbler family Sylvidae [28].
Taken together, these reports suggest that avian sex
determination is more complex and dynamic than cur-
rently recognized. We suggest that future studies should
focus not only on chickens but also include a phylogen-
etically broad range of bird species to better understand
the sex determination pathway in birds.
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1 Teranishi, M. et al. 2001 Transcripts of the MHM region
on the chicken Z chromosome accumulate as non-coding

RNA in the nucleus of female cells adjacent to the



Triploid ZZW plover female C. Küpper et al. 789
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