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Muséum National d’Histoire Naturelle, 57 Rue Cuvier,
75231 Paris Cedex 05, France
2Center for Evolutionary Medicine and Informatics, The Biodesign
Institute, Arizona State University, Tempe, AZ 85287-5001, USA
3South Australian Museum, North Terrace, Adelaide 5000,
South Australia, Australia
4Australian Centre for Evolutionary Biology and Biodiversity,
University of Adelaide 5005, South Australia, Australia
5School of Biological Sciences, Flinders University, GPO Box 2100,
Bedford Park, Adelaide, Australia
6Venom Evolution Laboratory, School of Biological Sciences,
University of Queensland, St. Lucia, Queensland, 4072 Australia
7Naturalis Biodiversity Center, Darwinweg 2, 2333CR, Leiden,
The Netherlands
8Centre National de Séquençage, Genoscope, 2 Rue Gaston-Crémieux,
CP5706, 91057 Evry Cedex, France
9Department of Biology, Pennsylvania State University, 208 Mueller
Laboratory, University Park, PA 16802-5301, USA
*Author for correspondence (nvidal@mnhn.fr).

Monitor lizards are emblematic reptiles that are
widely distributed in the Old World. Although
relatively well studied in vertebrate research,
their biogeographic history is still controversial.
We constructed a molecular dataset for 54 angu-
imorph species, including representatives of all
families with detailed sampling of the Varanidae
(38 species). Our results are consistent with an
Asian origin of the Varanidae followed by a disper-
sal to Africa 41 (49–33) Ma, possibly via an Iranian
route. Another major event was the dispersal
of monitors to Australia in the Late Eocene–
Oligocene 32 (39–26) Ma. This divergence estimate
adds to the suggestion that Australia was colonized
by several squamate lineages prior to the collision
of the Australian plate with the Asian plate starting
25 Ma.

Keywords: biogeography; squamates; Varanus;
Cenozoic

1. INTRODUCTION
Anguimorph lizards (203 species) belong to the
Toxicofera clade of squamate reptiles together with
iguanians and snakes [1]. They comprise two major
lineages with different geographical distributions: the
Old World Paleoanguimorpha, and the primarily New
World Neoanguimorpha [2]. The Neoanguimorpha
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includes Anguidae (67 sp.), Anniellidae (two sp.),
Diploglossidae (51 sp.), Helodermatidae (two sp.) and
Xenosauridae (six sp.); while Paleoanguimorpha
includes Shinisauridae (one sp.), Lanthanotidae (one
sp.) and Varanidae (73 sp.) [2,3]. Anguimorphs have a
Laurasian origin [2], but the biogeographic history of
the largest family, the Varanidae, is controversial.

Extant Varanus are distributed in Africa, the Arabian
Peninsula and central Asia (six ‘African’ species);
southern mainland Asia and Malaysian and Indonesian
islands (40 ‘Indo-Asian’ species); and New Guinea,
Solomon Islands and Australia (27 ‘Indo-Australian’
species). The oldest known Varanus is from the Late
Eocene–Early Oligocene of Africa ([4,5], J. C. Rage
2012, personal communication). Three different bio-
geographic scenarios have been proposed for Varanus:
(i) an Asian origin followed by dispersals to Africa
and Australasia in the Cenozoic [6–8], (ii) an African
origin followed by a dispersal to Asia and Australia in
the Cenozoic [5], and (iii) a Gondwanan origin fol-
lowed by vicariant events tied to Jurassic and Early
Cretaceous plate movements [9]. To address these ques-
tions, we infer a timetree of anguimorphs from a
molecular dataset including nuclear and mitochondrial
genes to overcome the inherent limitation of mitochon-
drial chronograms for inferring evolutionary histories.
2. MATERIAL AND METHODS
We constructed a molecular genetic dataset for 54 anguimorph
species including representatives of all families, with detailed
sampling of the Varanidae (38 species). The dataset comprised
three nuclear protein-coding genes (brain-derived neurotrophic
factor: (BDNF), bone morphogenetic protein 2: (BMP2) and neuro-
trophin 3: (NT3); 1914 nuclear gene sites) and two mitochondrial
protein-coding genes (ND1 and ND2; 1995 mtDNA sites) for
55 taxa (the 140 nuclear sequences that were newly determined
have been deposited in GenBank under accession numbers
JQ844905–JQ845044). Phylogenies were built using probabilistic
approaches (maximum-likelihood (ML) and Bayesian inferences).
Dating analyses were performed according to the Bayesian relaxed
molecular clock approach. We used BEAST v. 1.7 [10] with uncor-
related lognormal rate model and Yule speciation prior. A series
of uniform and exponential dating calibration priors were used.
The dates presented in the paper are mean and 95% confidence
interval from the ‘inclusive’ calibration analysis (see electronic
supplementary material for details).
3. RESULTS AND DISCUSSION
The ML and Bayesian trees are identical (figure 1).
The major split between Paleoanguimorpha and
Neoanguimorpha is retrieved here. Within Neoangui-
morpha, the following successive branching order is
supported: Helodermatidae, Xenosauridae, Anniellidae,
Diploglossidae and Anguidae, a result in accordance
with Wiens et al. [11]. The two Anguidae subfamilies,
Anguinae and Gerrhonotinae, are each found to be
monophyletic as in Macey et al. [12]. Within Paleoangui-
morpha, Shinisauridae and Lanthanotidae are successive
sister lineages to the Varanidae.

Within Varanidae, the traditionally recognized
groups are recovered: an African ‘niloticus group’ that
is sister to the Indo-Asian and the Indo-Australian
groups. Their relationships are strongly supported
with one exception: the clustering of the ‘salvator
group’ with the Indo-Australian group (ML bootstrap
proportion (BP): 58%, Bayesian posterior probability
(PP): 66%). Within the Indo-Australian group, four
major groups are found: the ‘varius group’ which
This journal is q 2012 The Royal Society
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Figure 1. A BEAST timetree of anguimorph lizards based on analysis of DNA sequences from three nuclear protein-coding
genes and two mitochondrial protein-coding genes. Inferred biogeographic events are indicated at nodes on the timetree.
Nodes with black circles are supported by PP .95% and ML BP .70%. Nodes with asterisks are calibrating nodes. Labels
on timescale are J, Jurassic; K, Cretaceous; Pg, Paleogene; Ng, Neogene.
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clusters with the ‘gouldii group’ and the ‘acanthurus
group’ which clusters with the ‘tristis group’. These
relationships within Varanus are congruent with studies
based on mitochondrial data only [6,13–16]. It is inter-
esting to note that independent evidence derived from
genital morphological characters supports several mol-
ecular nodes both at the interfamilial (Shinisauridae/
Xenosauridae) and intrageneric (Varanus) level [17].

The timetree shows that the divergence between the
Paleoanguimorpha and the Neoanguimorpha happened
in the Early Cretaceous, 121 (138–107) Ma, possibly
reflecting a Laurasian vicariant event. A striking result
is the presence of four relict anguimorph lineages
dating back to the Cretaceous between 133 and 69
Myr ago: the Shinisauridae and the Lanthanotidae
in the Old World and the Helodermatidae and the
Xenosauridae in the New World. The remaining angu-
imorph divergences have happened much later, in
the Cenozoic. Among Anguidae, the split between the
Anguinae that originated in the Old World and
Biol. Lett. (2012)
the American Gerrhonotinae is dated at 41 (51–
32) Ma, which corresponds to the formation of the
North Atlantic Ocean, a hypothesis already proposed
by Macey et al. [12].

As their two successive outgroups, the Lanthanoti-
dae and the Shinisauridae, are Asian, we infer an
Asian origin of the Varanidae (and Varanus) followed
by a dispersal to Africa 41 (49–33) Ma, probably via
an Iranian route that was the filtering precursor of
the definitive connection between Eurasia and Africa
[18]. The lack of monitor lizards in Madagascar adds
biogeographical support to this relatively recent immi-
gration to Africa. Moreover, this time estimate is very
similar to the one obtained by Portik & Papenfuss
[19], who used ND2 and RAG1, and dated the split
between African and Asian Varanus at 40 Ma. We
therefore refute the Gondwanan vicariant hypothesis
proposed by Schulte et al. [9], and agree with the Ceno-
zoic dispersal hypothesis of Hugall & Lee [20], Sweet &
Pianka [7] and Amer & Kumazawa [8]. Our time
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estimates are younger than those obtained in the latter
study based on mitochondrial genes only, which pro-
posed dispersal to Africa between 60 and 47 Myr
ago. In any case, an Asian origin for varanid monitor
lizards implies that all of the lineages older than the
extant dispersal to Africa must have gone extinct.

Another major event is the dispersal of monitors
to Australia in the Late Eocene–Oligocene 32
(39–26) Ma. These divergence estimates are similar to
those obtained for blindsnakes, pythons, agamid lizards
and the gekkonid lizard Gehyra [20–23], and suggest
that Australia was colonized by these groups prior to
the collision of the Australian plate with the Asian plate
which started 25 Ma [24].
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