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Abstract
To date, proteomic analyses on gastrointestinal cancer tissue samples have been performed using
surgical specimens only, which are obtained after a diagnosis is made. To determine if a proteomic
signature obtained from endoscopic biopsy samples could be found to assist with diagnosis, frozen
endoscopic biopsy samples collected from 63 gastric cancer patients and 43 healthy volunteers
were analyzed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. A
statistical classification model was developed to distinguish tumor from normal tissues using half
the samples and validated with the other half. A protein profile was discovered consisting of 73
signals that could classify 32 cancer and 22 normal samples in the validation set with high
predictive values (positive and negative predictive values for cancer, 96.8% and 91.3%;
sensitivity, 93.8%; specificity, 95.5%). Signals overexpressed in tumors were identified as α-
defensin-1, α-defensin-2, calgranulin A, and calgranulin B. A protein profile was also found to
distinguish pathologic stage Ia (pT1N0M0) samples (n = 10) from more advanced stage (Ib or
higher) tumors (n = 48). Thus, protein profiles obtained from endoscopic biopsy samples may be
useful in assisting with the diagnosis of gastric cancer and, possibly, in identifying early stage
disease.
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Introduction
Gastric cancer is the second most common cause of cancer death worldwide.1 Yet, reliable
biomarkers for the diagnosis of gastric cancer do not exist.2–4 Currently available
serological tumor markers, such as carcinoembryonic antigen (CEA) or carbohydrate
antigen 19–9 (CA19–9), are not sensitive and specific enough for the early detection of
gastric cancer.2 Importantly, precancerous lesions are often difficult to differentiate from
gastric carcinomas in biopsy samples by conventional histopathologic analysis. In fact,
experienced pathologists often disagree in distinguishing invasive carcinoma from high-
grade dysplasia in gastroscopic biopsy specimens.5

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been
demonstrated to be useful for direct molecular profiling of common solid tumors.6–10 In this
approach, thin sections of frozen tissues are obtained from surgical resections or biopsies
and mass spectra are obtained from discrete locations on the tissue. The resulting spectra are
composed primarily of singly charged ions of proteins present in the tissue at the locations
sampled. For example, in a study of human glioma samples, protein profiles were found to
accurately classify tumor from nontumor tissue and subclassify tumor grades.9 A profile
consisting of 24 unique signals was also found to be an independent classifier of survival,
separating patients into a short-term survival group (mean survival <15 months) and a long-
term survival group (mean survival >90 months), even after correcting for other
confounding factors (tumor grade, patient age, prior history of radiation, etc.). These
promising results prompted us to test the feasibility of using direct tissue MALDI MS to
define molecular signatures in gastric cancer.

To date, most of the proteomic analyses on gastric cancer tissue samples have been
performed using surgically resected tissue.11–14 Two dimensional (2D)-gel electrophoresis
experiments have identified potential biomarkers by comparing tumor tissues and adjacent
noncancerous mucosa.11,12 Other proteomic technologies, such as surface-enhanced laser
desorption and ionization (SELDI),13 have been applied to gastric cancer tissue samples, but
only to surgical tissue samples. Deininger et al. reported a MALDI imaging study on a small
number of surgical gastric cancer tissue samples, suggesting its utility for biomarker
discovery.14 These prior proteomic studies on gastric cancer, however, have several
limitations. First, in prior studies, only surgically resected tissue samples were evaluated and
not endoscopic biopsy samples, which are of great clinical relevance for developing
diagnostic profiles. Second, the sample size was inadequate to test the classification
performance of any detected proteomic profiles in an independent set of samples. This is
critical to assess the potential clinical utility of any obtained molecular panel. Finally, in all
cases, adjacent nontumor tissue was used as the control as opposed to true cancer-free tissue.
It has been demonstrated that, even in histologically normal-appearing tissue adjacent to
tumor tissue, molecular changes may be occurring related to tumor proximity.15 True
cancer-free normal samples, obtained from endoscopic biopsy, are better suited for
comparative studies.

We, therefore, performed a prospective clinical study to evaluate the feasibility of using
direct tissue MALDI MS analysis on endoscopic biopsy samples for gastric cancer. Due to
the high specificity with which matrix could be placed on the tissue sections, tumor-rich
areas >200 μm could be specifically targeted for analysis. Thus, we found that the histology-
directed MALDI MS approach could generate relevant proteomic information from most of
those biopsy samples that contained small tumor-rich areas, owing to its high sensitivity.
After statistical analysis, the resulting protein profiles were robust enough to accurately
classify tumor from normal tissue, as well as distinguish early stage from more advanced
stage cancer.
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Materials and Methods
Collecting and Processing Clinical Material and Patient Information

Tissues were obtained, with informed consent and institutional review board approval, from
patients and volunteers undergoing endoscopic biopsy at National Cancer Center in Korea
from 2005 to 2008. Samples were collected using biopsy forceps at the time of diagnostic
gastroscopy, flash frozen in liquid nitrogen, and stored at −80 °C until analysis. Samples
were prepared for MALDI analysis as described previously.16 Briefly, thin (12 μm) sections
were obtained from the frozen tissues with a cryostat (Leica CM 3050S, Leica Microsystems
Inc., Bannockburn, IL). Two serial sections were obtained from each tissue. One section was
affixed to a standard glass slide, stained with hematoxylin and eosin (H&E), and an optical
image was acquired via a microscope attached to a digital camera. The other section was
thaw-mounted onto a gold-coated stainless steel MALDI plate and washed with graded
ethanol solutions (70, 90, 95% ethanol for 30 s each) for subsequent mass spectral analysis.

The samples were processed as described11 for histology-directed protein profiling (Figure
1). Briefly, the optical image of the H&E stained serial section was evaluated by a
pathologist, who digitally marked the picture at discrete locations with 200 μm diameter
circles. These circles were intended to cover areas of the tissue enriched with at least 75% of
a particular cell type, that is, normal epithelial cells or tumor cells. The image of the H&E
section was then overlaid with an image of the serial ethanol fixed section in Photoshop
(Adobe Systems Inc., San Jose, CA) to align features of the two serial sections. Distinct x,y-
coordinates were obtained from each spot and imported into a robotic device for automated
matrix deposition.

The robotic device used in this study is a prototype acoustic reagent multispotter (ARM;
LabCyte, Sunnyvale, CA) that uses focused acoustic energy to eject matrix droplets onto a
target.17 Sinapinic acid was used as the MALDI matrix and prepared as a 20 mg/mL
solution in 50:50 acetonitrile: 0.1% trifluoroacetic acid (TFA). Matrix was deposited in
cycles of 13 drops/spot, dispensed at 10 Hz at each designated coordinate. A total of 6
cycles were found to provide optimal analyte extraction and matrix crystals. Thus, a total
volume of ~9 nL matrix was deposited per spot, resulting in dried crystal spots of ~200 μm
diameter.

Mass spectra were acquired using an Autoflex II (Bruker Daltonics, Billerica, MA) time-of-
flight mass spectrometer equipped with a SmartBeam laser (Nd:YAG, 355 nm) and run
using a linear-mode acquisition method optimized for 2–40 kDa. Data was acquired in an
automated fashion from each discrete matrix spot, with a total of 384 laser shots acquired
via random walk over the entire spot for each mass spectrum.

Data Processing and Statistical Analysis
All mass spectra were converted into text files and imported into ProTS Data (Biodesix,
Broomfield, CO) for baseline correction, normalization by total ion current, and
realignment/recalibration of individual spectra. ProTS software further binned the processed
spectra into 236 bins (features) that were used for statistical evaluation of the samples.
Binned data was log2-transformed, median normalized, and subjected to statistical analysis
using BRB-ArrayTools (NCI, version 3.6).18 A principal component analysis (PCA) plot
was generated using multidimensional scaling analysis of BRB-ArrayTools, which
graphically represents Euclidean distances among samples without forcing the samples into
specific clusters. The three primary principal components were used as the axes for the 3-
dimensional scaling representation.
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Class comparison and class prediction analyses were also performed using BRB-
ArrayTools. The class comparison analysis computes a Student t-test for each peak and lists
peaks differentially expressed among the classes at the statistical significance level selected
(typically, a feature selection P cutoff of 0.01). Then, it performs random permutations of
the class labels (diffuse vs intestinal type, for example). For each random permutation, all of
the t-tests are recomputed for each peak. The class comparison tool computes the proportion
of the random permutations that gave as many peaks significant at the selected level of
significance (typically, P = 0.01) as were found by comparing the true class labels. Protein
profiles of the classes were considered different if this probability (designated as
Permutation P value) was calculated to be less than 0.05.

For diagnosing cancer, the class prediction was performed using an option of developing the
classifiers over a grid of significance levels for peak selection. The 0.632+ bootstrap cross-
validated misclassification rate was computed for each significance level in the grid and for
all classifier functions (Compound Covariate Predictor, Diagonal Linear Discriminant
Analysis, Nearest Neighbor Predictor, Nearest Centroid Predictor, and Support Vector
Machine Predictor) in the training set. A classifier with the smallest average cross-validated
misclassification rate in the training set was chosen to predict which of 2 classes (cancer vs
normal) each sample in the validation set belongs to. For early stage disease identification,
the same class prediction was performed using a feature selection P < 0.01 and including all
samples as a training set.

Protein Identification
To obtain a sufficient amount of protein for identification, a surgically removed gastric
cancer specimen (not used in the protein profiling analysis) was used for peak identification.
Protein was extracted from tumor and adjacent normal tissue of this specimen using
hypotonic saline, and fractionated by high-performance liquid chromatography (HPLC).
Aliquots of HPLC fractions were analyzed by MALDI-Time of Flight (TOF) MS using
sinapinic acid as matrix. Fractions of interest were selected for further identification if they
contained an m/z value that matched one of the discriminatory m/z values found from the
statistical analysis. Lyophilized aliquots of some of the fractions were additionally
fractionated by reverse phase HPLC. For some fractions, MS/MS was performed directly on
the ion of interest using a MALDI TOF/TOF instrument. Aliquots of other fractions were
analyzed using an automated protein sequencer. To identify more proteins, we also
performed LC–MS/MS analyses of the HPLC fractions (treated with trypsin) and then
compared the theoretical masses of intact proteins identified in particular fractions with
MALDI-TOF MS data of these fractions (Supporting Information for details).

Results
Data Acquisition

This study is the result of direct tissue MALDI analysis for 106 tissue samples that were
collected from 63 gastric cancer patients and 43 healthy volunteers. Thirty-one additional
cancer patient samples (33%) had to be excluded from this analysis, because of inadequate
tumor-rich area in the biopsy samples (n = 27), poor matrix spot placement (n = 2), or poor
spectral quality (n = 2). Table 1 summarizes the clinical characteristics of 63 gastric cancer
patients whose samples are analyzed in this study. The majority (n = 35; 55.5%) of patients
had metastatic disease, most of whom received fluorouracil-based chemotherapy after
biopsy. There were 10 patients at pathologic stage Ia (pT1N0M0) (15.9%). The median age
of healthy volunteers was 47 years (interquantile range, 44–54) with 23 (53.5%) males.
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Mass spectra were acquired on individual spots for each tissue section, and these spectra
were averaged together after preprocessing to create one average spectrum per patient. The
average spectra are composed of 2–19 individual measurements for cancer samples (with a
median value of 7), and 2–17 individual measurements for normal samples (with a median
value of 8). The individual measurements are averaged to minimize intrasample variability.
An example of the average spectra is shown in Figure 2, for one representative cancer and
normal sample. As shown, there are numerous signals in the m/z range 2000–20 000.
Indeed, postspectral processing identified 236 features across the entire mass range for all of
the samples studied. The expanded mass view from m/z 3000–5500 highlights some of the
more dramatic differences observed between the groups.

For statistical analysis, the spectra were exported into bins, with each bin designed to
contain one peak. In practice, the bins sometimes contained shoulders where peaks were not
baseline-resolved or where the mass alignment was poor. Nonetheless, the integrated areas
of the bins were used for further statistical evaluation of the samples.

Cancer Patients versus Healthy Volunteers
A PCA plot graphically demonstrates that cancer patient samples and volunteer samples are
separately clustered in an unsupervised analysis (Figure 3). When a class comparison
analysis was performed using BRB-ArrayTools, the proportion of the random permutations
that gave as many significant peaks at a feature selection of P < 0.01 as were found by
comparing the true class labels (cancer vs normal) was less than 0.001, strongly suggesting
that the cancer and normal tissue samples are significantly different in their protein profiles.
Class prediction analysis was subsequently performed after dividing the entire set of
samples into two groups based upon the chronological order of patient enrollment. The first
half of the samples (31 cancer and 21 normal samples) was used as a training set to develop
predictors for cancer diagnosis. In the training set, Support Vector Machine (SVM) classifier
composed of 73 signals significantly different between the classes at the 0.01 significance
level (Table 2) performed best among all of the tested classifiers, with the lowest average
cross-validated misclassification rate (3.4%). This SVM predictor was then applied to
predict the class of 32 cancer and 22 normal samples in the validation set (the latter half). In
this validation set of 54 samples, positive and negative predictive values for cancer were
96.8% and 91.3%, respectively (sensitivity, 93.8%; specificity, 95.5%).

Identification of Early Stage Disease
Next, we evaluated whether protein profiles could distinguish biologic features of the gastric
cancer. We were interested in the identification of the American Joint Committee on Cancer
(AJCC) pathologic stage Ia (pT1N0M0) lesions, which are potential candidates for
nonsurgical management. According to the class comparison analysis, AJCC stage Ia
samples (pT1N0M0; n = 10) were significantly different from more advanced stage tumors
(AJCC stage Ib or higher; n = 48) in their protein profiles. A total of 17 peaks were
significantly different between these 2 groups using the Student t-test performed at a feature
selection of P < 0.01 (Table 3). The probability of getting at least 17 significant peaks by
chance (at the p = 0.01 level) if there are no real differences between the classes was 0.014.
Given that this permutation P value of a global test is less than 0.05, this suggests that stage
Ia exhibits a different protein profile from more advanced stage samples. The permutations
P value was consistently less than 0.05, across P cutoffs for feature selection ranging from
0.001 to 0.05.

We also performed a class prediction analysis to calculate permutation P values for a cross-
validated misclassification rate. For this analysis, all 58 samples were used in the training
set, since the small number of stage Ia samples did not allow us to withhold some of them in
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the model building process as a separate set. When we performed the 0.632+ bootstrap
cross-validation at feature selection P < 0.01, the average cross-validated misclassification
rate ranged from 15 to 23% across several algorithms (Table 4). The probabilities of getting
these small misclassification rates in random data sets were estimated to be less than 0.05
with the majority of classifiers tested (Table 4). These further suggest that early (Ia) stage
gastric cancer has a distinct protein profile from more advanced stage lesions.

Histopathologic Classification and Outcome Prediction
Class comparison was performed between Lauren intestinal (n = 25) and diffuse types (n =
38) of gastric cancer, which represent two major histopathologic subtypes of gastric cancer.
At a feature selection P < 0.01, 8 peaks were significantly different between these 2 classes
(Table 5). The probability of getting at least 8 peaks significant by chance (at feature
selection P < 0.01), if there are no real differences between two classes, was estimated to be
0.038, suggesting that two histological subtypes are different in protein profile.

Finally, we asked if protein profiles could distinguish metastatic gastric cancer patients who
responded to chemotherapy (partial response according to Response Evaluation Criteria in
Solid Tumors (RECIST); n = 12) from those who did not (stable or progressive disease; n =
15), although the implication of such an analysis is limited given the heterogeneity of
chemotherapy regimens. There was no difference in protein profile between good
responders and poor responders to chemotherapy (permutation P value = 0.70).

Protein Identification
Discriminatory protein identification was performed using a gastric cancer surgical tissue as
described in Materials and Methods. Several signals overexpressed in the tumors include α-
defensin-1 (m/z = 3439), α-defensin-2 (m/z = 3368), calgranulin A (m/z = 10 840), and two
forms of calgranulin B (m/z = 13 158 and 12 694) (Figure 4, Table 6, and Supplementary
Table 1, Supporting Information). Signals underexpressed in tumors were identified as
lysozyme C (m/z = 14 697), C-terminal fragment (res 149–175) of anterior gradient protein
2 homologue (m/z = 2968), and N-terminal fragment (res 1–70) of histone H2B (m/z =
7767).

Discussion
This study is the first work demonstrating that a protein profile obtained from endoscopic
biopsy samples via MALDI mass spectrometry can differentiate cancerous gastroscopic
samples from normal samples. This technology is capable of generating discriminatory
protein profiles from a single section of an endoscopic biopsy piece, suggesting its potential
clinical applicability. Notably, with 106 total samples analyzed, this study has considerably
more statistical power compared to previous proteomic studies performed using smaller
numbers of gastrointestinal tract cancer tissue samples.7–10 Gastroscopic biopsy tissue
samples, especially in diffuse type gastric cancer patients, often contain only small nests of
scattered tumor cells, posing a technical challenge for molecular research. Using direct
tissue MALDI MS, we could successfully profile almost all the samples that were collected
from gastric cancer patients in an unbiased way, except for samples containing practically
no tumor cells. Due to the small amount of tissue required for MALDI analysis compared to
conventional proteomics technologies, therefore, this approach may provide a clear
advantage for initial diagnosis and management of gastrointestinal tract cancer patients.
Given its high predictive values, the protein profile identified by this study could also
possibly differentiate gastric carcinoma from premalignant lesions in biopsy samples, which
needs to be evaluated in future studies specifically designed to address this question.
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Signals subsequently identified as alpha-defensin-1 and alpha-defensin-2 were included in
the best SVM predictor developed in our training set samples. α-Defensin is expressed in
neutrophils and also in the mucosal epithelia of intestine, respiratory tract, and urinary tract.
It is found to be expressed in a variety of tumors13,19and proposed as a tumor
biomarker.13,19,20 Mohri et al. reported that α-defensin is one of most significantly elevated
SELDI peaks in 21 gastric cancer tissue extract samples, compared with paired adjacent
normal mucosa samples.13 These investigators also demonstrated that cancer cells in 5
gastric cancer tissue samples are strongly positive for α-defensin by immunohistochemistry,
while matched adjacent normal tissues are negative.13 Recently, gastric fluid α-defensins
have also been reported to be upregulated in gastric cancer patients compared to patients
with benign disease.21 While calgranulins A/B (S100A8/9) are pro-apoptotic molecules
produced by immune cells, S100A8/A9 expression in cancer cells has also been associated
with tumor development, cancer invasion, or metastasis.22 S100A8/9 are required for
malignant progression including invasion, migration, and proteinase expression in SNU484
human gastric cancer cells.23

Interestingly, protein profiles obtained from early stage (pT1N0M0) gastric cancer samples
were significantly different from those obtained from more advanced stage tumors. Patients
with gastric cancers without lymph node metastasis (pT1N0M0) have an excellent prognosis
in gastric cancer, but the prognosis worsens once the tumor invades the proper muscle layer
or involves lymph nodes.24,25 Currently, assessment of nodal involvement of T1 lesions
primarily depends upon endoscopic ultrasonography or computed tomography, but none of
these imaging modalities can reliably confirm or exclude the presence of lymph node
metastases in gastric cancer patients.26 Prediction of a stage Ia (pT1N0M0) gastric cancer is
clinically important, since this lesion is a potential candidate for endoscopic treatment.27

Although this study was not designed to directly compare pT1N0M0 and pT1N1M0 lesions,
we have shown that pT1N0M0 gastric cancers likely have a distinct protein profile
compared to more advanced stage tumor samples. Thus, direct tissue MALDI MS may be
potentially useful in identifying early stage disease, thereby helping guide disease
management. This exciting possibility needs to be validated by more focused studies
containing a larger number of stage Ia lesions in the future.

In summary, this study demonstrates that direct tissue MALDI MS analysis on endoscopic
biopsy samples may be useful in assisting with the diagnosis of gastric cancer, and, possibly,
in identifying early stage disease. The protein profile identified in this study demonstrated a
high predictive power for cancer detection. Importantly, the amount of tissue required for
these analyses is much smaller than any other available method using molecular profiling
techniques, such as array-based gene expression profiling. Therefore, we conclude that
direct tissue MALDI MS is a feasible approach to aid in the evaluation of gastric cancer
lesions by endoscopy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
General procedure for preparing sections for MALDI analysis. (A) Optical image of an
H&E section from a cancer endoscopic biopsy tissue cut serially to the section shown in (C).
The optical section was evaluated by a pathologist, and marked at discrete locations
(enriched in tumor cells) with 200 μm diameter circles. (C) Optical image of the serial
section with matrix applied at the locations marked in (A). A total of ~9 nL sinapinic acid
was applied at each spot, resulting in dried matrix spots of ~200 μm diameter. (B) and (D)
are magnified areas of the H&E stained section and MALDI section, respectively.
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Figure 2.
Representative average mass spectra from one normal patient (black) and one cancer patient
(red). The area from m/z 3000–5500 has been expanded to highlight differences. The normal
spectrum is an average of 8 independent measurements; the cancer spectrum is an average of
9 independent measurements.
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Figure 3.
Principal component analysis plot for 63 gastric cancer patient samples (red) and 43 samples
from healthy volunteers (blue), which graphically represents Euclidean distances among
samples. Each sphere represents a single sample, and samples whose protein expression
profiles are very similar are shown close together.
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Figure 4.
Intensity profile for identified discriminatory signals among 63 cancer patient samples (red)
and 43 samples from healthy volunteers (black). The false discovery rate (FDR) was
estimated as the proportion of the signal with univariate P values less than or equal to the P
value of each identified signal, using the method of Benjami and Hochberg.28
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Table 1

Clinical Characteristics of Patients
a

characteristics no patients (%)

Age (years)

 Median 62

 Range 29–82

Sex-no (%)

 Male 36 (57.1%)

 Female 27 (42.9%)

ECOG PS-no (%)

 0–1 54 (85.7%)

 2 6 (9.5%)

 3 3 (4.8%)

Histological type (Lauren)-no (%)

 Intestinal 25 (39.7%)

 Diffuse 38 (60.3%)

Location of primary lesion-no (%)

 Upper 1/3 15 (23.8%)

 Middle 1/3 12 (19%)

 Lower 1/3 28 (44.4%)

 Entire stomach 8 (12.7%)

 Clinical stage (AJCC)

 Ia 10 (15.9%)

 Ib 7 (11.1%)

 II 6 (9.5%)

 IIIa 3 (4.8%)

 IIIb 2 (3.2%)

 IV 35 (55.5%)

Pathologic stage (AJCC)

 Ia 10 (15.9%)

 Ib 7 (11.1%)

 II 4 (6.3%)

 IIIa 1 (1.6%)

 IIIb 1 (1.6%)

 IV 35 (55.5%)

 Unknown 5 (7.9%)

Primary treatment

 Surgical resection 23 (36.5%)

 Chemotherapy 32 (50.8%)

 Refusal to treat 8 (12.7%)

Number of metastatic sites

 0 28 (44.4%)
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characteristics no patients (%)

 1 18 (28.6%)

 2 11 (17.5%)

 3 4 (6.3%)

 4 2 (3.2%)

a
ECOG PS, Eastern Cooperative Oncology Group Performance Status. AJCC, American Joint Committee on Cancer staging system (6th edition).
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Table 4

Proportion of the Random Permutations that Gave as Small 0.632+ Bootstrap Cross-Validated
Misclassification Rate as Could Be Obtained with the True Class Labels (Stage Ia vs More Advanced (Ib-IV)
Stage Tumors)

classifier average cross-validated misclassification rate permutation P value

Compound Covariate Predictor 0.23 0.021

Diagonal Linear Discriminant Analysis 0.23 0.034

1-Nearest Neighbor Predictor 0.15 0.003

3-Nearest Neighbor Predictor 0.15 0.006

Nearest Centroid Predictor 0.21 0.009

Support Vector Machine Predictor 0.20 0.114
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Table 6

Protein Identification

m/z accession name

Overexpressed in cancer

3368 P59665 Alpha-defensin-2

3439 P59665 Alpha- defensin-1

10 840 P05109 S100-A8, Calgranulin A

13 158 P06702 S100-A9, Calgranulin B

12 694 P06702 S100-A9, Calgranulin B, short form

Underexpressed in cancer

2968 O95994 Anterior gradient protein 2 homologue, C-terminal (res 150–175)

2830 O95994 Anterior gradient protein 2 homologue, C-terminal (res 151–175)

14 697 P61626 Lysozyme C
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