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Social networks predict patch discovery
in a wild population of songbirds
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Animals use social information in a wide variety of contexts. Its extensive use by individuals to locate food

patches has been documented in a number of species, and various mechanisms of discovery have been

identified. However, less is known about whether individuals differ in their access to, and use of, social

information to find food. We measured the social network of a wild population of three sympatric tit

species (family Paridae) and then recorded individual discovery of novel food patches. By using recently

developed methods for network-based diffusion analysis, we show that order of arrival at new food

patches was predicted by social associations. Models based only on group searching did not explain

this relationship. Furthermore, network position was correlated with likelihood of patch discovery, with

central individuals more likely to locate and use novel foraging patches than those with limited social con-

nections. These results demonstrate the utility of social network analysis as a method to investigate social

information use, and suggest that the greater probability of receiving social information about new

foraging patches confers a benefit on more socially connected individuals.

Keywords: social network theory; social information; Paridae; group foraging; scrounging;

local enhancement
1. INTRODUCTION
For many animals, food can be difficult to find, with

locally abundant but ephemeral foraging sites scattered

patchily across the landscape. In these cases, foraging

individuals face a challenge they can attempt to overcome

through a variety of strategies. Personal information and

experience may be used to optimize search patterns, e.g.

by re-checking previously successful sites using ‘trap-

lining behaviour’ [1]. Alternatively, individuals may use

search strategies similar to the Lévy walk model, where

clustered searching is alternated with long directional

travel [2]. Individuals may also be able to maximize effi-

ciency by searching in groups, particularly if they differ

in their personal experience [3–5]. Finally, rather than

depending on optimized searching or personal experi-

ence, foragers may use social information to locate food.

Social information is a broad concept, encompassing all

information resulting from the behaviour of others,

whether related to activities as diverse as habitat selection,

predator avoidance or mate choice [6–8]. In the context of

finding patchy food resources, social information refers to

information used by naive individuals to locate resources

that they have obtained via the behaviour of successful

patch finders [9]. Three such behaviours are generally

accepted to occur: recruitment at roosts or colonies,

active recruitment to food and local enhancement. The

information centre hypothesis proposes that individuals

transmit information about food patches when they leave

or return to communal roost sites [10]. More commonly,
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successful individuals may actively recruit others at the

foraging site itself. Here, the signaller pays a cost in produ-

cing the signal and increasing competition, but may gain

greater benefits from reducing predation risk [11]. Finally,

and perhaps most simply, individuals may be attracted to

inadvertent cues produced by feeding conspecifics or

heterospecifics. Such coarse-level local enhancement has

been shown in a wide range of taxa, including invertebra-

tes, fish, mammals and birds [9,12,13], and is thought

to be the mechanism by which most animals use social

information when searching for food sites [12,14].

While it is generally accepted that many species can

use social information of some kind to find food patches,

little consideration has been given thus far to between-

individual variation in access to information, or that

information may spread non-randomly between dyads.

Assumptions of free mixing and indiscriminate sharing of

information in populations are unrealistic when consider-

ing the social processes connected with the spread of

information [15,16]; social interactions rarely occur com-

pletely at random, and individuals often differ in their

number and strength of connections to other individuals

[17]. Social network theory seeks to explain this variation

by measuring individual contact patterns and incorporat-

ing them into a descriptive framework that integrates all

levels from individual behaviour to population processes

[16]. With recent methodological advances, social network

analysis has become a promising new way to investigate the

effect of individual and community heterogeneities on

information transmission dynamics. Network-based diffu-

sion analysis (NBDA) is one such method, designed to

identify social learning processes in animals [18–20]. We

propose that if individuals exploit social information in

the discovery of food sites, then this information should
This journal is q 2012 The Royal Society
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be more likely to be transferred between associating indi-

viduals, and thus follow routes through a social network.

Following this logic, individuals that occupy different net-

work positions should also differ in the speed and reliability

with which they receive information.

NBDA infers social transmission of information if the

pattern of behavioural change over time follows associ-

ation patterns in the relevant social network. It assumes

that the rate at which social transmission occurs between

a naive-informed dyad is linearly proportional to the

association between them [20]. Hoppitt et al. [19] suc-

cessfully retrospectively applied this method to the

spread of innovation in a flock of captive starlings [21].

However, the only two studies to test NBDA in the wild

(both in small groups of lemurs) obtained ambiguous

results [22,23], with no evidence found for social trans-

mission despite obtaining positive results from using a

more traditional ‘two-action control’ paradigm.

We investigate social information use and social net-

works in three species of sympatric tit (family Paridae)

in two relatively isolated sub-populations. The ecology

of these species makes them excellent candidates to

study food-searching behaviour. Tits and chickadees are

a family of passerines that mostly live in open woodland

and feed on a mixed opportunistic diet, forming roaming

mixed species fission–fusion flocks in the non-breeding

season. A long history of captive studies has demonstrated

that tits can be attracted to new food patches through

local enhancement [24,25]. Recent wild studies have

also shown that tits use social information when making

habitat selection and dispersal decisions, and that this

information use differs between individuals [26,27].

Fewer studies have examined social information and

food patch discovery in wild tits and chickadees, but it

appears that some species may also actively recruit

flock-mates to food sites [28,29].

Here, we report the first application of NBDA to a

large-scale experiment in wild animals. By measuring the

association matrix of two wild sub-populations of tits and

then recording arrival of individuals at novel food patches,

we attempt to identify whether these populations use social

information to find patchy food sites. We then ask whether

individuals with differing network positions vary in their

probability of finding new food sites after an initial discov-

ery event, that is, whether some types of individuals differ

in their access to information [30,31].
2. MATERIAL AND METHODS
(a) Study area and population

The study was conducted in two small areas of broadleaf

deciduous woodland near Wytham woods, Oxfordshire

(518460 N, 18200 W). These areas form part of a long-term

project on great tits, and are surrounded by arable land

[32]. We included the most common Paridae species in

these woodlands: blue tit (Cyanistes caeruleus), great tit

(Parus major) and marsh tit (Poecile palustris), all of which

commonly forage together [33]. Birds were caught using

mist-nets from October 2010 to January 2011, fitted with a

unique British Trust for Ornithology metal leg ring, aged

as juvenile or adult and sexed based on biometrics. Birds

were also fitted with a plastic ring containing a uniquely

identifiable passive integrated transponder (PIT) tag. While

there was some movement between our study areas and the
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main Wytham area, intensive mist-netting of birds through-

out the 2010–2011 winter in Wytham woods meant that

immigrants were also likely to be ringed and PIT-tagged.

(b) Association matrix

Sunflower feeders with two access points were fitted with

radio-frequency identification (RFID) antennae (Francis

Instruments Ltd., Cambridge) and installed at two locations

in each area. The feeders were filled with food for 3 days and

left empty for 3 days on a repeated cycle during January 2011

in Higgins Copse and from December to January 2011 in

Cammoor/Stimpsons Copse. A data-logger at each feeder

recorded the 15-s time block in which each bird visited and

the individual’s PIT-tag code. Combining the records from

both locations at each area resulted in a total of 7790 records

at Higgins Copse, and a total of 11 866 records at Cammoor/

Stimpsons Copse. The total number of visits each individual

made was used as a measure of both individual propensity to

visit artificial feeders and overall site residency.

Associations were calculated between individuals using a

75 s moving time window, where an association occurred

between two individuals when one individual visited the

same feeder within 30 s on either side of the 15 s time

block in which the other individual visited. Directionality of

interactions could not be inferred, and a gambit of the

group approach was used [34]. The results were also ana-

lysed using a 135 s time window and were robust to this

variation. Twenty-four birds were seen fewer than five times

and were excluded from the analysis to avoid a sampling bias

that could affect edge weights. An association matrix of all

other individuals was then constructed using a simple ratio

index [35], whereby edges are scaled between 0 (never

associated) and 1 (never observed apart). Two networks

were generated (weighted and non-directional), one for

Cammoor/Stimpsons and one for Higgins Copse.

An important concept in social network analysis is cen-

trality, with measures reflecting the extent and manner to

which individual nodes are connected to others. Here, we

concentrate on two measures of centrality most appropriate

to local enhancement [30]. ‘Eigenvector centrality’ extends

the concept of degree centrality (the number and strength

of a node’s connections) by also measuring the relative con-

nectedness of an individual’s associates. ‘Betweeness

centrality’ (unweighted) is a measure of an individual’s role

in connecting otherwise distinct groups of individuals, and

is calculated by counting the number of shortest paths

between nodes that pass through the focal node. Both

centrality measures were calculated in the SNA package

(v. 2.2-0) in the software program R (v. 2.12.2) [36].

(c) Patch-discovery experiment

Fourteen days after the end of the association matrix data

collection, one sunflower feeder fitted with two RFID anten-

nae was placed at a random location within each area to

function as a new artificial food ‘patch’. A data-logger

recorded patch arrival times for each individual. The same

feeder design as that used for the social network was used

to reduce any effect of neophobia, and feeder installation

was undertaken at night to avoid inadvertently producing

information about the site [37]. The artificial food patch

was removed after 3 days, and the process repeated at a

new randomly chosen site, with 7 days between trials. Four

trials were completed at the Cammoor/Stimpsons Copse

and three at Higgins Copse. In each of the seven trials,
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different individuals first located the food patch; initial dis-

covery appeared to show a trend towards great tits (four of

seven) and first-years (six of seven).

In summary, the association matrix measured undirected

relationships from multiple observations of flock compo-

sition, and the discovery experiment recorded individual

order of arrivals to the food site (with no implied social-

ity)—the two should only be related if social behaviour is

involved in patch discovery. While the methods of data col-

lection for the association matrix and patch-discovery trials

were superficially similar, they differed in two important

ways. First, the association matrix was measured over a

period of one to two months at four set locations, with the

feeders as well-established food resources. For the patch dis-

covery, one feeder was installed at a completely novel

location such that no individual had any pre-existing knowl-

edge. Second, visits were recorded for the association matrix

over an extended period, with individual dyadic feeding co-

occurrences accumulated over numerous feeding bouts.

Timing of arrival was not differentiated, nor directionality

implied. In the patch-discovery experiment, only the time

of first discovery for each individual was measured, and

group arrival was controlled for in the NBDA.

(d) Data analysis

Two alternative methods were used to ask whether the

measured network predicted the pattern of patch discovery

observed. NBDA seeks to identify social transmission by

assuming that if social transmission is occurring, then the

spread of behaviour should follow the patterns of associations

between individuals, with the rate of social transmission

being linearly proportional to the strength of association

[18–20]. Second, network centrality parameters were used

to try and identify individuals with a higher probability of

both finding foraging patches and arriving at patches earlier

(after the initial discovery).

Data were inputted using the NBDA code v. 1.2 [19] in R

[36]. The time of first arrival at the artificial food patch for

each individual was entered using the ‘time of acquisition dif-

fusion analysis’ function. All individuals that discovered

patches but were not in the social network were excluded

from the analysis; this equated to 23 individuals at Higgins

and 21 at Cammoor/Stimpsons. To allow for the possibility

that some individuals were more effective ‘transmitters’

than others, weights were assigned to each individual of its

total number of visits in each trial. This assumes that the

rate of social transmission from individual A is proportional

to the number of times they visited in the trial. Additionally,

individuals who arrive at the new food patch together close

in time may be recorded as transferring information, while

actually simultaneously acquiring the knowledge as a group.

This was accounted for by adding ‘ties’ between all individ-

uals who first arrived at the food patch less than 10 min

apart, with no possible information transfer permitted

between tied individuals—this should provide a conservative

but robust estimate [19].

Within one area, all trials were assumed to have similar

rates of transmission and analysed together on the same net-

work, though we allowed the asocial rate of acquisition to

vary between each. Five individual-level variables were incor-

porated into the models: sex, age (first year per adult),

species (marsh tit per great tit per blue tit), site where the

individual was first caught (either of the two study plots,

or two adjacent areas that are part of the Wytham woods
Proc. R. Soc. B (2012)
area) and propensity to use feeders (total number of visits

by each individual at network feeders). All possible

models were fitted.

Individual network centrality measures were analysed in

two ways. First, a binomial family-generalized linear model

in R was used to compare individuals who did or did not dis-

cover any food patches (where all trials were combined), in

terms of sex, age, species, propensity to use feeders per site

fidelity, eigenvector centrality and betweeness centrality.

Second, a linear-mixed model in R was used to determine

whether the order of first arrival of all individuals to the

novel patches was predicted by the same explanatory vari-

ables detailed earlier. Individual identity and trial were

included as random intercepts.

(e) Model selection procedures

For all analyses, Akaike’s information criterion (AICc; cor-

rected for sample size) was used to select the best

predictive model from a set of a priori models constructed

from initial data exploration. The DAICc values were used

to compare competing models with all models within

DAICc of 2 having good evidence of fit [38]. AICc weights

were also calculated to assess the probability that each

model is the one with best K-L information (predictive

power) [38]. For the general linear model of patch finding

probability, we assessed the severity of any multicollinearity

between coefficients by calculating the variance inflation

factors using the car library in R. As all
p

GVIF values were

less than 2, we considered that there was no evidence for

multicollinearity [39].
3. RESULTS
At Higgins Copse, 81 birds were included in the social

network (a median of 40 records per bird, maximum of

294 records). At Cammoor/Stimpsons Copse, 73 birds

were included in the network, with a median of 78 records

per individual and a maximum of 1440 records. Eleven

birds (7.1%) were observed in both study areas. Over

both areas, 102 individuals were blue tits, 43 great tits

and seven marsh tits (summary network statistics are

detailed in the electronic supplementary material,

table S1). At Higgins Copse, 68 per cent of individuals in

the social network found at least food patches (median ¼

2 patches). In Cammoor/Stimpsons Copse, 59 per cent

of individuals found one or more food patches (median ¼

2 patches; figure 1) (see the electronic supplementary

material, figure S3 for Higgins Copse).

(a) Network-based diffusion analysis

A full model-fitting procedure was carried out on the net-

work and all patch-discovery trials for each area. The

most parsimonious models for each area contained

social transmission and had a non-constant, declining

rate of acquisition. Two models had good support at

Higgins Copse, an additive model with no individual-

level variables (AICcWgt ¼ 0.37), and a multiplicative

model incorporating site and species (AICcWgt ¼ 0.30).

The best model for Cammoor/Stimpsons Copse was mul-

tiplicative and included age, site and species (AICcWgt ¼

0.89). In both areas, there was little or no support for

models containing purely asocial acquisition mechanisms

(table 1). Parameter estimates are reported in the elec-

tronic supplementary material. In the top multiplicative



Table 1. Summary of model selection statistics for NBDA performed in both areas. si, site of first capture; sp, species; a, age,

v, feeder use; se, sex. Average association strength for Higgins ¼ 0.027, Cammoor ¼ 0.022. Additive models assume
individual-level variables affect only asocial rate, in multiplicative models differences also influence social transmission [19].
Constant (c) baseline rate denotes rate of asocial discovery constant over time; non-constant (n-c) denotes systematic
increases/decreases in rate of asocial discovery [20]. Transmission rate(s) denote rate estimate of social transmission per unit
of connection relative to rate of asocial learning.

model type and rate parameters S.T. effect (s) DAICc AICcWt cum. wt

Higgins Copse—models with social transmission and asocial learning
additive, n-c, declining 0.01 0 0.37 0.37

multiplicative, n-c, declining Psi þ Psp 0.01 0.33 0.30 0.67

Higgins Copse—top asocial model
constant Pv þ Psi þ Psp 0 2.76 0.08 0.75

Cammoor/Stimpsons Copse—models with social transmission and asocial learning
multiplicative, n-c, declining Pa þ Psi þ Psp 0.27 0 0.89 0.89

multiplicative, n-c, declining Pa þ Pv þ Psi þ Psp 0.1 6.38 0.04 0.93

Cammoor/Stimpsons Copse—top asocial model
n-c, declining Pa þ Pse þ Psiþ Psp 0 23.39 0 1
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discovery success. Dark nodes represent individuals who found food patches; numbers inside nodes indicate how many patches
found. Increasing node size indicates increasing eigenvector centrality, and edge (line) weight indicates association strength.
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model, great tits discovered patches at a rate of 1.01 higher

than blue tits at Higgins Copse, and 1.65 times higher at

Cammoor/Stimpsons Copse. Adults also discovered at a

higher rate than first years at Cammoor.
(b) Network centrality

A generalized linear model was run using patch discovery

(yes or no) as the binary response variable. At Higgins
Proc. R. Soc. B (2012)
Copse, the variable with the highest predictive power

was betweeness centrality (AICcWgt¼ 0.13; figure 2a).

However, there was also good support for total feeder vis-

itations, betweeness þ eigenvector centrality, betweenessþ
sex and betweeness þ age (DAICc¼ 1.00, 1.47, 1.62,

1.81). Although the magnitude of difference between

the best model and competing models was small, betwee-

ness centrality was present in four of the five top models.

At the Cammoor/Stimpsons Copse study area, the
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best model was eigenvector centrality (AICcWgt ¼ 0.21;

figure 2b). There was also good evidence for models con-

taining eigenvector centrality þ age (DAICc¼ 1.35) and

eigenvector centrality þ betweeness centrality (DAICc¼

1.89), but eigenvector centrality was present in all of the

top five models. The set of models with DAICc weights col-

lectively totalling 95 per cent are detailed in the electronic

supplementary material, table S6.

There was no relationship between network measu-

res and the relative patch arrival time of individuals.

Rather the total number of visits to the network feeder

was the best predictor of arrival time (AICcWgt ¼ 0.27

for Higgins Copse, AICcWgt ¼ 0.28 for Cammoor/

Stimpsons Copse). Models containing species þ feeder

visitations and age þ feeder visitations also had strong

support at both study areas (Higgins Copse: DAICc ¼

0.27, 1.30, Cammoor/Stimpsons Copse: DAICc ¼ 0.68,

1.06). Therefore, birds that visited the initial network fee-

ders more frequently were more likely to discover novel

food patches earlier. Adults tended to arrive at patches

earlier than birds in their first year, and marsh tits and

great tits were earlier than blue tits.
4. DISCUSSION
Our study population of tits, as with many parid species,

form loose roaming flocks of unrelated individuals in the

non-breeding season, during which time they depend on

clumped ephemeral food resources such as beech mast

(seeds of Fagus sylvatica) [32]. Such resources vary in

time and space, and while individuals may benefit from

optimized search patterns and personal experience, we

offer evidence using a novel social networks approach
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that tits also use social information to locate new foraging

resources in the wild. This is consistent with a long his-

tory of accumulated evidence from captive studies

[24,25], and related studies on food-associated communi-

cation in Parids [28,29]. However, our results are novel

because they demonstrate that the flow of this infor-

mation is not random between individuals, but rather

that it flows in accordance with the structure of the

social network of the population.

NBDA found strong evidence for social transmission.

Under this model of patch discovery, the first individual

to find the food patch did so by chance (mediated by

individual differences in searching behaviour), and sub-

sequently arriving individuals discovered the patch by a

combination of chance and receiving social information

from connected individuals. Which set of individuals

eventually found and exploited the patch therefore largely

depended on the identity of those that were first to

discover it.

While the study of the movement of information in

social networks is rapidly growing in human studies, it

is still in its infancy in the field of animal behaviour.

NBDA [18–20] offers the most comprehensive model

to date to identify information transmission in animal

populations. This model uses the theory of directed

social learning, i.e. that information is transmitted at

different rates depending on association patterns

[22,40]. Although supported by simulations and theoreti-

cal work [18,41,42], there has been very little empirical

evidence for either NBDA or directed social learning.

We suggest that the successful application of NBDA

may depend on two factors: (i) a large enough sample

size for there to be sufficient variation in association

strengths and (ii) a social network of sufficient relevance

to the type of information transferred [42]. Our study

had both these factors, with two networks of 73 and 81

nodes and a network built using foraging associations.

In both our study areas, marked individual variation in

patch discovery was observed. On average, 60 per cent of

individuals found the novel foraging patches, and of

the individuals who found new patches, most only found

one or two. None of the morphological or behavioural

characteristics we measured, including sex, species, age or

site fidelity explained this variation, either in patch-

discovery probability or in the number of patches found.

Rather at both areas the best model for patch discovery

identified was a network characteristic—eigenvector centra-

lity at Cammoor/Stimpsons, and betweeness centrality at

Higgins. These two network centrality measures are con-

sidered related to information and disease transmission

[30,31], with central individuals having a ‘high susceptibi-

lity risk’. Few empirical studies have tested these

hypotheses in animals, although Godfrey et al. [43] found

that Gidgee skinks (Egernia stokesii ) with a higher degree

had a higher parasite load. Christley et al. [31] simulated

epidemics on networks, and similarly found that centrality

measures predicted risk of infection. Our study appears to

extend this pattern to the transfer of social information.

It is interesting to speculate why the two areas

appeared to highlight different centrality measures as

important in social information transfer. Perhaps the dif-

fering topography of the two areas is implicated; in

Higgins, birds appeared to roam freely, whereas in Cam-

moor (a long strip of woodland), birds might be more
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restricted in their movements. In this case, information

may be more likely to pass ‘grapevine’ style along immedi-

ate associates [30]. There was also evidence of a higher

social transmission rate for Cammoor using NBDA.

However, the exact mechanisms by which individuals

transfer information in this study system are unknown.

We suggest that basic mechanisms such as local enhance-

ment (resulting from auditory and visual cues produced

during feeding) would be sufficient to produce these pat-

terns; yet, if deliberate food-contact calls occur, this could

add an intriguing complexity to the relationship between

the social network and patch discovery.

Finally, there was no relationship in this study between

social network measures and the order of arrival of individ-

uals at an artificial food patch, despite NBDA finding that

the order and timing of arrival reflected associations

between individuals. While these results are not necessarily

contradictory (network centrality cannot predict a discov-

ery order so highly dependent on the identity of first

discoverer), centrality measures may be further obscured

by additional factors. The NBDA model suggests that

species and age differences in social information use may

influence discovery rate. Another such factor may be per-

sonality; previous studies on parids have found a

correlation between personality and patch discovery, with

bold individuals arriving faster to new feeders [37,44].

Our study did not measure personality, so the effect of

this variable is unknown. However, there is some evidence

that personality is correlated with social information use in

tits [45], and that personality may affect an individual’s

social network position [46]. If so, social network position

in our study may be correlated with both personality and

patch discovery—this merits further study.

In conclusion, we report the successful use of NBDA

to detect social information transfer in the wild, with clo-

sely associating individuals being more likely to transfer

information about new food sites. Furthermore, we

found that individuals with higher social network central-

ity measures have a higher probability of finding new food

patches. Thus far, the weight of evidence in social net-

work research has highlighted the negative impacts to

being well connected (between and within communities),

with such individuals suffering greater parasite loads and

a higher risk of disease infection [31,43,47]. In contrast,

our study suggests that the greater probability of receiving

social information about new foraging patches may rather

confer a benefit on better socially connected individuals.
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