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Abstract

The disappointing outcomes of cellular immune-based vaccines against HIV-1 despite strong evidence for the protective
role of CD8+ T lymphocytes (CTLs) has prompted revisiting the mechanisms of cellular immunity. Prior data from
experiments examining the kinetics of Simian Immunodeficiency Virus (SIV) clearance in infected macaques with or without
in vivo CD8 depletion were interpreted as refuting the concept that CTLs suppress SIV/HIV by direct killing of infected cells.
Here we briefly review the biological evidence for CTL cytolytic activity in viral infections, and utilize biologically-directed
modeling to assess the possibility of a killing mechanism for the antiviral effect of CTLs, taking into account the generation,
proliferation, and survival of activated CD4+ and CD8+ T lymphocytes, as well as the life cycle of the virus. Our analyses of
the published macaque data using these models support a killing mechanism, when one considers T lymphocyte and HIV-1
lifecycles, and factors such as the eclipse period before release of virions by infected cells, an exponential pattern of virion
production by infected cells, and a variable lifespan for acutely infected cells. We conclude that for SIV/HIV pathogenesis,
CTLs deserve their reputation as being cytolytic.
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Introduction

Clinical failure of a promising T-cell based HIV-1 vaccine in

a phase IIb human trial (STEP) [1] has prompted a re-evaluation

of the mechanisms of immunity, because tests of T-cell based

vaccines against SIV in macaques have indicated that virus-

specific CD8+ T lymphocytes (CTLs) can ameliorate or even

prevent infection. Several macaque studies of recombinant

adenovirus-based vaccines similar to the one tested in STEP have

demonstrated prevention or control of chronic viremia after SIV

challenge in the absence of protective antibody responses (by lack

of envelope inclusion in the vaccine and/or lack of neutralizing

antibody responses) [2,3,4]. These results indicate the possibility

that vaccine-elicited CTLs might provide chronic suppression of

symptomatic infection, or even abort early retroviral infection as

predicted by a mathematical model [5].

That CTLs clear acute viral infections or control chronic viral

infections is well established, and they play a protective albeit

ultimately unsuccessful role in HIV/SIV pathogenesis. For HIV-1,

the rapid evolution of immune-targeted sequences [6,7,8] and

temporal association of developing CTL responses to the drop of

peak viremia ending acute infection [9,10] provide strong evidence

for immune pressure by CTLs. Perhaps the most direct evidence

comes from experiments in which CD8+ cells in SIV-infected

macaques are depleted with an anti-CD8 monoclonal antibody

in vivo, which results in a massive concomitant rise in viremia

[11,12,13,14].

There are two major proposed mechanisms whereby CTLs

exert antiviral pressure. The first study demonstrating CTL

antiviral activity against HIV-1 [15] and further work by the same

investigators led to the conclusion that a noncytolytic soluble factor

is responsible [16]. It was proposed that CTLs release this factor

through a non-MHC-restricted, and therefore non-epitope-specific

manner [17]. Subsequent observations of viral evolution in

response to CTLs in vivo [18,19,20] have made it clear that the

major antiviral activity of CTLs is MHC-I-dependent and

therefore epitope-specific, although this does not exclude the

possibility that the effector mechanism is mediated by non-

cytolytic factor(s) in part or in whole, as shown by release of anti-

HIV-1 soluble factors in an epitope-dependent manner [21,22].

The other major proposed mechanism is direct cytolysis by MHC

class I-restricted, epitope-specific CTLs. Several observations

strongly favor this mechanism. CTLs from HIV-1-infected persons

can kill HIV-1 protein-expressing target cells directly ex vivo

[23,24]. CTL clones in vitro can kill HIV-1-infected cells [25] and

suppress HIV-1 replication predominately through direct cytolysis

[22]. Preservation of CTL expression of perforin and granzyme

correlates to effective immune control of HIV-1 infection in vivo

[26]. Murine antiviral CTLs can be demonstrated to kill target

cells in vivo [27]. Finally, mathematical models reproducing the

dynamics of acute and chronic HIV-1 infection provide compat-

ible estimates of in vivo and in vitro CTL killing of HIV-1-infected

cells [28,29].
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However, two reports in PLoS Pathogens [30,31] have

presented experiments with SIV-infected macaques, examining

dynamics of viremia after administration of antiretroviral

therapy (ART) in the presence or absence of monoclonal

antibody-mediated CD8 depletion in vivo. Comparing small

numbers of macaques with and without depletion (three to five

per group), these studies could not find a significant difference

in the rates of viremia decay, and both concluded using

a mathematical analysis of viral decay rate [32] (‘‘fixed

production model’’) that the lifespan of infected cells was not

detectably lengthened by CD8 depletion and thus the antiviral

effect of CTLs could not involve cytolysis. Both studies

suggested that the lifespan of an SIV-infected CD4+ T

lymphocyte is about one to two days, and Wong et al [31]

further stated that for loss of infected cell cytolysis by CTLs to

mediate the rise in viremia seen after CD8 depletion, it ‘‘would

require … a 10-fold increase in productive cell lifespan for the

mathematical model used here,’’ which was not observed. It

therefore was concluded in both studies that CTLs exert

antiviral effects entirely through a non-cytolytic mechanism.

However, these predictions are inconsistent with several

biological properties of T lymphocytes and SIV infection.

Acutely infected CD4+ T lymphocytes have a significant

‘‘eclipse period’’ of one to two days before virion release

[25,33]; this is incompatible with the total infected cell lifetime

of one to two days predicted by application of the fixed

production model in these two studies (which allotted no eclipse

period). Additionally, virion production during the productive

phase of cell infection is exponential [25,33] and not linear as

assumed implicitly in that model. Furthermore, the major target

cell for viral infection, the activated effector-memory CD4+ T

lymphocyte, has a short lifespan of days after differentiating

from the long-lived central memory pool of CD4+ T

lymphocytes [34,35], and it is inconceivable that an infected

effector-memory CD4+ T lymphocyte could survive the 10 to 20

days required to demonstrate cytolysis as predicted by the fixed

production model. Here, we propose that more detailed models

that consider the biology of virus and T lymphocyte dynamics

do in fact support CTL cytolytic activity as an important

antiviral mechanism in the immunopathogenesis of SIV/HIV

infection.

Methods

Modeling CD4+ T Lymphocyte Turnover and Infection by
SIV: Non-programmed Proliferation (NPP) Model

Figure 1 outlines the general design of this simulation, and

mathematical details are given in the Supplemental Methods.

The CD4+ T lymphocyte compartment is modeled in simple

terms of production, activation, and death, because these are

the relevant parameters determining viral replication and target

cell availability. Because activated memory cells are over-

whelmingly the major source of SIV replication, we designated

CD4+ T lymphocytes only as resting or activated, without

further distinguishing resting cells as naı̈ve or memory because

neither support significant viral replication. It is assumed that

resting CD4+ T lymphocytes are produced and activated at

a constant rate without proliferation (non-programmed pro-

liferation, NPP), in which case some cells return to resting and

other cells die and are replaced by new resting cells (through

thymic output or homeostatic proliferation of resting cells). The

computer simulation considers the life of a cell in terms of small

incremental time units (‘‘stages’’) during which the cell can

survive or die, change activation state (activated versus resting),

and become infected if activated. Uninfected activated cells can

survive for a set lifespan before either dying or reverting to

a resting state, and become infected at any time after activation.

An infected cell can only survive up to the maximum time the

cell would have survived if uninfected. Once infected, viral

replication follows a set timing of an intracellular phase

(‘‘eclipse’’ before any virus is released) followed by exponentially

increasing virion release for the remainder of the cell’s life. An

activated cell infected at an early stage of life may survive to

produce a fixed maximum number of virions, or die before that

level is reached. Furthermore, as described in the next section,

with increasing time after infection, the cell is susceptible to

killing by a CTL before the maximum is reached, with a killing

rate that is directly proportional to the phase of viral

replication. Newly produced virions infect other activated

CD4+ T lymphocytes or are rapidly cleared from circulation.

The biologic constants utilized in this model are listed in

Table 1.

Modeling CD4+ T Lymphocyte Turnover and Infection by
SIV: Programmed Proliferation (PP) Model

This alternative model for production of target activated CD4+

T lymphocytes followed the same general structure as the NPP

model (Figure 1) but employed an alternative assumption for

generation of cells (similar to that used for modeling the CTL

compartment, below), that upon activation the cells are committed

to undergo proliferation for a fixed number of divisions [36,37].

Once stimulated and activated, cells then undergo 8 divisions,

during which they are susceptible to SIV infection in the same

manner as the NPP model described above. After a cell is infected,

it does not complete the remaining program of cell divisions, due

to effects of infection including cell cycle arrest (mediated by viral

replication and/or Vpr [38,39]), and thus follows the same pattern

as the NPP model.

Modeling SIV-specific CD8+ T Lymphocytes (CTLs)
The modeling of SIV-specific CTLs was a modification of

one that we previously described [28,29,40,41], and is outlined

schematically in Figure 2. This model starts with a fixed

number of naı̈ve SIV-specific CTLs, which are activated by

exposure to SIV at an activation rate dependent on viremia

(which is also equivalent to the killing rate of infected cells),

after which they undergo a programmed proliferation commit-

ment of eight divisions [36,37], differentiating into activated

effector CTLs at the fourth division. These cells then either die

or revert to resting memory CTLs, which are primed to

respond immediately as mature effector CTLs upon re-exposure

to antigen. Naı̈ve and resting CTLs have distinct death rates.

Viral escape from CTLs was not modeled, since CTLs and viral

epitope sequences reach a steady state in chronic infection

[42,43]. The biologic constants utilized in this model are listed

in Table 2.

Modeling the Effects of Antiretroviral Treatment in the
Absence or Presence of CD8 Depletion

The models were run with the assumption of immediate and

fully effective interruption of viral replication (by antiretroviral

treatment) at 94 days after infection, by dropping the

reproductive rate to 0 and observing the rate of viral decay

as the remaining infected cells produce virus until their deaths.

The slope of viral decay after treatment was determined by least

squares regression fit to 28 days of viremia. They were re-run

while simulating CD8 depletion and removal of CTL killing at

Modeling of CTLs in SIV Pathogenesis

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e44778



10 days before interruption of viral replication occurring 94

days after infection, and assessing the slope of viral decay after

treatment.

Sensitivity Testing of Varying Parameter Combinations
The models using either the NPP or PP assumptions for

CD4+ T lymphocyte generation were re-run using varying

parameter combinations, to predict viremia decay after anti-

retroviral administration with or without CD8 depletion. The

varied parameters included the lifetime of an activated CD4+ T

lymphocyte (4, 7, or 15 days), the basic reproductive ratio for

infected cells (8, 10, and 15), the eclipse period for an infected

cell (1, 2, and 2.5 days), and the factor for activation/killing

rate of CTLs (1029, 561029, and 1028), yielding 81 parameter

sets (Tables S1 and S2). After running simulations with all

combinations of these parameters, some parameter sets were

dropped because they resulted in non-containment of viremia in

chronic infection (6 sets in the NPP model and 12 in the PP

model). The simulations were also run with CD8 depletion as

described above. The percent differences in viremia decay rates

(slopes of viremia decline after antiretroviral therapy) were

calculated as:

1006(slope without depletion–slope with depletion)4(slope

without depletion).

Results

Modeling the Biology of T Lymphocyte Generation and
SIV Replication in vivo According to Biologic Principles
and Parameters

The T lymphocyte population is dynamic and heterogeneous,

and contains subsets that reflect the lineage of cell development.

Maturation and activation are key factors determining the

generation of SIV permissive CD4+ T lymphocytes and function-

ally antiviral CD8+ T lymphocytes (CTLs), both of which are

activated effector-memory T lymphocytes that arise from naı̈ve T

lymphocytes. Our previously reported model [28,29,40,41]

following this scenario was adapted for the current study.

Figures 1 and 2 conceptually summarize our modeling of the

generation and fate of infected CD4+ T lymphocytes and virus-

specific CTLs in SIV-infected macaques.

Target CD4+ T Lymphocyte Generation and Infection,
under the NPP Scenario

For the CD4+ T lymphocyte compartment (Figure 1), the model

begins with the assumption of about 3.56109 total CD4+ T

lymphocytes at baseline before infection in a macaque [44], of

which about 99% are in a resting state. Resting cells can become

activated without proliferation (non-programmed proliferation

assumption), with about 4.5% of cells activated at steady state

Figure 1. Schematic of the CD4+ T lymphocyte and SIV replication model. The modeling process for generation, activation, infection, and
death of the CD4+ T lymphocyte compartment is displayed schematically, with relevant biological parameters indicated.
doi:10.1371/journal.pone.0044778.g001

Modeling of CTLs in SIV Pathogenesis
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Table 1. Biologic parameters for modeling of the CD4+ T lymphocyte compartment.

Parameter Definition Value

NCD4 Total body CD4+ T lymphocytes at steady state (before SIV infection) 3.56109 cells [44]

dCD4R Death rate of resting CD4+ T lymphocytes 361023/day [45]

ActCD4fract Fraction of activated CD4+ T lymphocytes at steady-state before SIV infection 4.561022 [44,46]

ActCD4 Constant rate of activation of naı̈ve CD4+ T lymphocytes 1.261022/day*

bCD4 Rate of new naı̈ve CD4+ T lymphocyte production 4.756107 cells/day**

ActCD4life Lifespan of an activated CD4+ T lymphocyte 4 days [47]

S Number of temporal subdivisions of the lifespan utilized for the simulation 50

Revert Reversion rate of activated CD4+ T lymphocytes returning to resting 561022 [36,51]

IIni Initial number of SIV-infected activated CD4+ T lymphocytes Set at 100 cells

Eclipse Time before an infected CD4+ T lymphocyte starts to release virions 2 days [25,33]

Virion Prod Maximum virus that an infected CD4+ T lymphocyte can produce 26104 virions/day [48,64]

R0 Basic reproductive number (number of new infected cells from one productively
infected cell in absence of immune response)

10 cells***

k Factor for CTL killing of infected cells relative to stage of cell infection 561029/cell/day [29]

dV Lifespan of a free virion 0.5 hour [60,61]

The parameters utilize for modeling CD4+ T lymphocyte turnover and infection using the NPP assumption are listed. For the PP assumption, activated cells were
committed to 8 divisions with the same kinetics as CTLs (see Table 2).
*Derived constant based on biologically observed steady state value and estimated loss rate of activated cells (see Supplemental Methods). For the programmed
proliferation assumption (PP), the value is 1.961024/day.
**Derived constant based on biologically observed steady state value and estimated loss rate of total body CD4+ T lymphocytes (see Supplemental Methods). For the
programmed proliferation assumption (PP), the value is 2.56106/day.
***Set constant based on the model yielding timing of peak viremia corresponding to biologically observed timing, and consistent with virion viability ranging from 1:1
to 1:1000 [64] and Virion Prod.
doi:10.1371/journal.pone.0044778.t001

Figure 2. Schematic of the SIV-specific CTL model. The modeling process for generation, antigenic activation, and death of the SIV-specific
CD8+ T lymphocyte (CTL) compartment is displayed schematically, with relevant biological parameters indicated.
doi:10.1371/journal.pone.0044778.g002
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before infection, or die at a rate of 0.1% per day if not activated

[45,46]. Activated cells can survive up to 4 days, after which 95%

die and 5% survive as resting memory cells [47]. The macaque is

infected with SIV to yield 100 infected activated cells initially. If

a cell is infected early enough in its life cycle for the virus to

complete its life cycle, virion release by each infected cell

commences after an ‘‘eclipse period’’ (intracellular phase of viral

replication) of two days, after which the cell produces virions at an

exponentially increasing rate [25,33] for a maximum of another

two days in the absence of immune clearance. Infected CD4+ T

lymphocytes (without immune clearance) can produce up to

a maximum of about 20,000 virions (most of which are nonviable),

resulting in a basic reproductive rate of each infected cell causing

the infection of 10 new cells [48]. Virus production can be

interrupted by either predestined cell death (cells infected late in

the lifespan) or CTL clearance at a rate proportional to the stage

of viral production using a factor previously derived from in vitro

and in vivo data [29]. These parameters are summarized in Table 1.

SIV-specific CD8+ T Lymphocyte (CTL) Generation
For the CD8+ T lymphocyte compartment (Figure 2), the

generally accepted concept of ‘‘programmed proliferation’’ [36,37]

is followed to model SIV-specific CTLs. At baseline before

infection of a macaque, there are about 8.756104 SIV-specific

naı̈ve CTLs based on an assumption of 5 stable epitope-specific

responses (ignoring escaped responses), prior measurements of

total body CD8+ T lymphocytes in macaques, and the biologically

observed frequency of precursor CTLs against a single epitope

[44,49]. These precursor (resting) SIV-specific cells either die

spontaneously at a rate of 0.1% per day [45,46] or are activated at

a rate dependent on viremia level in the model, after which they

are committed to undergo eight divisions [36,50]. After this

division program, 95% of the cells die and the remainder

transform to a resting memory state [36,51]. Resting memory

cells either die spontaneously at a rate of 3% per day (based on

CTL decay curves in HIV-1-infected persons who received

antiretroviral therapy [52,53,54]), or get re-activated by antigen

into programmed proliferation at a rate that is seven-fold that of

naı̈ve cells [47]. Naı̈ve cells require 12 hours for mitosis, while

memory cells require 6 hours [55], and naı̈ve cells become mature

effector cells after four doublings while memory cells become

mature effector cells after a single doubling [55]. These parameters

are summarized in Table 2.

This Model of CTL and SIV Infection Dynamics Accurately
Predicts the Course of SIV Infection in vivo

Based on the assumptions above, our model predicts a pattern

of viremia and SIV-specific CTL expansion that quantitatively

reproduces that seen during in acute and chronic infection in the

SIV-macaque model (Figure 3). As observed in vivo [14,56],

viremia rapidly rises to a peak approximately 10 days after

infection and then decreases to a chronic set-point level after the

frequency of SIV-specific CTLs rises to a peak about four to eight

weeks after infection. Both viremia and CTL levels reach this set-

point spontaneously in the model, due to interactions between

virus, target CD4+ T lymphocytes, and CTLs that reach

equilibrium.

Further modeling the administration of antiretroviral therapy

after 94 days (assumed to stop SIV replication instantaneously in

the model), as tested in the two studies of SIV dynamics by Klatt

et al [30] and Wong et al [31], the predicted viremia decay rate is

1.41 log10 units per day (half-life of 0.49 days), resulting in near-

clearance by two weeks (Figure 3A). This decay rate is similar to

those observed experimentally in macaques in the Klatt and Wong

studies, in light of the approximate nature of some biologically

measured parameters in our model, and likely pharmacologic/

biologic lag and incomplete SIV suppression with antiretroviral

drug administration that was not considered in those studies. Klatt

et al reported viremia half-lives of 0.69 to 1.64 days in four animals

(mean 1.160.4 days) [30] and Wong et al reported half-lives

ranging from 1.1 to 4.3 days in three animals (2.361.7 days) [31],

in agreement with a prior study from Nowak et al that reported

half-lives of 0.7 to 1.4 days [57]. Overall, these results demonstrate

that our model provides a reasonable simulation of the dynamics

of viral replication based on the interactions of infected cells and

SIV-specific CTLs in vivo. In contrast to the simple model utilized

Table 2. Biologic parameters for modeling of SIV-specific CD8+ T lymphocyte compartment.

Parameter Definition Value

IniNR Initial number of naı̈ve SIV-specific CTLs in a macaque 8.756104 [44,49]*

a Factor for naı̈ve SIV-specific CTL activation relative to virus production 561029/cell/day [29]

dNR Naı̈ve (resting) CTL death rate 1023/day [45,46]

bCD8 Production rate of naı̈ve SIV-specific CTLs 87.5 cells/day**

DCD8 Number of CTL divisions after antigenic stimulation 8 [36,37]

Revert Reversion rate of activated CTLs returning to resting 561022 [36,51]

dMR Memory resting CTL death rate 361022/day [52,53,54]

Memory Factor Ratio of memory versus naı̈ve CTL activation rates 7 [46,47]

CCnaive Mitosis time for naı̈ve CTLs 12 hours [55]

CCmemory Mitosis time for memory CTLs 6 hours [55]

NCTLd Doublings for a naı̈ve CTL to become an effector CTL 4 doublings [55]

MCTLd Doublings for a resting memory CTL to become an effector CTL 1 doubling [55]

The biological constants utilized for modeling of SIV-specific CTLs are listed.
*Based on Sopper et al describing a total body number of 3.56109 CD8+ T lymphocytes and Blattman et al demonstrating the frequency of epitope precursors to be
561026, and assuming a persisting CTL response to 5 epitopes.
**Derived constant calculated from biologically observed steady state value for total body CTLs, frequency of epitope-specific CTLs and loss rate of epitope-specific CTLs
(see Supplemental Methods).
doi:10.1371/journal.pone.0044778.t002
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Figure 3. Viremia and CTL dynamics predicted by the model using the non-programmed proliferation (NPP) assumption of CD4+ T
lymphocyte generation. The levels of viremia and SIV-specific effector CTLs predicted by the model are plotted. A. Curves when antiretroviral
therapy is administered at 94 days after infection. B. Curves when CD8 depletion is performed at 84 days after infection, and antiretroviral therapy is
administered at 94 days after infection.
doi:10.1371/journal.pone.0044778.g003

Modeling of CTLs in SIV Pathogenesis
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in those prior studies, which estimated multiple biologic param-

eters from the observed set-point viremia level, our model utilized

known biological parameters to arrive at the observed steady state.

The Model Demonstrates that CD8+ T Lymphocyte
Depletion can Increase Viremia Sharply with a Relatively
Small Change in the Lifetime of Infected Cells

The effect of CD8+ T lymphocyte depletion on viral dynamics

was tested in our model (Figure 3B), to mimic experiments

administering anti-CD8 antibody to SIV-infected macaques. The

model predicted a rise in viremia to a new plateau approximately

2.4 log10 units above the prior steady-state level after about four

days, which was similar to that observed in prior CD8 depletion

experiments in SIV-infected macaques [11,12,13,14] and the

Klatt and Wong studies [30,31]. Replicating the viral decay

experiments in the latter studies, the impact of antiretroviral

administration after CD8 depletion was examined. The model

predicted a viremia decay rate (slope) after CD8 depletion that

increased by 6.8% versus no depletion. Thus our model

incorporating cytolytic clearance of infected cells accurately

recapitulates the biological results seen by Klatt et al and Wong

et al [30,31], predicting a relatively small change in viremia decay

rate that those studies did not have the statistical power to detect.

The Finding Predicted by the Model is Robust Across
Varying Parameters for Infected Cell Lifetime, Eclipse
Period, Viral Reproduction Rate, CTL Activation Rate, and
CTL Killing Rate, as Well as the PP CD4+ T Lymphocyte
Generation Scenario

Clearly, the predicted rates of viremia decay after antiretroviral

treatment in the absence and presence of CD8 depletion are

subject to the parameters and assumptions of our model.

Sensitivity testing was performed by varying key input parameters

in the model, including the lifetime of activated CD4+ T

lymphocytes, the reproductive rate of SIV-infected cells, the

eclipse period of SIV-infected cells, and the activation/killing rates

of CTLs. Each parameter was assigned 3 different values, allowing

for 81 possible combinations. The resulting 81 parameter sets

(Table S1) were tested in the model to determine viremia decay

rates without and with CD8 depletion, and the percentage change

induced by CD8 depletion was plotted for each scenario (Figure 4

and Table S1). The predicted changes in viremia decay fell

between 4 to 24% (median 12.6%), with generally higher values

corresponding to longer activated cell lifespans, as expected due to

the longer window for CTL killing and therefore greater impact of

killing on lifespan.

A major modeling assumption was the non-programmed

proliferation of CD4+ T lymphocytes (NPP), given that the process

of generating activated CD4+ T lymphocytes, most of which are

not directly antigen-driven during SIV infection, is poorly

understood. An alternative programmed proliferation (PP) scenar-

io [36] therefore was tested. The results demonstrated that this

model also produced viremia curves consistent with the patho-

genesis of SIV infection in macaques, and also predicted relatively

small changes in viremia decay after antiretroviral treatment in the

absence or presence of CD8 depletion (Figure 5). Finally, this

alternative model was also tested across the same varying

parameter assumptions (Table S2). This sensitivity testing also

demonstrated relatively small changes in infected cell lifespan after

CD8 depletion (Figure 6, and Table S2), ranging from 2 to 74%

(median 13.4%), again with the higher values generally corre-

sponding to longer activated cell lifespans. While there was more

variability in viremia decay change after CD8 depletion for the PP

versus the NPP assumptions, the majority of viable parameter sets

(49 of 69) predicted a change of ,52.7%, which was the mean

change plus one standard deviation in the longitudinally tested

animals within the Klatt et al study (Table S3). Indeed, 42 of 69

viable parameter sets predicted a change of ,20%. These results

showed that the findings of the model are robust over reasonable

ranges of biological parameters.

Discussion

It has been over 25 years since the initial observation that CD8+

T lymphocytes suppress HIV-1 replication [15]. Soon after that

observation, it was noted that most HIV-1-infected persons have

vigorous levels of circulating HIV-1-specific, HLA class I-re-

stricted, cytolytic CD8+ T lymphocytes (CTLs) [23,24] and that

these cells can mediate potent HLA-restricted antiviral activity

[58]. However, debate continued as to whether CTLs mediate

antiviral activity via a non-cytolytic and non-epitope-specific

manner, or via cytolysis after epitope recognition. The demon-

stration that HIV-1-specific CTLs suppress viral replication both

by cytolysis and production of non-cytolytic soluble factor(s) in an

epitope-specific manner [21,22,59], but predominately via cytol-

ysis [22], seemed to reconcile these viewpoints in the context of

other biological evidence for the role of cytolysis by CTLs.

However, two reports in PLoS Pathogens [30,31] have

suggested that CTLs cannot mediate antiviral activity via cytolysis

of infected cells in vivo in the SIV-macaque model. Viremia decay

rates after antiretroviral treatment were not measurably changed

by CD8 depletion, which was interpreted by applying a fixed

production model to suggest that the lifetime of infected cells was

unchanged after CTL removal. This model [32] assumed that the

lifetime of infected CD4+ T lymphocytes is directly reflected by the

decay rate of plasma viremia due to the very short half-life of

virions [60,61]. Thus because the decay rate of plasma viremia

was not detectably changed by the predicted 10- to 20-fold

amount required for cytolysis to explain a 10- to 20-fold increase

in viremia in their fixed production model, the rise in viremia after

CD8 depletion in these studies was attributed to increased virus

production by infected cells without lengthened lifespan (Figure 7

top). It was concluded that CTLs do not mediate antiviral activity

by killing infected cells.

However, this fixed production modeling assumes, due to the

very short survival of free virions, that plasma viremia decay after

antiretroviral treatment directly (linearly) reflects the kinetics of

infected cell decay. This simple assumption requires two key

implicit assumptions about the relationship of plasma viral decay

to infected cell lifetime: that infected cells produce virus at

a constant rate after infection, and that infected cells have fixed

lifespans. Violation of either assumption renders the relationship

between rates of changing viremia and changing infected CD4+ T

lymphocyte levels non-linear. We propose that these assumptions

are inconsistent with the biology of SIV/HIV, and demonstrate

that a more detailed model incorporating biological principles of

virus-CD4+ T lymphocyte-CTL interactions supports the role of

killing as an antiviral mechanism of CTLs. Our model includes

cytolysis as the antiviral mechanism of CTLs, yet accurately

recapitulates the viral decay rates observed in the Klatt and Wong

studies. Thus, our results provide a counterpoint to their

interpretation of the biological data.

In regards to the first point about the fixed production model,

the assumption that the decay rate of viremia after antiretroviral

therapy is directly related to the lifetime of infected cells requires

that infected cells release virions at a constant rate; e.g. a 10-fold

increase in infected cell lifetime is required to produce a 10-fold
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increase in virus output. This assumption immediately leads to

contradiction of two biological points. As mentioned in the

Introduction, the fixed production model would require activated

CD4+ T lymphocytes infected by SIV to survive an average of

more than 10 days after removal of CTLs, if cytolysis of infected

cells maintains the baseline viremia that is more than 10-fold lower

(Figure 7 top). Clearly, this is incompatible with the lifespan of

activated T lymphocytes even in the absence of infection.

Additionally, it is clear that virion production does not occur at

a constant rate in infected cells. The life cycle of HIV/SIV

includes an intracellular phase of viral replication before infectious

virions are released by an infected CD4+ T lymphocyte, spanning

several steps of replication including uncoating of the viral core,

reverse transcription, proviral integration into the host chromo-

some, transcription and translation of viral genes, and assembly of

the proteins that form new virions. Experimentally, significantly

detectable release of virions (by p24 ELISA or titer) is not noted

until about 48 to 72 hours in acutely infected cells, after which

there is an exponential pattern of viral production [25,33]. Virus

production thus is not uniform over the infected cell lifetime, but

highly biased towards the end of the infected cell lifetime, and thus

a small change in lifetime can mediate a relatively large impact on

virion output (Figure 7 bottom). This pattern of viral replication

does not require cytolysis to shorten the infected cell lifespan by

10-fold to mediate a 10-fold decrease in virion production, as

concluded by Wong et al using the fixed production model [31].

The small numbers of animals and high degree of variability of

viremia decay rates between animals would not have the power to

detect a small change in infected cell lifetime due to CD8

depletion. Wong et al [31] cross-sectionally compared viremia

decay between groups of 3, 2, and 3 macaques with varying doses

of CD8-depleting antibody. Klatt et al [30] compared viremia

decay in 8 animals without CD8 depletion and 9 animals with

CD8 depletion, including 7 animals that were tested longitudinally

under both conditions. Even considering only these 7, intra-

macaque decay rate comparisons showed great variability, with

a mean decay rate increase of 5.5% and standard deviation of

47.2% after CD8 depletion (Table S3).

The other crucial underlying assumption of the Klatt and Wong

studies is that infected CD4+ T lymphocytes represent a uniform

compartment with a fixed lifespan. Biologically, infected cells are

a heterogeneous population. The activated memory CD4+ T

lymphocytes that support HIV/SIV replication are destined to die

or revert to resting memory cells within days. Thus, a cell that is

infected towards the end of its lifespan is likely to produce fewer

virions than one infected at the beginning. Also, recognition of

infected cells by CTLs likely depends on the level of antigen

presentation, which increases with lifetime of an infected cell;

a minority of infected cells may be susceptible to recognition.

Finally, it is likely that all infected cells do not encounter virus-

specific CTLs at a fixed time after infection, and some cells may

survive to complete the viral life cycle. As a whole, CTL

recognition is not uniform across the population and may be

biased towards the most infected cells, which we include in our

model. Cytolysis would shorten the lifetime of this minority

selectively, having a minor effect on the average lifetime of the

Figure 4. Sensitivity testing of the model using the CD4+ T lymphocyte NPP assumption. Key assumed biological parameters in our model
were varied in order to test the rigor of the prediction that CD8 depletion causes a relatively small change in rate of viremia decay. The lifetime of an
activated CD4+ T lymphocyte (ActCD4life) was varied over 4, 7, or 15 days. The basic reproductive rate for infected cells (number of newly infected
cells resulting from an infected cell in the absence of immune clearance, R0) was varied over 8, 10, and 15. The eclipse period for an infected cell was
varied over 1, 2, and 2.5 days. The factor for rate of CTL activation and killing of infected cells (a=k) was varied over 1029, 561029, and 1028. The
graph plots the predicted % change in decay rate caused by CD8 depletion for each set of the 81 possible combinations of these parameters, varied
in order of listing. Predicted decay rates of ,5% are shown in blue dots, 5–10% in green dots, and .10% in red dots.
doi:10.1371/journal.pone.0044778.g004
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whole population of infected cells. For example, if the overall

infected cell population were to have a mean lifespan of 3 days

without CTL killing, but CTL killing were to shorten the lifespan

of 10% of the population (the most highly infected cells) by 0.5

day, the mean lifespan of the whole population would only be

Figure 5. Viremia and CTL dynamics predicted by the model using the programmed proliferation (PP) assumption of CD4+ T
lymphocyte generation. The levels of viremia and SIV-specific effector CTLs predicted by the model are plotted. A. Curves when antiretroviral
therapy is administered at 94 days after infection. B. Curves when CD8 depletion is performed at 84 days after infection, and antiretroviral therapy is
administered at 94 days after infection.
doi:10.1371/journal.pone.0044778.g005
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reduced to 2.75 days (0.963+0.160.5), despite killing of the cells

that produce the most virus.

Beyond these caveats to the fixed production model, experi-

mental factors may have contributed to underestimation of the

viremia decay rate change after CD8 depletion in the Klatt and

Wong studies. Their modeling did not take into account

pharmacologic and biologic lag in the reduction of viral

replication, which would dilute a difference between CD8 depleted

and non-depleted viral decay rates after antiretroviral administra-

tion. Another potential contributing factor to underestimating the

impact of CTL killing on viral decay is the assumption that CTL

activity would remain constant after pharmacologic interruption of

SIV replication. There are two reasons that CTL killing activity

might decline as viral replication is halted. First, the activation and

proliferation of virus-specific CTLs depends on antigenic stimu-

lation, as demonstrated by studies showing declining rates of HIV-

1-specific CTLs after antiretroviral treatment of persons

[52,53,54]. Although Klatt et al measured overall CTL frequencies

to confirm that SIV-specific CTL levels appeared stable, this

would not detect a change in phenotype resulting in reduced

killing. Second, as infected cells decrease in frequency, the rate at

which they encounter CTLs likely would decrease, also reducing

the frequency of killing.

For simplicity, our modeling omitted certain biological

concepts. Longer-lived infected cells such as monocytes/macro-

phages were not included, because their contribution to plasma

viremia is quite minor, and they also have been shown to be

susceptible to CTL killing [23]. Similarly, the latent reservoir of

infected cells was not considered, because it contributes

negligibly to plasma viremia [62]. Viral mutational escape from

CTL recognition also was not considered, since this factor

would decrease the killing efficiency of CTLs (counter our

hypothesis), and the stability of CTL responses and viral

sequences suggests that this is a negligible factor during the

steady state of chronic infection [43].

In conclusion, given the bountiful basic scientific data in animal

models regarding the importance of the perforin-granzyme

cytolytic pathway in protection from viral infections, and the

strong circumstantial evidence in HIV-1 pathogenesis, it seems

unreasonable to assume that these cytolytic effector molecules are

not present for a key purpose, or that HIV-1 pathogenesis follows

entirely different rules compared to other viruses. Our findings

underscore the importance of incorporating the complicated

interactions of virus with CD4+ and CD8+ T lymphocytes into

models to achieve accurate predictions. The accompanying

commentary [63] regarding the two PLoS Pathogens articles

disputing CTL killing activity cited former US Secretary of

Defense Donald Rumsfeld’s infamous statement about ‘‘known

and unknown unknowns’’ to suggest that the cytolytic activity of

CTLs should be reclassified in the latter category. Alternatively,

we propose that the strength of the basic biologic data about viral

replication and T lymphocytes, and the ability to reconcile the

experimental findings to a reasonable model that includes CTL

killing activity suggest that the role of CTLs as killers should

remain a clear ‘‘known’’ despite the ‘‘unknowns’’ that currently

Figure 6. Sensitivity testing of the model using the CD4+ T lymphocyte PP assumption. Key assumed biological parameters in our model
were varied in order to test the rigor of the prediction that CD8 depletion causes a relatively small change in rate of viremia decay. The lifetime of an
activated CD4+ T lymphocyte (ActCD4life) was varied over 4, 7, or 15 days. The basic reproductive rate for infected cells (number of newly infected
cells resulting from an infected cell in the absence of immune clearance, R0) was varied over 8, 10, and 15. The eclipse period for an infected cell was
varied over 1, 2, and 2.5 days. The factor for rate of CTL activation and killing of infected cells (a=k) was varied over 1028, 1027, and 561027. The
graph plots the predicted % change in decay rate caused by CD8 depletion for each set of the 81 possible combinations of these parameters, varied
in order of listing. Predicted decay rates of ,5% are shown in blue dots, 5–10% in green dots, and .10% in red dots.
doi:10.1371/journal.pone.0044778.g006
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prevent complete understanding and complete modeling of the

processes involved.

Supporting Information

Table S1 Sensitivity study of the model utilizing the
non-programmed proliferation (NPP) assumption of
CD4+ T lymphocyte generation. Parameter sets were pro-

duced by varying individual parameters as indicated. For each

parameter set, the model was run to calculate viremia decay slopes

after antiretroviral therapy without and with CD8 depletion. The

change in slopes between these conditions is indicated for each

parameter set. Parameter sets that did not yield containment of

viremia in chronic infection were excluded from this analysis

(shaded gray). The parameters utilized for Figure 3 are highlighted

yellow.

(PDF)

Table S2 Sensitivity study of the model utilizing the
programmed proliferation (PP) assumption of CD4+ T
lymphocyte generation. Parameter sets were produced by

varying individual parameters as indicated. For each parameter

set, the model was run to calculate viremia decay slopes after

antiretroviral therapy without and with CD8 depletion. The

change in slopes between these conditions is indicated for each

parameter set. Parameter sets that did not yield containment of

viremia in chronic infection were excluded (shaded gray). The

parameters utilized for Figure 5 are highlighted yellow.

(PDF)

Table S3 Longitudinal changes in viremia decay rates
after antiretroviral administration with and without
CD8 depletion, as observed in the Klatt et al study. Raw

data from the Klatt et al study (Supplemental Table from Klatt

NR, Shudo E, Ortiz AM, Engram JC, Paiardini M, et al., 2010,

CD8+ lymphocytes control viral replication in SIVmac239-

infected rhesus macaques without decreasing the lifespan of

productively infected cells, PLoS Pathog 6: e1000747) are

analyzed. For each longitudinally tested animal, the change in

viremia decay was calculated (bottom boxes). Animals that were

not longitudinally tested are shaded in gray.

(PDF)
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Figure 7. Schematic of different viral replication modeling assumptions. The assumptions and implications of the fixed production model
and the model utilized in the current study are compared schematically: Top: The fixed production model assumes that the amount of plasma virus is
always in direct proportion to the number of infected cells, and therefore that infected cells produce virus at a constant rate after infection. Based on
the observed viremia decay rate after antiretroviral treatment, the average lifetime of an infected cell is calculated (green arrow). After CD8 depletion,
the lifetime of an infected cell would have to increase linearly to explain the increased virus (blue arrow) if shortened lifetime were the mechanism of
CTL suppression of viral replication. However, Klatt et al and Wong et al were unable to measure a change in viremia decay rates and therefore
assumed that virus production per cell must be increased after removal of CTLs (blue line). Bottom: Our model assumes a non-linear rate of virus
production by an infected cell, starting with an eclipse period and then an exponential rise in production, fitting biological observations of viral
replication. If CTLs kill the infected cell during the productive phase of infection at baseline (green arrow), loss of CTLs result in a relatively large
output in virus production with a small change in the lifetime of the infected cell. Thus the rise in virus production seen after CD8 depletion is
consistent with a small change in the lifetime of infected cells, far below the power to detect with a small number of tested macaques.
doi:10.1371/journal.pone.0044778.g007
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