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Insulators are DNA elements that establish independent transcriptional domains within eukaryotic ge-
nomes. The Drosophila scs and scs� insulators localize near the borders of a structural domain in the polytene
chromosomes, known as a puff, produced by transcription of the 87A heat shock protein (hsp) genes. It has been
suggested that scs and scs� are boundary elements that delimit this decondensed chromatin domain, reflecting
the mechanism by which these sequences act to constrain regulatory interactions. This model was tested using
transposons that carried a yellow gene to assess enhancer blocking and an hsp70-lacZ gene to examine the
structure of a heat shock puff in the presence and absence of insulators. We found that although scs and scs�
blocked enhancer function, these sequences did not prevent the spread of decondensation resulting from
hsp70-lacZ transcription. Further analysis of the endogenous 87A locus demonstrated that scs and scs� reside
within, not at, the borders of the puff. Taken together, our studies suggest that scs and scs� are not boundary
elements that block the propagation of an altered chromatin state associated with puff formation. We propose
that these insulators may have a direct role in limiting regulatory interactions in the gene-dense 87A region.

Eukaryotic genomes are assembled into chromatin to estab-
lish the platform for accurate transcriptional regulation. Chro-
matin is not uniformly organized along the length of the chro-
mosome but is folded into regions of distinct higher-order
structure. For example, the Drosophila polytene chromosomes
display a reproducible dark and light banding pattern, reflec-
tive of an underlying structural organization that aligns the 500 to
1,000 chromatids (49, 62). Specialized DNA elements, known
as boundary elements, are proposed to generate topologically
independent structural domains by assembling protein com-
plexes that interact with each other or nuclear substructures to
form loop domains (16, 43, 46). Structural domains have been
linked to independent gene expression, postulating that high-
er-order chromatin structures constrain regulatory interactions
such that they occur only within, but not between, domains
(reviewed in references 18 and 36). While recent studies sug-
gest that 20 to 30 percent of genes in the Drosophila genome
are organized into coexpressed clusters, a correlation between
coregulated domains and the banding pattern of polytene
chromosomes was not found (7, 13, 60). These observations
suggest that a more detailed analysis of independent structural
domains is required to fully understand the connection be-
tween structural and functional chromosomal domains.

One well-characterized structural domain in the polytene
chromosomes resides in the 87A region of the third chromo-
some (Fig. 1). This 15-kb region contains a pair of divergently
transcribed heat shock protein 70 (hsp70) genes (Fig. 1). Under
non-heat shock conditions, histones H3 and H4 within the 87A
region are acetylated, suggesting that the locus is primed for
transcriptional activation (44). Upon heat shock, robust tran-

scription of the hsp70 genes produces a defined structural
domain of decondensation, referred to as a puff. Formation of
the heat shock puff requires poly(ADP)-ribose polymerase,
which ribosylates chromatin proteins. Poly(ADP)-ribose poly-
merase activity promotes decondensation and unwinding of
the chromatin fiber and is accompanied by an increase in
histone H3 phosphorylation (44, 63). At the borders of the 87A
heat shock puff are two regions of specialized chromatin struc-
tures, known as scs and scs� (64). Each element contains two
nuclease-hypersensitive sites flanking a nuclease-resistant core
and topoisomerase II cleavage sites that redistribute upon heat
shock (64, 65). These properties suggested that scs and scs� are
boundary elements of the 87A puff domain that control the
long-range topological transitions and regulate the limits of
decondensation associated with transcription of this heat shock
locus (33, 64, 65).

Characterization of the functional properties of scs and scs�
demonstrated that these sequences are insulators (12, 15,
34, 35, 56, 66). Insulators are a class of regulatory elements
that establish independent domains of transcriptional activity
within eukaryotic genomes (19, 36, 67). Two properties define
insulators. First, insulators provide a position-dependent block
of enhancer or silencer action. Insulators prevent enhancers
and silencers from communicating with a promoter only when
inserted between regulatory elements and a promoter (22, 32,
34, 41, 56). Second, insulators protect gene expression from
positive and negative chromatin position effects (5, 14, 35, 51,
52). Insulator effects are orientation independent and block
regulatory interactions without inactivation of any of the con-
trol elements (9, 22, 54). The observation that the scs and scs�
insulators reside at the borders of the heat shock puff provided
the first link between an insulator-defined domain and a struc-
tural domain, forming the foundation of a model that proposes
that insulators are domain boundary elements (20, 64, 66).

Two proteins involved in the insulator effects of scs and scs�
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have been identified. The zinc finger Zeste-white 5 (Zw5)
protein binds scs, while the boundary element-associated fac-
tor (BEAF) proteins bind scs� (Fig. 1) (17, 28, 68). Zw5 and
BEAF localize at opposite borders of the 87A heat shock puff
in the polytene chromosomes, with additional sites of associa-
tion throughout the chromosome arms (6, 17, 68). Non-scs�
BEAF binding regions have been identified that possess insu-
lator properties, suggesting that BEAF localization may define
functional domains throughout the genome (11, 12).

The Drosophila genome contains many types of insulators
(reviewed in references 19, 21, and 61). These insulators have
been identified in a variety of ways, such as by effects on
chromosome structure, transcriptional regulation, or the pres-
ence of binding sites for an insulator protein. The properties of
these diverse insulators suggest that regulatory isolation may
be established in mechanistically distinct ways (31, 45). Dro-
sophila insulators are widely distributed, consistent with the
proposal that chromosomes are divided into independent func-
tional domains that are important for correct elaboration of
transcriptional programs.

The role of the scs and scs� insulators in defining the limits
of the structural domain of the 87A heat shock puff has not
been tested. To this end, we developed a polytene chromo-
some assay that addressed whether the insulator function of scs
and scs� was coupled to formation of puff boundaries. Our
studies used the previously characterized hsp70-lacZ transgene
to produce large heat shock puffs randomly throughout the
genome (40). We used in situ hybridization to determine the
extent of decondensation that occurred in the presence and
absence of insulators. We find that the scs, scs�, and gypsy
insulators do not delimit the borders of a heat shock puff, even
though these elements demonstrate enhancer-blocking activ-
ity. A reevaluation of the structure of the 87A heat shock puff
supports our hsp70-lacZ transgene findings, showing that scs
and scs� reside within, not at, the borders of the heat shock
puff. Our results suggest that scs and scs� do not regulate the
structural domain of decondensation at 87A and imply that the
endogenous role of these insulators may be restricted to con-
trolling regulatory interactions in this gene-dense region.

MATERIALS AND METHODS

DNA constructions. Three plasmids were made to facilitate cloning of P[wyp]
and derivative transposons: loxP, y/w, and p70ZF. The loxP plasmid (EK710)
contained direct repeats of the target site for the bacteriophage P1 Cre recom-
binase, flanking a unique EcoRI restriction site. The 35-bp loxP sites were
isolated from p[SFL] (55). Each insulator was inserted into the EcoRI site, and
the loxP-insulator-loxP fragment was removed as a NotI fragment. The y/w
plasmid (EK1027) contained the mini-yellow and mini-white genes. The intron-
less mini-yellow gene was 5.2 kb in size and contained the wing and body
enhancers and coding region of the yellow gene, including 2.8 kb of 5� and 0.13
kb of 3� flanking DNA (23). The Eco47III site at position �893 relative to the
transcription start site was changed to a NotI site, into which the loxP-insulator-
loxP fragments were inserted. Modified mini-yellow genes were inserted into an
XbaI site within the transformation vector pCaSpeRW15, which carries the
mini-white gene with most of the first intron deleted and includes 305 bp of 5� and
500 bp of 3� flanking DNA (47). The p70ZF plasmid was derived from cp70ZT,
which contained a fusion of the 87C1 hsp70 gene with the bacterial lacZ, lacY,
and lacA genes (58). The lacZ, lacY, and lacA genes were inserted into the
BamHI site within hsp70, with the eighth codon of lacZ joined in frame to hsp70
(40). The hsp70 gene contained 194 bp of 5� DNA and extended to 79 bp beyond
an AATAAA site at the 3� end (58). Two 114-bp FRT sites, targets for the yeast
FLP recombinase, were PCR amplified from pBSloxFRT (a derivative of p[SFL]
[55]) and inserted at position �86 within the hsp70 5� UTR. A unique NotI site
was engineered between the FRTs to allow insertion of the insulators. The total
distance from the start site of hsp70 transcription to the 5� end of the insulator
was approximately 200 bp.

Four P[Ins-Ins] transposons were made. These were P[scs�-scs�], P[2scs�-2scs�],
P[gyp-gyp], and P[scs-2scs�]. Attempts to make a P[scs-scs] transposon were
unsuccessful, because the scs insulator was unstable when inserted within the
hsp70-lacZ UTR.

The scs� insulator corresponded to an approximately 500-bp fragment, num-
bered 1 to 501 in the scs� GenBank sequence (accession number X63732). This
fragment contains high- and low-affinity BEAF binding sites (Fig. 1) (68). The scs
insulator corresponded to a 990-bp PvuII fragment, numbered 510 to 1503 in the
scs GenBank sequence (accession number X63731). This fragment has enhancer-
blocking activity similar to the full-length scs and contains the Zw5 binding site
(17, 66). The gypsy insulator contained 12 Su(Hw) protein binding sites, corre-
sponding to bp 647 to 1077 in the gypsy retrotransposon (42).

Germ line transformation and genetic manipulations. The P[wyp] and P[Ins-
Ins] transposons were introduced by germ line transformation into the host strain
y1w67c23, which carries a point mutation in the yellow translation start codon and
a deletion of a portion of the white gene. Transposons were coinjected with
“wings clipped” helper plasmid p�25.7 at concentrations of 1 mg/ml and 200
�g/ml, respectively. Transformants were recognized by a change in eye pheno-
type and used to establish stocks. Southern analysis determined the number of
inserts and analyzed the integrity of the transposon and the presence of insula-
tors in all lines. Only lines with single insertions were analyzed further.

FIG. 1. Cytological region 87 of the Drosophila polytene chromosomes. Shown is the genomic organization of the 87A puff region. This 15-kb
region contains five genes, indicated by black arrows: a pair of divergently transcribed hsp70 genes, CG31211 (previously annotated as CG14732),
CG3281, and aurora. The dashed arrow designates a possible transcript originating from a previously identified cryptic promoter (30). The locations
of scs (white box) and scs� (gray box) are shown, with more detail provided for the fragments included in the puffing assay. The Zw5 binding site
within scs is indicated by a black rectangle. Positions of the CGATA motifs within scs� are shown as arrowheads, with the arrow indicating the
direction of the motif (5�-CGATA-3�). Clusters of three CGATA motifs form low- and high-affinity binding sites for the BEAF protein (68).
Restriction site designations are as follows: V, PvuII; R, EcoRI; B, BamHI.
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Derivative lines lacking the upstream insulator (P[�Ins-Ins]) were obtained by
crossing males that carried the original P[Ins-Ins] transposons to females that
carried a constitutively active Cre recombinase transgene (y1w; P[w� Cre] CyO/
Sco, provided by Dan Hartl and Mark Siegal, Harvard University). Male y1w/Y;
P[Ins-Ins]/�; P[w� Cre] CyO/� progeny with dark wing and body pigmentation
were selected. This phenotype suggested that somatic excision of the insulator
occurred, allowing the wing and body enhancers to activate the yellow promoter,
and suggested that these males also carried a deletion of the insulator in the germ
line. These males were backcrossed to the parental y1w67c23 stock. Male
y1w67c23/Y; P[�Ins-Ins] progeny lacking the P[w� Cre] transgene were selected
and backcrossed to y1w67c23 females to establish a stock. Southern analysis
confirmed excision of the 5� insulator.

P[Ins-�Ins] derivative lines lacking the downstream insulator were obtained by
crossing males that carried the original P[Ins-Ins] transposons to females that
carried a Flp transgene under the control of a heat shock promoter (y�ac�w1118

P[70Flp 3F]; P[70Flp 3F] flies provided by Kent Golic, University of Utah).
Embryos were heat shocked for 1 h at 37°C at approximately 24 h after egg laying
to activate the Flp transgene. Male y�ac�w1118 P[70Flp 3F]/Y; P[Ins-Ins]/�
progeny were selected and backcrossed to the parental y1w67c23 stock. Male
y1w67c23/Y; P[Ins-�Ins] progeny lacking the P[70Flp 3F] transgene were back-
crossed to y1w67c23 females to establish a stock. Southern analysis confirmed
excision of the 3� insulator.

Polytene chromosome analyses. In situ hybridization was performed as de-
scribed previously (39), using a lacZ-hsp70 probe (4.6-kb EcoRI/SalI fragment
from p70ZF) or a white probe (the 4.5-kb mini-white gene from pCaSpeRW15
[47]). Analysis of the patterns of scs and scs� hybridization at the 87A region used
a 990-bp PvuII fragment containing the minimal scs insulator and a 500-bp
fragment containing the minimal scs� insulator, described above. The approxi-
mately 1-kb 5�scs probe was obtained by PCR amplification of Canton S genomic
DNA, using the primers 5�-AGTTTGCTTGCCGCAGGATATG-3� (forward)
and 5�-GTCGCATCAGTTGGTCTACACG-3� (reverse). The reverse primer
anneals approximately 5 kb upstream of the PvuII fragment containing the
minimal scs insulator. For heat shock studies, larvae were incubated at 37°C for
20 min in a circulating water bath. Glands were dissected and fixed within 15 min
following heat shock.

Puffs hybridized with the lacZ-hsp70 probe were classified into four different
size categories: none (tight band, 1 to 10% the size of the 87C puff), small (11 to
40% 87C puff), intermediate (41 to 75% 87C puff), and large (�100% 87C puff).
For each line, at least 50 puffs were classified, with the predominant sizes listed
in Tables 1 and 2.

Puffs hybridized with the white probe were analyzed to determine the extent to
which white sequences were included within the puff. At least 50 puffs were
examined per line. The majority of puffs observed in P[wyp], P[2scs�-�2scs�],
P[scs-�2scs�], and P[gyp-�gyp] lines had white hybridization in the middle or
throughout at least 50% of the puff, with some lines displaying punctate hybrid-
ization at the edge of the puff. In the cases tested, removal of the 5� insulator in
lines with hybridization close to the edge of the puff did not change the appear-
ance of hybridization.

Northern analysis. Total RNA was isolated from adult flies heat shocked for
45 min in a 37°C warm air incubator. Samples were run on a 1.2% formaldehyde
agarose gel, with approximately 15 �g of RNA loaded per lane. Northern anal-
ysis was performed using standard methods (8), using a lacZ probe correspond-
ing to an approximately 1-kb EcoRI/SacI fragment containing the 3� end of the
lacZ gene and a loading control probe containing the rp49 gene. Radioactive
counts were recorded using a Packard instant imager. Counts for the hsp70-lacZ
transcript in each lane were normalized to the amount of rp49 counts in each
lane. The factor of change in hsp70-lacZ RNA accumulation was determined by

dividing the normalized hsp70-lacZ value in the absence of the insulator by the
normalized value in the presence of insulator.

RESULTS

Our chromosome-puffing assay used the hsp70-lacZ fusion
gene to generate ectopic heat shock puffs at random sites in the
genome. This fusion gene was constructed by insertion of the
lacZ operon into the hsp70 coding sequences (40, 58). The
hsp70-lacZ transgene establishes a large transcription unit that
generates a puff that spreads both upstream and downstream
of the hsp70 promoter (57).

The hsp70-lacZ gene was cloned into a P element transfor-
mation vector that carried the mini-white and mini-yellow
genes, called P[white yellow puff] or P[wyp] (Fig. 2). The mini-
white gene encodes a protein required for eye pigmentation,
allowing transformed flies to be identified by a change in eye
phenotype. The mini-yellow gene encodes a protein responsi-
ble for dark cuticle pigmentation and contains two of the
tissue-specific enhancers, the upstream wing and body enhanc-
ers (23). If a functional insulator is inserted between these
upstream enhancers and the promoter, then yellow expression
is lost in the wing and body cuticle and pigmentation is brown.
Analysis of yellow expression in the presence of insulators
served as a control for the influence of genomic context on
insulator function and therefore possible position effects on
puff boundary formation (10).

To confirm that the hsp70-lacZ transgene produced large
puffs in the context of P[wyp], five transgenic lines were estab-
lished. P[wyp] flies had dark wing and body pigmentation (data
not shown). Analysis of chromosomes from heat-shocked and
non-heat-shocked third-instar larvae was done by in situ hy-
bridization. Initial analyses used the lacZ-hsp70 probe (Fig. 2).
Hybridization with this probe detected the transgene, as well as
the natural 87A and 87C heat shock puffs, because it contained
sequences from the 3� end of the hsp70 gene. The sizes of the
heat shock puffs produced by P[wyp] were compared to those
of the endogenous hsp70 puffs to control for the degree of heat
shock and amount of squashing of the chromosomes. The
non-heat-shocked P[wyp] chromosomes showed a tight band of
lacZ-hsp70 hybridization at the site of the P[wyp] insertion in

TABLE 1. Categorization of heat shock puff size in P[wyp] and
P[Ins-Ins] transgenic linesa

Construct
No. of lines

None Small Intermediate Large

P[wyp] 0 0 0 5
P[scs�-scs�] 1 0 0 6
P[2scs�-2scs�] 2 1 2 0
P[scs-2scs�] 2 2 0 0
P[gyp-gyp] 0 0 1 3

a Scale based on size relative to 87C puff: none, 1 to 10%; small, 11 to 40%;
intermediate, 41 to 75%; large, 76 to 100�%.

TABLE 2. Sizes of heat shock puffs formed by P[Ins-Ins]
transgenic lines and derivativesa

Construct Location
Size of puffs

P[Ins-Ins] P[Ins-�Ins] P[�Ins-Ins]

P[2scs�-2scs�] 19D Small ND Small
26A None None None
79E None Int None
95C Int Large ND
99B Sm/Int Large Int

P[scs-2scs�] 26A Small ND ND
42E None Large None
60A None Large Small
83E Small Large Small

P[gyp-gyp] 19F Int/Large Int/Large ND
25C Large Large Large
71E Large Large Int/Large

a Int, intermediate; Sm, small. Lines listed as Sm/Int or Int/Large had an
approximately equal number of puffs in the small and intermediate or interme-
diate and large categories, respectively. ND, not determined.
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all five lines tested (Fig. 2A). In contrast, the heat-shocked
P[wyp] chromosomes had a large puff at the transgene site,
with hybridization of the probe occurring throughout the puff.
The size of the P[wyp] puffs differed slightly between transgenic
lines, with all lines showing puffs that were the size of the
endogenous 87C puff or larger and were classified as large (Fig.
2B, Table 1). Production of a puff of this dimension was not
surprising because the size of a heat shock puff depends, in
part, upon the length of the transcription unit (58). The hsp70-
lacZ transcript is nearly four times larger than the endogenous
hsp70 genes.

We determined whether the decondensation associated with
the P[wyp] heat shock puffs extended upstream of the hsp70

promoter using in situ hybridization with the mini-white gene
as a probe (Fig. 2A). In all five lines, the white probe hybridized
throughout the puff in the majority of chromosomes analyzed
(60 to 70%), while the remaining puffs showed hybridization at
a puff edge that reached towards the puff center, covering 25%
or more of the interior. The pattern of white hybridization
differed from that observed with the lacZ-hsp70 probe, display-
ing a more punctate pattern. We note that the lacZ-hsp70
probe includes sequences that are transcribed, while the white
probe does not. These observations suggest that the distinct
pattern of hybridization associated with these probes may re-
flect different levels of chromatin decondensation in the puff,
with the lacZ-hsp70 region in a highly extended and decon-
densed conformation due to the passage of RNA polymerase,
while the white region is less decondensed. These data dem-
onstrate that the P[wyp] transposon produces large puffs that
spread at least 5.5 kb upstream of the hsp70 promoter. This
spread is in the range of decondensation associated with the
endogenous 87A heat shock puff that encompasses sequences
over an approximately 15-kb region. The properties of the
P[wyp] transposon provided a system for analyzing whether
insulators delimit the boundaries of a heat shock puff.

A puffing assay to test whether scs and scs� are domain
boundaries. A series of transposons were constructed that car-
ried insulators inserted both upstream and downstream of the
hsp70 promoter in P[wyp] to make P[Ins-Ins] (Fig. 3 and 4, see
Fig. 6). The upstream insulator in P[Ins-Ins] was inserted be-
tween the enhancers and the promoter of the yellow gene (3.4
kb upstream of the hsp70-lacZ promoter). We reasoned that if
an insulator were active at a given genomic location, then
transcriptional activation by the wing and body enhancers
would be lost, as assessed by the level of adult cuticle pigmen-
tation. A demonstration of enhancer-blocking activity was nec-
essary to confirm that each sequence tested for puff boundary
activity functioned as an insulator. The 5� limits of the heat
shock puff were defined using the mini-white gene as a probe.
These sequences were 2 kb upstream of the yellow gene, pro-
viding distance between the insulator and the white probe to
ensure that this probe was outside of an insulator-defined
domain.

The downstream insulator was positioned at �86 bp relative
to the start site of hsp70 transcription, within the hsp70-lacZ
untranslated region. This placed the transposon insulator
closer to the hsp70 promoter than the natural location of the
scs and scs� insulators in the 87A locus. The �86 site was
chosen to ensure that if the insulator defined a puff boundary,
a dramatically decreased puff size would be observed. This
insertion site was outside of regulatory sequences required for
hsp70 transcription, including the site of the paused polymer-
ase (25, 38, 48). We reasoned that transcription through the
insulator would not affect its function, since insulators block
enhancer-activated transcription when located within an intron
(4, 22). The 3� limits of the puff were defined by the lacZ-hsp70
probe, located 4.2 kb away from the downstream insulator.

The upstream and downstream insulators in the P[Ins-Ins]
transposons were placed in cassettes that contained direct re-
peats of the target sites for the site-specific Cre and FLP
recombinases, respectively (Fig. 3A). In this way, independent
removal of the insulators was possible, without a change in
genomic location. In each case, derivative lines of P[Ins-Ins]

FIG. 2. Large heat shock puffs are produced by the P[wyp] trans-
poson. (A) Shown is the structure of the P[wyp] transposon that con-
tains three transgenes, indicated by rectangles (red � mini-white; yel-
low � mini-yellow; white � hsp70; blue � lacZ). The arrows indicate
the direction of transcription. The yellow ovals represent the wing and
body enhancers for the yellow gene. The heat shock elements are
shown as white rectangles. Black arrowheads represent loxP sites for
recognition by the Cre recombinase. White arrows represent FRT sites
for recognition by the FLP recombinase. Note that P[wyp] is not drawn
to scale. Black bars indicate the extent of the probes used for in situ
hybridization (white and lacZ-hsp70). Chromosomes from a transgenic
line containing the P[wyp] transposon at cytological position 49F were
hybridized with the white probe (left) or the lacZ-hsp70 probe (right).
For the lacZ-hsp70 probe, both non-heat-shocked (no HS) and heat
shocked (HS) chromosomes are shown. (B) Shown is a larger region of
heat-shocked chromosomes from a larva containing the 49F P[wyp]
transposon hybridized with the lacZ-hsp70 probe. Hybridization occurs
at the endogenous hsp70 puffs at 87A and 87C, as well as the transgene
puff.
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produced by the site-specific recombinases were examined by
Southern analysis to confirm the structure and unchanged lo-
cation of the insulator-deleted transposon. The generation of
insulator-deleted derivatives of P[Ins-Ins] at a given genomic
site allowed us to attribute changes in the size and structure of
heat shock puffs to the presence of insulators and not chromo-
somal position effects.

The model that scs and scs� regulate the boundaries of the
87A structural domain that corresponds to the heat shock puff
leads to two predictions. First, the size of the puff in the
P[Ins-Ins] transgenic lines should be smaller than found in the
P[wyp] lines. Second, the puff found in the P[Ins-Ins] lines
should be limited to the transposon sequences located between
the insulators, such that the white and lacZ-hsp70 probes would
not be in the puff. Fulfillment of either prediction would be
demonstrated by in situ hybridization results that were distinct
from those obtained from P[wyp] lines.

The downstream 2scs� insulator restricts puff formation.
The P[scs�-scs�] transposon contained a single scs� insulator
positioned upstream and downstream of the hsp70 promoter.
This 500-bp fragment includes both the weak and strong BEAF
binding sites of scs� (Fig. 1). Eight P[scs�-scs�] transgenic lines
were obtained. Analysis of the yellow phenotype demonstrated
that the single scs� produced only a partial block of the wing
and body enhancers, a finding consistent with previous data
(37, 66). Heat-shocked chromosomes isolated from larvae of
seven of the P[scs�-scs�] transgenic lines were hybridized with
the lacZ-hsp70 probe. These studies showed that hybridization
was throughout a large puff in six of the lines, with one line
showing no puff (Table 1). These data suggest that a single scs�
is a weak insulator that does not form a domain boundary.

A second transposon, P[2scs�-2scs�], was generated, which
carried a pair of scs� insulators, referred to as 2scs�, inserted
both upstream and downstream of the hsp70 promoter (Fig. 3).
Nine lines were established that showed a greater block of the
yellow enhancers than was seen with a single scs�. These results
imply that two scs� elements establish a stronger insulator than
one (37). We studied the boundary activity of the stronger 2scs�
insulator because structural models of insulator function pre-
dict that the strength of an insulator reflects its capacity to
establish a boundary of a structural domain (18, 66).

Effects of the 2scs� insulator were evaluated by in situ hy-
bridization to polytene chromosomes isolated from larvae of
five P[2scs�-2scs�] lines. In all cases, hybridization of the lacZ-
hsp70 or white probes to non-heat-shocked chromosomes pro-
duced a single, tight band of hybridization at the transgene site,
whereas hybridization of these probes to heat-shocked chro-
mosomes produced a range of puff sizes, from no puff to an
intermediate puff (Fig. 3B; Table 1). These data are distinct
from the large puffs obtained from P[wyp] lines and suggest
that the 2scs� insulator restricted puffing, perhaps by forming a

FIG. 3. Effects of the 2scs� insulator on the structure of a heat
shock puff. (A) Shown are the P[2scs�-2scs�] transposon and its deriv-
atives, P[�2scs�-2scs�] and P[2scs�-�2scs�]. Symbols are as described in
Fig. 2. A pair of scs� insulators (gray triangles) was inserted between
the wing and body enhancers and yellow promoter at position �900
relative to the yellow transcription start site and at position �86 rela-
tive to the hsp70-lacZ transcription start site. Derivative lines lacking
the upstream 2scs� (P[�2scs�-2scs�]) were generated by crossing flies
that carried P[2scs�-2scs�] to flies expressing a source of Cre recombi-
nase (left arrow). Derivative lines lacking the downstream 2scs�
(P[2scs�-�2scs�]) were generated by crossing flies that carried the
P[2scs�-2scs�] transposon to flies expressing a source of FLP recombi-
nase (right arrow). (B) The structures of the P[2scs�-2scs�] transposon
and its derivatives are shown in the center, with the corresponding
heat-shocked chromosomes hybridized with either the white probe
(left) or lacZ-hsp70 probe (right) isolated from transposons at position
79E.

FIG. 4. Effects of the gypsy insulator on the structure of a heat
shock puff. Structures of the P[gyp-gyp] transposon and derivative
transposons are shown. Symbols were described previously in Fig. 2.
The gypsy insulators are represented by black triangles. All chromo-
somes were isolated from heat-shocked larvae containing the indicated
transposon at cytological position 71E. Chromosomes were hybridized
with either the white probe (left) or the lacZ-hsp70 probe (right).
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boundary to the spread of decondensation caused by hsp70
transcription.

The downstream 2scs� was positioned close to the hsp70
promoter to produce a dramatic reduction of puff size, if these
sequences established a domain boundary. To test whether the
downstream 2scs� restricted puff formation, flies from four
P[2scs�-2scs�] transgenic lines were crossed to flies carrying a
transgene that expressed FLP recombinase. Progeny from
these crosses were genotyped and those that carried a deletion
of the downstream 2scs� insulator were used to establish a
stock. Polytene chromosome analysis was undertaken for all
four P[2scs�-�2scs�] deletion lines. Chromosomes from heat-
shocked larvae of three P[2scs�-�2scs�] lines had larger puffs
than the corresponding P[2scs�-2scs�] chromosomes, with hy-
bridization of the lacZ-hsp70 probe throughout the puff (Fig. 3;
Table 2). The size of the puff in the fourth line did not change,
probably reflecting a negative position effect (Table 2). These
data demonstrate that the downstream 2scs� was responsible
for limiting puff formation in P[2scs�-2scs�] heat-shocked chro-
mosomes. These results were consistent with a model that
proposes that 2scs� is the boundary of a puff domain, with
removal causing an increase in puff size.

The downstream 2scs� has negative effects on heat shock
transcription. The effects of the upstream 2scs� on puff forma-
tion were examined. We predicted that if 2scs� were a bound-
ary element, then removal of the upstream 2scs� would pro-
duce a large puff, allowing decondensation to include white
sequences. P[2scs�-2scs�] flies were crossed to flies carrying a
Cre recombinase transgene, and P[�2scs�-2scs�] derivative
lines were identified by dark pigmentation of the wing and
body. These flies were genotyped, and four P[�2scs�-2scs�]
lines were established. Chromosomes isolated from heat-
shocked larvae were analyzed by in situ hybridization with the
lacZ-hsp70 and white probes. To our surprise, we did not ob-
serve any change in decondensation in the heat-shocked chro-
mosomes, with both probes showing a tight band of hybridiza-
tion (Fig. 3B, Table 2). These results imply that restriction of
puff formation in the heat shocked P[2scs�-2scs�] chromosomes
resulted from the downstream 2scs�.

We wondered whether insertion of any insulator at �86 bp
relative to the hsp70 promoter blocked puff formation. We
chose the gypsy insulator for study because this insulator shares
no sequence motifs or protein partners with scs and scs� (17,
24, 59, 64, 68). Four independent P[gyp-gyp] lines were estab-
lished and analyzed. Flies from these lines had low levels of
wing and body cuticle pigmentation (data not shown), demon-
strating strong enhancer blocking (22, 37). The lacZ-hsp70
probe hybridized throughout the intermediate (one line) to
large (three lines) puffs that were formed in heat-shocked
chromosomes isolated from the four P[gyp-gyp] lines (Fig. 4;
Table 1). The size of the puffs changed only minimally, if at all,
when one of the gypsy insulators was removed, as demonstrated
by analyses of P[gyp-�gyp] and P[�gyp-gyp] heat-shocked chro-
mosomes (Fig. 4; Table 2). These results are distinct from
those obtained with P[2scs�-2scs�], implying that the gypsy in-
sulator does not form boundaries of a heat shock puff and that
restriction of puff formation by the insertion of an insulator at
�86 in the hsp70-lacZ gene is not a general effect.

Previous studies demonstrated that there was a correlation
between transcription and puff size (58). We reasoned that

restriction of puff formation by the downstream 2scs� may
result because these sequences negatively affected hsp70 tran-
scription. To address this possibility, we undertook Northern
analyses of RNA isolated from heat-shocked P[2scs�-2scs�] and
P[2scs�-�2scs�] adults. We found that hsp70-lacZ RNA accu-
mulation in heat-shocked P[2scs�-2scs�] adults was low and
correlated with the size of the larval puff (Fig. 5A; Table 2). In
the 79E P[2scs�-2scs�] transgenic line, hsp70-lacZ RNA was
barely detectable, consistent with the lack of ectopic puff pro-
duced in heat-shocked polytene chromosomes (Figs. 3 and 5A;
Table 2). In the 95C and 99B P[2scs�-2scs�] transgenic lines, the
observed level of hsp70-lacZ RNA was lower than that found
in P[wyp] lines, matching observations that these lines had
small to intermediate puffs in heat-shocked polytene chromo-
somes (Fig. 5A; Table 2). Deletion of the downstream 2scs�
increased accumulation of hsp70-lacZ RNA in all three trans-
genic lines relative to the parental line at the same genomic
position (Fig. 5A). These data demonstrate that 2scs� nega-
tively impacts heat shock transcription when inserted close to
the hsp70 promoter. As a control, the effects of the down-
stream gypsy insulator on hsp70-lacZ RNA accumulation were
determined. We found that the level of hsp70-lacZ RNA was
unaffected by the presence of a downstream gypsy insulator,
consistent with observations that this insertion did not alter the
size or structure of the heat shock puff (Fig. 4 and 5B; Table 2).
Taken together, these results indicate that insertion of an in-
sulator near the hsp70 promoter does not generally interfere
with transcription, suggesting that the transcriptional repres-
sion observed in P[2scs�-2scs�] lines reflects properties of 2scs�.

Sequences upstream of the 2scs� insulator are included in
the heat shock puff. The versatility of our transgene structure
allowed an evaluation of the puff boundary effects of 2scs�. Al-
though heat-shocked chromosomes isolated from the P[2scs�-
2scs�] lines had smaller puffs than P[wyp] lines, removal of the
downstream 2scs� increased the size of the puff (Table 2). We
predicted that if 2scs� defined a puff boundary, then the heat
shock puffs produced in the P[2scs�-�2scs�] lines should not
include the white gene sequences. Heat-shocked chromosomes
isolated from two P[2scs�-�2scs�] lines were hybridized with
the white probe. We found that hybridization was throughout
the puff in the majority of chromosomes analyzed for each line
(�80%) (Fig. 3B). In a third line, half of the chromosomes
showed white hybridization throughout the puff while the other
half showed hybridization that was nearer the edge. Patterns of
white hybridization in P[2scs�-�2scs�] puffs were punctate, sim-
ilar to those found in P[wyp] chromosomes (Fig. 2). We con-
clude that 2scs� does not function as a structural boundary of
the puff, similar to results with a single scs�, even though 2scs�
had better enhancer-blocking activity.

Effects of scs on the limits of the heat shock puff. To assess
whether scs established a boundary of a heat shock puff, we
generated P[scs-2scs�] lines, where an approximately 1-kb scs
insulator was inserted upstream of the hsp70 promoter (Fig. 6).
This fragment of scs contains the Zw5 binding site (Fig. 1) and
has enhancer-blocking activity similar that of to the full-length
element (17, 66). The four transgenic P[scs-2scs�] lines showed
a strong block of the yellow wing and body enhancers, indicat-
ing that the scs insulator was functional at all of the genomic
sites sampled (data not shown). Heat-shocked polytene chro-
mosomes were isolated from P[scs-2scs�] larvae from each of
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the transgenic lines and hybridized with the lacZ-hsp70 probe.
In two lines, a tight band of hybridization was observed, while
in two other lines, hybridization occurred throughout a small
puff (Fig. 6A; Table 1). These results are consistent with data
from the P[2scs�-2scs�] lines, in which the downstream 2scs�
restricted formation of a large puff.

Derivatives of three P[scs-2scs�] lines were generated by
crossing these flies to flies carrying FLP recombinase. Chro-
mosomes were isolated from heat-shocked larvae of these
P[scs-�2scs�] lines and hybridized with the lacZ-hsp70 probe.
Large heat shock puffs were observed in all lines, with lacZ-
hsp70 hybridization throughout the puff (Fig. 6A; Table 2).
The presence of puffs in the heat-shocked chromosomes of
P[scs-�2scs�] lines allowed an investigation of whether the scs
insulator established a puff boundary. Chromosomes of heat
shocked P[scs-�2scs�] larvae were hybridized with the white
probe. In two lines, this probe hybridized throughout the puff
in the majority of chromosomes analyzed (Fig. 6A). In the
third line, half the chromosomes had white hybridization
throughout at least 50% of the puff, with the other half of the
chromosomes showing hybridization near the edge of the puff.
This pattern of white hybridization was similar to that observed
in P[wyp] and P[2scs�-�2scs�] chromosomes, indicating that the
puff spreads beyond the scs insulator. These data suggest that
scs is not at the border of the puff.

To determine whether the upstream scs insulator in the P[scs-
2scs�] lines affected the size of the puff, transgenic P[�scs-2scs�]
derivatives were made. Three lines were produced by crossing
P[scs-2scs�] flies to flies expressing Cre recombinase. Heat-
shocked P[�scs-2scs�] chromosomes were analyzed by in situ
hybridization with the lacZ-hsp70 and white probes (Fig. 6A;
Table 2). We found that there was no change in puff size in two
lines, while in the third line, a change from no puff to a small

puff was observed. Based on the findings that two of the three
lines showed no change, we conclude that the upstream scs has
only minimal, if any, effects on defining the borders of the heat
shock puff.

The scs insulator does not establish a puff boundary in the
presence of 2scs�. We considered the possibility that the spread
of decondensation upstream of scs that we observed in the
P[scs-�2scs�] chromosomes reflected a requirement of an in-
teraction between scs and scs� (6). To address whether both
insulators were needed to define the puff boundaries, we ex-
amined the extent of puffing in two P[scs-2scs�] lines (26A and
83E). These lines produced small puffs upon heat shock, with
the occasional chromosome puff showing an intermediate size
(Table 2). Chromosomes were isolated from heat-shocked lar-
vae of the P[scs-2scs�] 26A and 83E lines and hybridized with
the white probe. We found that white hybridization was
throughout the small puff in the 83E line (Fig. 6B), while in the
26A line hybridization began near the puff edge and extended
inwards. Importantly, these patterns of white hybridization did
not change in the corresponding derivative P[�scs-2scs�] lines
that were deleted for the upstream scs insulator, as would be
expected if scs defined the limits of the puff. These observa-
tions strongly suggest that scs insulator activity is independent
of the formation of a puff boundary, even in the presence of a
nearby 2scs� insulator.

Sequences upstream of scs are included within the endoge-
nous 87A heat shock puff. To determine whether the proper-
ties of scs and scs� insulators in our hsp70-lacZ transgenes were
reflective of those at the 87A region, we reevaluated the struc-
ture of the endogenous heat shock puff. In these studies, we
carried out in situ hybridization with three probes to chromo-
somes isolated from Canton S larvae, including a 1-kb frag-
ment located 5 kb upstream of the scs insulator (5�scs), the

FIG. 5. Effects of the 2scs� and gypsy insulators on hsp70-lacZ transcription. (A) Shown is a Northern blot of total RNA isolated from
heat-shocked adults carrying the P[wyp] or P[2scs�-2scs�] transposon. The yw lane contains RNA isolated from the y1w67c23 parental stock that does
not carry a P[wyp] transposon. Blots were hybridized with a lacZ probe, as well as rp49, which served as a loading control. The cytological position
of transposon insertion in each line is indicated. The presence or absence of a 2scs� insulator within the hsp70-lacZ UTR is shown by a � or �,
respectively. Numbers at the bottom of the blots represent the fold increase in hsp70-lacZ transcript in the P[2scs�-�2scs�] derivatives relative to
the original P[2scs�-2scs�] lines. (B) Shown is a Northern blot with total RNA isolated from heat-shocked adult flies carrying the P[gyp-gyp] (�)
or P[gyp-�gyp] (�) transposons. Probes and symbols are the same as described above. NA, not applicable.
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1-kb scs, and 0.5-kb scs� insulators. Hybridization of the 5�scs
probe to chromosomes isolated from non-heat-shocked larvae
showed a single, tight band of hybridization at the 87A locus
(Fig. 7A). We reasoned that if the scs and scs� insulators were
boundaries of the puff, then these sequences would hybridize
at the edge of the puff, whereas the 5�scs probe would remain
hybridized in a tight band, since these sequences are located
outside of the putative structural domain defined by scs and
scs�. In contrast to these predictions, we found the 5�scs, scs,
and scs� probes hybridized within the puff found in chromo-
somes isolated from heat-shocked larvae (Fig. 7B). Interest-

ingly, the pattern of hybridization of the 5�scs probe was diffuse
and nearly identical to that found with scs, even though these
sequences are located 5 kb away from scs (Fig. 7B). These data
imply that the boundaries of the puff are not coincident with
the positions of the scs and scs� insulators. Hybridization of the
5�scs, scs, and scs� probes occupies a smaller portion of the puff
than is seen for the white and lacZ probes in the hsp70-lacZ
transgene puffs. We attribute this difference to the sizes of
DNA used in the hybridization experiments, with the white and
lacZ probes containing 4 to 5 kb of DNA relative to 1 kb or less
for the 5�scs, scs, and scs� probes. Our results demonstrate that
the scs and scs� insulators are not boundaries of the 87A puff.
In addition, these experiments confirm that results obtained
using hsp70-lacZ transgenes correspond to those of scs and scs�
at their endogenous location.

FIG. 6. Effect of the scs insulator on the structure of a heat shock
puff. (A) Structures of the P[scs-2scs�] transposon and derivative trans-
posons are shown. Symbols were previously described in the legend to
Fig. 2. The white triangle represents the scs insulator. All chromo-
somes shown are from heat-shocked larvae with the indicated trans-
poson at cytological position 42E. Chromosomes were hybridized with
either the white probe (left) or the lacZ-hsp70 probe (right). ND, not
determined. (B) Shown are chromosomes isolated from heat-shocked
larvae from cytological position 83E hybridized with either the white
probe (left) or the lacZ-hsp70 probe (right). These puffs represent
exceptional cases in which intermediate puffs were formed, allowing
visualization of the pattern of hybridization of the white and lacZ-hsp70
probes.

FIG. 7. Analysis of the positions of scs and scs� within the 87A puff.
(A) Chromosomes isolated from a Canton S larva under non-heat
shock conditions, hybridized with the 5�scs probe, which anneals 5 kb
upstream of the scs insulator. (B) Cytological region 87 of chromo-
somes isolated from Canton S larvae are shown, under non-heat shock
or heat shock conditions. The positions of probes used for in situ hy-
bridization (5�scs, scs, and scs�) are indicated on a map of the 87A lo-
cus. Symbols were described previously in the legends to Fig. 3 and 5.
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DISCUSSION

We used two approaches to test the hypothesis that scs and
scs� are boundary elements of the domain of decondensation
associated with transcription of the 87A hsp70 genes. First, we
developed a transgene system that evaluated boundary activity
in conjunction with enhancer blocking function. We found that
scs and 2scs� did not prevent the upstream spread of decon-
densation associated with transcription of the hsp70-lacZ
transgenes, even though these insulators blocked the yellow
enhancers (Fig. 3 and 6). Second, we reexamined the proper-
ties of scs and scs� at the endogenous 87A locus. Surprisingly,
we found that the heat shock puff extended beyond scs and scs�
and included DNA sequences 5 kb upstream of scs (Fig. 7).
Taken together, these data demonstrate that scs and scs� do
not define the boundaries of the heat shock puff and suggest
that these insulators do not block the propagation of altered
chromatin states associated with puffing.

Several explanations may account for the difference between
our studies and those done previously (64). First, different heat
shock conditions may have been used. In our experiments, heat
shock chromosomes were isolated prior to regression of the
puff, which allowed us to observe the full extent of deconden-
sation that occurs. Second, conditions used to prepare chro-
mosomes may have differed. In our transgene studies, the sizes
of the heat shock puffs produced by hsp70-lacZ were compared
to those of the endogenous hsp70 puffs to control for the
degree of heat shock and amount of squashing of the chromo-
somes. However, it is possible that our conditions produced
some puff distortion, resulting in a more diffuse hybridization
pattern. Third, the hybridization methods used in the two stud-
ies differed significantly. The previous study used autoradiog-
raphy, whereas our experiments used biotin-labeled probes,
coupled with a peroxidase detection system. The higher reso-
lution of our technique provided a more accurate determina-
tion of the positions of specific DNA sequences relative to the
Giemsa banding pattern. With this new technology, we find
that scs and scs� are within the 87A puff.

In the course of our studies, we found that the dimerized
2scs� repressed hsp70-lacZ transcription 2.5- to 3.5-fold (Fig.
5). It is possible that these negative effects were caused by
transcriptional interference between the closely opposed hsp70
promoter and the promoters in scs�, where transcription from
these promoters under non-heat shock conditions could influ-
ence establishment of a paused polymerase. However, we do
not favor this proposal because a single scs� insulator contains
the same promoters yet did not restrict puff formation (Table
1). A second possibility is that proteins bound to 2scs� may
interfere with transcription when positioned close to a pro-
moter. For example, adjacent to the BEAF binding sites in an
scs�-related insulator, BE28, is an AT-rich sequence that binds
the D1 AT hook protein, a protein that localizes to transcrip-
tionally inactive regions of chromosomes (2, 11, 50). BEAF
and D1 interact in vitro, suggesting that an association between
these two proteins may play a role in BE28 insulator function
(11). In a similar way, 2scs� may recruit proteins that interfere
with hsp70 transcription. It is unknown whether the repressive
effects of 2scs� reflect the natural properties of a single scs�
insulator or are a novel consequence of generating a dimer.
We propose that dimerization may intensify the endogenous

properties of scs� in the same way that insulator effectiveness is
increased.

A recent study using the chromosome conformation capture
assay found evidence that the scs and scs� insulator binding
proteins, Zw5 and BEAF, are in close physical proximity in
embryonic nuclei (6). These observations indicate that the scs
and scs� insulators may interact to form a loop domain. How-
ever, such interactions may not occur in polytene chromo-
somes, since the Zw5 and BEAF proteins localize only to scs
and scs�, respectively (6, 68). Our studies suggest that even if
such interactions occur in polytene tissues, they do not restrict
the spread of the heat shock puff.

The role of scs/scs� at the borders of the 87A domain. The
87A region is genetically complex (3). Between scs and scs� are
four genes, the two coordinately regulated hsp70 genes and the
CG31211 and CG3281 genes (Fig. 1). The scs insulator in-
cludes the promoter for CG31211 and a cryptic divergent pro-
moter (3, 30). CG31211 RNA accumulates throughout devel-
opment, with the highest levels of RNA in embryos and larvae
(1) (http://genome.med.yale.edu/Lifecycle). The scs� insulator
includes the promoters of CG3281 and aurora, which encodes
a serine/threonine kinase required for mitotic spindle function
(26). CG3281 RNA is present predominantly in early embryos,
with low levels found in larvae and pupae (1). The develop-
mental expression pattern of aurora has not been determined,
although it is predicted that its expression is highest in tissues
undergoing mitosis. These RNA patterns suggest that the non-
hsp70 genes in the 87A region are not coordinately regulated
and imply that this structural domain is not a functional do-
main.

The role of scs and scs� in the 87A locus remains unclear.
Our findings imply that these elements do not limit the extent
of heat shock-induced chromatin decondensation. Instead, the
localization of these two insulators in such a gene-dense region
suggests that scs and scs� maintain transcriptional fidelity in the
region. That the insulator proteins, Zw5 and BEAF, bind
within 100 bp of transcription start sites suggests that these
proteins may have a direct role in maintaining appropriate
levels of transcription of the non-hsp70 genes. These proteins
may form a loop that limits enhancer action. Alternatively, the
scs/scs� insulator proteins may control the nature of the pro-
teins bound at the locus. For example, BEAF and a transcrip-
tional activator, DREF, have overlapping DNA binding spec-
ificities (27, 29). DREF regulates several genes involved in
DNA replication and cell proliferation (29, 53). Using DREF
as a paradigm, it is possible that BEAF competes with tran-
scriptional activators, such as DREF, for scs� binding, to pre-
vent activation of aurora. The formation of a loop, through
interactions between Zw5 and BEAF, may help to maintain
BEAF association and repression of aurora expression. A bet-
ter understanding of the specific roles of the scs and scs� insu-
lators at this locus will require a more detailed analysis of this
interesting chromosomal region.
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