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Abstract Blood glutamate scavengers have been shown to
effectively reduce blood glutamate concentrations and im-
prove neurological outcome after traumatic brain injury and
stroke in rats. This study investigates the efficacy of blood
glutamate scavengers oxaloacetate and pyruvate in the treat-
ment of subarachnoid hemorrhage (SAH) in rats. Isotonic
saline, 250 mg/kg oxaloacetate, or 125 mg/kg pyruvate was
injected intravenously in 60 rats, 60 minutes after induction
of SAH at a rate of 0.1 ml/100 g/min for 30 minutes. There
were 20 additional rats that were used as a sham-operated
group. Blood samples were collected at baseline and 90

minutes after SAH. Neurological performance was assessed
at 24 h after SAH. In half of the rats, glutamate concentrations
in the cerebrospinal fluid were measured 24 h after SAH.
For the remaining half, the blood brain barrier permeability in
the frontal and parieto-occipital lobes was measured 48 h after
SAH. Blood glutamate levels were reduced in rats treated with
oxaloacetate or pyruvate at 90 minutes after SAH (p<0.001).
Cerebrospinal fluid glutamate was reduced in rats treated with
pyruvate (p<0.05). Neurological performance was significant-
ly improved in rats treated with oxaloacetate (p<0.05) or
pyruvate (p<0.01). The breakdown of the blood brain barrier
was reduced in the frontal lobe in rats treated with pyruvate
(p<0.05) and in the parieto-occipital lobes in rats treated with
either pyruvate (p<0.01) or oxaloacetate (p<0.01). This study
demonstrates the effectiveness of blood glutamate scavengers
oxaloacetate and pyruvate as a therapeutic neuroprotective
strategy in a rat model of SAH.
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Introduction

Subarachnoid hemorrhage (SAH) is a common condition
that is associated with significant mortality and morbidity.
As many as 30,000 of North Americans suffer from SAH
annually, accounting for 5 to 10 % of all stroke cases [1–3].
The mortality rate for SAH approaches 45 % at 30 days, and
10 to 15 % of cases are fatal before hospitalization [4–7]. At
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the time of the initial bleed, there is a critical reduction in
cerebral blood flow as the regional intracranial pressure
increases and approaches the systemic arterial pressure.
The persistent lack of blood flow results in cerebral vaso-
spasm and subsequent swelling of perivascular astrocytes,
neuronal cells, and capillary endothelium [8]. Although a
great deal of knowledge exists regarding the delayed effects
of SAH, the pathophysiology of early brain injury has yet to
be fully understood and essential early treatment remains to
be a challenge [9].

There are several rat models of SAH, including endovas-
cular perforation of the internal carotid artery [9–11], blood
injection into pre-chiasmatic cistern [11], and blood injection
into the cisterna magna [11–17]. The last model has 2 mod-
ifications: a single hemorrhagic model [16, 18] and a double
hemorrhagic model [13, 19], which are intended to simulate
the late complication of vasospasm commonly seen after SAH
[13, 19]. All models have their own advantages and disadvan-
tages [11, 12, 19]. We have chosen the single hemorrhagic
model of SAH in this study due to its low mortality rate,
simplicity, effectiveness, and high reproducibility.

There is a growing body of evidence suggesting that
elevated glutamate levels in the interstitial fluid and cere-
brospinal fluid (CSF) of the brain may play a significant role
in the mechanism for various acute brain insults [20–23] and
chronic disease states [24–26]. After many neurodegenera-
tive processes, elevated glutamate concentrations in both
CSF and blood have been shown to correlate with a worse
neurological outcome [23, 27, 28].

The brain has several mechanisms by which excess glu-
tamate is eliminated to prevent neurotoxicity. In addition to
astroglial and neuronal membrane glutamate transporters,
glutamate transporters are also present on the anti-luminal
side of the brain capillary endothelial cells [29, 30]. These
transporters provide an additional pathway for glutamate
elimination from the brain via a brain-to–blood efflux of
glutamate [29, 30–33].

Gottlieb et al. [34] demonstrated the rapid appearance of
radiolabeled glutamate in blood after being injected into rat
brain lateral ventricles. These authors [34] further showed that
the rate of brain-to-blood efflux of glutamate could be increased
by creating a larger concentration gradient between the brain
extracellular fluid (ECF)/CSF and blood [34]. The efflux of
glutamate into the blood resulted in increased concentrations of
radiolabeled glutamate in the blood and its disappearance from
the CSF [34].

Thus, one of the proposed mechanisms of reducing blood
glutamate levels involved the metabolism of glutamate into
its inactive form: α-ketoglutarate [34]. This naturally occur-
ring enzymatic process is mediated by the activation of
resident plasma enzymes glutamate-oxaloacetate transami-
nase (GOT) and glutamate-pyruvate transaminase in the
presence of their respective co-enzymes oxaloacetate and

pyruvate [34]. Reducing blood glutamate concentrations
with blood glutamate scavengers creates a new, more favor-
able glutamate concentration gradient between the extracel-
lular fluids and blood of the brain. This in turn facilitates the
brain-to-blood glutamate efflux, thereby limiting the neuro-
toxic effects of glutamate. Treatments with blood glutamate
scavengers oxaloacetate, pyruvate, GOT, and glutamate-
pyruvate transaminase have been shown to effectively im-
prove neurological recovery after traumatic brain injury
(TBI) [35–38] and stroke [39–43], with a concomitant de-
crease in blood glutamate levels [30, 34].

The primary goal of this study was to investigate the
efficacy of blood glutamate scavengers oxaloacetate and
pyruvate in the treatment of SAH in rats. We further exam-
ined whether any neuroprotective effects of blood glutamate
scavengers were mediated via a glutamate-scavenging
mechanism.

Materials and Methods

The experiments were conducted in accordance with the
recommendations of the Declarations of Helsinki and Tokyo
and to the Guidelines for the Use of Experimental Animals
of the European Community. The experiments were ap-
proved by the Animal Care Committee of Ben-Gurion Uni-
versity of the Negev, Israel.

Drugs and Doses

Oxaloacetate and pyruvate were purchased from Sigma
Israel Chemicals (Rehovot, Israel). Drugs were stored at -
30 ° C until their use and dissolved in isotonic saline
immediately prior to intravenous administration of the ani-
mals. Doses of 250 mg/kg oxaloacetate or 125 mg/kg pyru-
vate were injected intravenously at a rate of 0.1 ml/min.

Animals

A total of 80 male Sprague-Dawley rats (Harlan Laborato-
ries, Israel) were used in this experiment. Rats had no overt
pathology and weighed between 300 and 350 g each. Rats
were kept in cages, with 3 rats per cage for at least 3 days
after arrival to allow adaptation. Purina Chow and water
were available ad libitum.

Experimental Design

Under general anesthesia with 2 % isoflurane, baseline
blood glutamate samples were drawn. Immediately after-
ward, SAH was inflicted in a manner described as follows.
Rats were allowed to awaken after the procedure. At 60
minutes after the induction of SAH, the rats were re-

650 Boyko et al.



anesthetized and received treatment according to their pre-
viously assigned experimental group. Saline, oxaloacetate,
or pyruvate were injected intravenously at a rate of 0.1 ml/
min for 30 minutes. The second blood sample was collected
at 90 minutes after SAH (immediately after the cessation of
treatment). Neurological performance was assessed at 24 h
after SAH. At this point, the rats were divided into 2 sub-
groups. The first subgroup was used for the measurement of
glutamate concentrations in CSF, collected under general
anesthesia at 24 h after SAH (immediately after the neuro-
logical assessment). The second subgroup was used for the
determination of the blood brain barrier (BBB) permeability
at 48 hours after SAH.

Experimental Groups

Eighty rats were randomly divided into 1 of the 4 groups listed
as follows. The number of animals in each group and sub-
group is listed in Table 1. In group 1 (sham group), 0.3 ml of
saline was injected into the cisterna magna of the rates. Unlike
the remaining 3 groups in which autologous arterial blood was
injected into the cisterna magna simulating SAH, this group
did not undergo SAH induction. In group 2 (SAH control
saline treatment group), rats were treated with isotonic saline
at a rate of 0.1 ml/100 g/min for a duration of 30 minutes. In
group 3 (SAH oxaloacetate treatment group), rats were treated
with 250 mg/kg oxaloacetate at a rate of 0.1 ml/100 g/min for
30 minutes. In group 4 (SAH pyruvate treatment group), rats
were treated with 125 mg/kg pyruvate at a rate of 0.1 ml/
100 g/min for 30 minutes. The chosen doses of oxaloacetate
and pyruvate were based on the available data on their blood
glutamate-reducing activity in TBI and stroke previously
shown in rats [36, 37, 44].

Induction of Subarachnoid Hemorrhage

SAH was induced by injecting autologous arterial blood into
the cisterna magna, as previously described [14]. The

procedure was performed together by 2 experimenters to
reduce experimental error. Rats were anesthetized with a
mixture of 2 % isoflurane in oxygen. The cranium was fixed
in a stereotactic device, with the head flexed 90 degrees in
relation to the cervical spine. The tail vein was cannulated
using a Neoflon (Becton Dickinson, Helsingborg, Sweden)
plastic cannula and 0.3 ml of blood was collected into an
insulin syringe. Cisterna magna was cannulated via the
atlanto-occipital membrane using a 26-guage needle, and
proper position of the catheter was validated via the appear-
ance of CSF in the small internal volume tubing connected
to the needle. Immediately after cannulation, 0.3 ml of fresh
autologous blood was injected into the cisterna magna for
15 seconds. After injection, the anesthesia was discontinued
and rats were returned to their cages for recovery.

Determination of Neurological Performance

Severity of neurological injury was assessed at 24 h after the
induction of SAH using the Feldman neurological severity
score (NSS), previously and successfully used for neurolog-
ical assessment after SAH [45]. Timing for the NSS assess-
ment was based on observations that maximal neurological
impairment is seen 24 h after SAH, becoming nonsignificant
by 72 h [46]. The NSS of the rats was determined by 2
blinded observers, independent of one another Points were
assigned for alterations of motor functions and behavior,
such that the maximal score of 25 represents greatest neu-
rological dysfunction, whereas a score of 0 indicates an
intact neurological condition. Specifically, the following
were assessed: ability to exit from a circle (3-point scale),
gait on a wide surface (3-point scale), gait on a narrow
surface (4-point scale), effort to remain on a narrow surface
(2-point scale), reflexes (5-point scale), seeking behavior (2-
point scale), beam walking (3-point scale), and beam bal-
ance (3-point scale).

Blood Sample Collection

Blood was collected from the tail vein for the determination
of glutamate levels prior to the induction of SAH (as a
baseline measurement) and immediately after the cessation
of treatment (at 90 minutes after SAH induction) via a 24-
guage Neoflon (Becton Dickinson, Helsingborg, Sweden)
catheter. After the blood sample collection, the catheter was
removed from the vein.

CSF Sample Collection

CSF was collected for glutamate measurement at 24 h after
SAH, immediately after neurological assessment. Rats were
anesthetized and the cisterna magna was cannulated as
previously described. There was 0.1 to 0.2 ml of CSF gently

Table 1 The number of animals in each experimental group and
subgroup

The total number of rats in each of the different groups

Animal Group Total NSS and CSF
collection

Determination
BBB breakdown

Sham-operated group 20 10 10

Control SAH 20 10 10

SAH and Oxal. 250 mg/kg 20 10 10

SAH and Pyr. 125 mg/kg 20 10 10

BBB 0 blood brain barrier; CSF 0 cerebrospinal fluid; NSS 0 neurolog-
ical severity score; Oxal. 0 oxaloacetate; Pyr. 0 pyruvate; SAH 0 sub-
arachnoid hemorrhage
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aspirated. After CSF collection, rats were euthanized by
deepening the anesthesia with isoflurane.

Determination of Blood Glutamate

Whole blood (200 μl aliquot) was de-proteinized by adding
an equal volume of ice-cold 1 M perchloric acid and then
centrifuging at 10,000×g for 10 minutes at 4 ° C. The pellet
was discarded and the supernatant was collected, adjusted to
pH 7.2, with 2 M K2CO3, and stored at -80 ° C for later
analysis, if needed [34]. Glutamate concentration was mea-
sured using the fluorometric method of Graham and Aprison
[47]. A 60 μl aliquot from the perchloric acid supernatant
was added to 90 μl of a 0.3 M glycine, 0.25 M hydrazine
hydrate buffer adjusted to pH 8.6 with 1 M H2SO4 and
containing 11.25 U of glutamate dehydrogenase in 10 mM
Nicotinamide adenine dinucleotide (NAD). After incubation
for 30 to 45 minutes at room temperature, the fluorescence
was measured at 460 nm with excitation at 350 nm. A
glutamate standard curve was established with concentra-
tions ranging from 0 to 6 μM. All determinations were done
at least in duplicates.

Determination of Glutamate Concentration in CSF

Fresh CSF (110 μl) was mixed with perchloric acid (25 μl)
of 0.3 M, and then centrifuged at 10,000×g for 10 minutes
at 4 ° C. The pellet was discarded and the supernatant was
collected, adjusted to pH 7.2 with 12.5 μl of 2 M K2CO3

and stored at -80 ° C for later analysis.

BBB Breakdown Evaluation Protocol

An increase in the permeability of the BBB has been shown
to follow SAH and correlate with a worsened neurological
outcome [48]. In the current study, the timing for determin-
ing BBB disruption was chosen based on the observation of
a maximal disruption of BBB 48 h after SAH [48].

Evans Blue 2 % in saline (4 ml/kg) was administered
intravenously through the cannulated tail vein as a blood-
brain permeability tracer and was allowed to circulate for 60
minutes. To remove the intravascularly localized dye, the
rats' chests were opened and the animals were perfused with
cooled saline through the left ventricle at a pressure of
110 mm Hg until colorless perfusion fluid was obtained
from the right atrium. The whole brain was removed, and
measurements of vascular permeability were made by com-
paring its weight with pre-weighed loci in the frontal and
parieto-occipital lobes.

Each brain area was weighted and homogenized in 1 ml of
50 % trichloroacetic acid (weight/volume), and was centri-
fuged at 10,000×g for 20 minutes. One milliliter of the super-
natant was added to 1.5 ml of the solvent (50 % trichloroacetic

acid/96 % ethanol, 1:3). A fluorescence detector (model Infi-
nite 200 PRO multimode reader; Tecan, Männedorf Switzer-
land) was used at an excitation wavelength of 620 nm
(bandwidth 10 nm) and an emission wavelength of 680 nm
(bandwidth 10 nm). Calculations were based on external
standards in the solvent (10±500 ng/ml). Data are expressed
as mean±SD (in mg/g of protein) of extravasated Evans Blue
dye per gram of brain tissue.

Statistical Analysis

Statistical evaluation of the results was done with the SPSS
17 package (SPSS Inc., Chicago, IL). The significance of
comparisons between groups (glutamate blood and CSF
levels, BBB permeability, and NSS) was determined using
the Kruskal-Wallis test followed by Mann–Whitney U test.
Normally distributed data and continuous variables (gluta-
mate concentrations and BBB breakdown) are presented as
an average±SEM. Nonparametric data was presented as a
median±inner quartile range. Results were considered sta-
tistically significant when p<0.05, and highly significant
when p<0.01.

Results

Blood Glutamate Levels

There was a significant decrease in blood glutamate levels
compared to baseline in rats treated with oxaloacetate (by
50 %) or pyruvate (by 30 %) at 90 minutes after SAH (p<
0.001). In contrast, blood glutamate levels did not change in
time with the rats treated with isotonic saline (Fig. 1).

Fig. 1 Blood glutamate concentrations for a duration of time. There
was a significant decrease in blood glutamate levels compared to
baseline in rats treated with oxaloacetate or pyruvate at 90 minutes
after subarachnoid hemorrhage (SAH) (p<0.001). Blood glutamate
levels did not change with a period of time in rats treated with isotonic
saline
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Concentration of Glutamate in CSF

Concentrations of glutamate in CSF 24 h after SAH were
significantly reduced in rats treated with pyruvate compared
to rats treated with isotonic saline (p<0.05) (Fig. 2). In rats
treated with oxaloacetate, CSF glutamate levels were reduced,
but they did not reach statistical significance (p00.06).

NSS

NSS was significantly improved in rats treated with oxalo-
acetate 1.5 (0 to 3.25) or pyruvate 0 (0 to 0) compared to rats
treated with isotonic saline 9 (0 to 10) (p<0.05 and p<0.01,
respectively) (Table 2).

BBB Breakdown

The breakdown of the BBB measured in the frontal lobe at
48 h after SAH was significantly reduced in rats treated with
pyruvate compared to rats treated with isotonic saline (p<
0.05) (Fig. 3a). The breakdown of the BBB measured in the
parietal and occipital lobes at 48 h after SAHwas significantly
reduced in rats treated with either pyruvate or oxaloacetate (p
<0.01) (Fig. 3b). As expected, there was an elevated BBB
breakdown observed in the rats that underwent SAH induction
and were given isotonic saline compared to the sham-operated
group in the frontal, parietal, and occipital lobes (p<0.01).

Discussion

The principle finding of this study was that the intravenous
administration of the blood glutamate scavengers oxaloace-
tate and pyruvate led to an improved neurological outcome
in a rat model of SAH. Moreover, we demonstrated that the
observed neuroprotective effects were mediated via a blood

glutamate-scavenging mechanism, which in turn led to the
reduction of CSF glutamate levels.

Many neurodegenerative disorders are associated with
pathologically elevated ECF glutamate levels, including
stroke [20], TBI [23], intracerebral hemorrhage [49], men-
ingitis brain hypoxia [22], amyotrophic lateral sclerosis
[50], glaucoma [51], human immunodeficiency virus de-
mentia [52], glioma [53], and many other conditions. Pre-
venting glutamate-induced neurotoxicity could potentially
prevent neuronal death and improve neurological outcomes.
Thus, much research has been focused on different
approaches for limiting the neurotoxic effects of glutamate.
Currently, investigated strategies include inhibiting gluta-
mate synthesis, blocking its release from presynaptic termi-
nals, antagonizing its actions on postsynaptic receptors, and
accelerating its reuptake from the synaptic cleft.

Glutamate receptor antagonists have been previously
shown to provide neuroprotection in animal models of is-
chemia [54]. Moreover, it has been shown that the N-
Methyl-D-aspartic (NMDA) receptors antagonist, Felba-
mate, leads to an improved neurological performance and
limits the BBB breakdown in the single-injection rat model
of SAH [55]. This finding is consistent with the results of
the current study. However, clinical trials using NMDA
receptor antagonists after stroke and TBI have not lived up
to the expectations from the experimental data in animals.
Clinical results failed to provide any neurological benefit,
and in some instances were shown to be harmful, leading to
worsened neurological outcomes and increased mortality
rates [56–58]. Maintaining a minimal glutamate level is
known to be critical for normal neuronal function. NMDA
receptor antagonists do not discriminate between the diverse
actions of the receptor, and thus interfere with both the
negative and positive effects of this signaling [58, 59].
Furthermore, NMDA antagonists affect glutamate transport-
ers that reside in many extracerebral peripheral tissues, such
as the pancreas, which play an important role in the meta-
bolic regulation of glutamate [60–64].

The remaining lack of an effective treatment for these
neurodegenerative conditions inspired the investigation of
new treatment modalities, which would focus on eliminating

Fig. 2 Concentrations of glutamate in cerebrospinal fluid (CSF) 24 h
after subarachnoid hemorrhage (SAH). CSF glutamate levels were
significantly reduced in rats treated with pyruvate 24 h after SAH
compared with rats treated with isotonic saline (p<0.05)

Table 2 Values for the NSS measured 24 H after SAH

NSS values of the various groups at 24 h after SAH

Animal group N NSS 24 h after SAH (range)

Sham-operated group 10 0 (0–0)**

Control SAH 10 9 (0–10)

SAH and Oxal. 250 mg/kg 10 1.5 (0–3.25)*

SAH and Pyr. 125 mg/kg 10 0 (0–0)**

NSS 0 neurological severity score; Oxal. 0 oxaloacetate; Pyr. 0 pyru-
vate; SAH 0 subarachnoid hemorrhage
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excess toxic glutamate. This strategy used blood glutamate
scavengers oxaloacetate, pyruvate, GOT, glutamate-
pyruvate transaminase, estrogen, progesterone, and activa-
tion of β2-adrenergic agonists and different kinds of stress.
Gottlieb et al. [34] showed that the rate of brain-to-blood
efflux of glutamate could be increased by creating a larger
concentration gradient between the brain ECF/CSF and the
blood. The efflux of glutamate into the blood resulted in
increased concentrations of radiolabeled glutamate in the
blood and its disappearance from the CSF [34]. Magnetic
resonance spectroscopy confirmed that blood glutamate
scavengers oxaloacetate and GOT are capable of decreasing
ECF glutamate concentrations via blood glutamate elimina-
tion in a rat model of experimental focal ischemia [41–43].
Teichberg [65] and Teichberg et al. [30] used microdialysis
probes in rats to demonstrate that the artificial decrease of
blood glutamate with blood glutamate scavengers decreases
the concentration of glutamate in rats’ ECF [30, 65]. Campos
et al. further showed that lower blood glutamate levels and
higher levels of GOTwere associated with better neurological
outcome in patients after ischemic stroke [41–43].

Considering the close relationship between low blood and
CSF glutamate levels, the results of the current study suggest
that oxaloacetate and pyruvate provide their neuroprotective
properties via a glutamate-scavenging mechanism. Thus, the
data available to date collectively support the idea that blood
glutamate scavengers promote their neuroprotective proper-
ties via a universal mechanism for each of the different path-
ological brain conditions previously mentioned. Therefore,
the data is promising for examining blood glutamate scav-
engers as a possible new therapeutic strategy for a wide
spectrum of conditions in which elevated brain glutamate
levels play a principal role in the pathogenesis.

The chosen parameters for the assessment of the neuro-
logical outcome in this study were based on previous studies
in which SAH was similarly induced by the injection of
autologous blood into the cisterna magna [48]. Numerous

parameters have been previously used to measure neurolog-
ical damage after SAH in rats, including but not limited to
examining mortality rats, behavioral and motor scores, neu-
ronal count, brain edema, and BBB permeability. As with
many studies in the past, we explored the BBB breakdown
as an indicator for brain injury after SAH. An increase in the
permeability of the BBB has been shown to follow SAH in
both human [66] and experimental settings [67–70], and it
correlates with a worsened neurological outcome [48,
67–70]. The BBB breakdown develops even in the acute
stage of SAH [66, 67], and the indicator has been shown to
be independent of influences, such as increased intracranial
pressure or brain edema that may disrupt the BBB itself
[48]. On the contrary, histological examination, including
neuronal count, is usually used in models of SAH, which
was induced by endovascular perforation of the internal
carotid artery and is very rarely used in a model of SAH
induced by the injection of blood into the cisterna magna
[46]. In contrast to endovascular perforation, induction of
SAH by the injection of blood into the cisterna magna is
associated with neurological damage that is much more
subtle. While developing the protocol of this study, we
measured brain water content in small pilot groups of ~5
animals per group, and did not find any significant differ-
ence in brain edema between the sham and SAH control
group. This finding was in line with existing literature, thus
we decided to measure BBB disruption after SAH instead of
neuronal count or brain edema, together with motor tests
and concentrations of glutamate in the CSF and blood. The
timing for determining BBB disruption in this study was
chosen based on the observation of a maximal disruption of
BBB 48 h after SAH [48].

The authors understand and recognize that the use of
blood glutamate scavengers may have time limitations in
clinical practice, given the short therapeutic window for
reducing glutamate toxicity. In this study, treatment was
initiated 60 minutes after SAH induction. In rat models of

Fig. 3 (a) Blood brain barrier (BBB) breakdown 48 h after subarach-
noid hemorrhage (SAH) measured in the frontal lobe. The breakdown
of the BBB measured in the frontal lobe at 48 h after SAH was
significantly reduced in rats treated with pyruvate compared to rats
treated with isotonic saline (p<0.05). (b) BBB breakdown 48 h after

SAH measured in the parietal and occipital lobes. The breakdown of
the BBB measured in the parietal and occipital lobes at 48 h after SAH
was significantly reduced in rats treated with either pyruvate (Pyr.) (p<
0.01) or oxaloacetate (p<0.01). Data are expressed as mean ± SD (in
mg/g of brain tissue) of extravasated Evans Blue dye per gram of tissue
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TBI, blood glutamate scavengers oxaloacetate and pyruvate
have been shown to be an effective treatment when admin-
istered immediately prior to TBI infliction, 30 minutes and
60 minutes after TBI [36, 37]. In these studies, treatment
was not effective if initiated 120 minutes after TBI [36, 37].
Thus, one can predict that scavengers will be effective in
removing excess brain glutamate only when it is adminis-
tered before the brain injury or during a specific time win-
dow of glutamate elevation. However, previous studies have
shown that the elevation of glutamate in the ECF of the
brain in rats after TBI and stroke is usually short-lasting,
rarely extending to 120 minutes [71–74], whereas in
humans it continues for several hours and even days
[75–77]. Considering that the elevation of glutamate lasts
longer in humans than in rats, blood glutamate scavengers
may theoretically be effective, even if given later in the
course of the condition. Additional experiments in the clin-
ical settings are still warranted to investigate the therapeutic
window for blood glutamate scavengers as a potential treat-
ment strategy.

In conclusion, for the first time, this study demonstrates
the effectiveness of blood glutamate scavengers oxaloace-
tate and pyruvate as a therapeutic neuroprotective strategy in
a rat model of SAH. The data suggest that the observed
neuroprotection with treatment of oxaloacetate and pyruvate
is mediated via their blood glutamate scavenging effect.
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