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Summary Attention-deficit/hyperactivity disorder (ADHD)
is a highly prevalent disorder of childhood and adulthood,
with a considerable impact on public health. There is a
substantial pharmacopoeia available for safe and effective
treatment of ADHD, and newly available agents diversify
the treatment options. With the burgeoning scientific liter-
ature addressing the genetic, neurochemical, and neural
systems basis for this condition, increasing attention is
directed at establishing the neural basis for the efficacy of
existing treatments. ADHD remains the only highly prev-
alent, nondegenerative neuropsychiatric disorder for which
effective medications remediate the principal cognitive
disturbances in concert with clinical efficacy. Therefore,
deeper insight into the neural mechanisms of cognitive
remediation may serve to advance treatment development
not only in ADHD, but across a wide range of neuropsy-
chiatric disorders in which cognitive dysfunction is a car-
dinal feature and a strong predictor of clinical outcome. To
date, all effective medications for ADHD act on 1 or both
of the major catecholamine neurotransmitter systems in the
brain. These 2 systems, which arise from subcortical nuclei
and use norepinephrine (NE) or dopamine (DA) as trans-
mitters, exert strong modulatory effects on widely distrib-
uted cortical-subcortical neural circuits, with important
effects on cognition, mood, and behavior, in both health
and illness. The present review outlines the actions of ADHD
medications from subcellular effects to effects on neural sys-
tems and cognition in ADHD patients. This is a very active
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area of investigation at all phases of the translational cycle,
and near-term work is poised to firmly link cellular neuro-
pharmacology to large-scale effects, and point the way toward
advances in treatment.
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Overview of Attention-Deficit/Hyperactivity Disorder

Attention-deficit/hyperactivity disorder (ADHD) is a
childhood-onset disorder defined by clinically evident dis-
turbances in attention, often with hyperactivity and impul-
sive behavior, and other important clinical features,
including mood and interpersonal disturbances [1]. In the
most recent edition of the standard Diagnostic and Statistical
Manual, 4th edition (text revision), individuals with this
disorder are categorized predominantly by inattentive, hy-
peractive/impulsive, or combined types. ADHD is the most
prevalent psychiatric disorder of childhood, affecting 8 to
12 % of children globally, with important consequences for
educational attainment and social relationships in adoles-
cence. Males and children of relatively lower socioeconom-
ic status are relatively at a higher risk for developing ADHD
[2]. This is also increasingly recognized as persisting into
adulthood, and the estimate of 1-year ADHD prevalence of
approximately 4.4 % in the community [3] suggests that it is
1 of the most prevalent adult psychiatric disorders. Adults
with persisting ADHD are at increased risk for employment
problems, divorce, antisocial behavior, serious accidents
(such as motor vehicle accidents), and comorbid mood,
anxiety, substance use and personality disorders that confer
additional subjective distress and functional impairment.
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The neural basis of ADHD and the symptom domains
that characterize the disorder have been increasingly studied
on the genetic and cellular neural systems and cognitive
levels. ADHD is 1 of the most heritable of psychiatric
disorders, with estimates of heritability (from twin studies
and other studies) consistently ranging at or greater than 0.6
to 0.7. Candidate gene studies have implicated several ele-
ments of monoamine neurotransmitter systems, including
genes encoding the dopamine D, and Ds receptors, dopa-
mine transporter (DAT), dopamine beta-hydroxylase, which
synthesizes norepinephrine (NE) from dopamine (DA), se-
rotonin (5-hydroxytryptamine) transporter, and serotonin
receptor (for more detail see Biederman and Faraone [1]).
An elevated pooled odds-ratio in ADHD has also been
found for the gene encoding synaptosomal-associated pro-
tein of 25 KDa (SNAP25), and genome-wide association
studies have identified several genes encoding proteins in-
volved in cellular processes, such as cell division, cell
adhesion, neuronal migration, spine formation and plastici-
ty, and inflammatory mediators [4, 5]. There are also envi-
ronmental risk factors identified in ADHD, which include
lead exposure, pregnancy complications (including maternal
use of alcohol or tobacco during pregnancy and low birth
weight), psychosocial adversity, including socioeconomic
factors, familial conflict, and parental psychopathology.
These observations suggest that ADHD, as with most im-
portant psychiatric conditions, arises from the combination
of a genetic predisposition and environmental pressures.

Animal models have been developed and evaluated for
ADHD. The most well-developed of these is the spontane-
ously hypertensive rat, which exhibits various behavioral
measures of deficits in sustained attention, impulsivity, and
hyperactivity, including some laboratory measures analo-
gous to those for which ADHD children show deficits.
The spontaneously hypertensive rat also shows alterations
in DAT gene expression with a duration of time, DA, NE,
and second messenger function, and altered neural/behav-
ioral responses to an amphetamine [6]. Other animal models
of ADHD exist, and these can support not only potential
treatment development but also the improved specification
of cognitive/clinical constructs, such as impulsivity, which
does not appear to represent a unitary construct [7].

A number of treatments are available for ADHD that
remediate the symptoms and cognitive dysfunction associ-
ated with the disorder. Because ADHD is defined as a
disorder of cognition, considerable investigation has been
directed at the characterization of these cognitive deficits
and their neural basis; therefore, measures of cognitive and
neural dysfunction also serve as important treatment targets
and biomarkers of drug action. Among neuropsychological
approaches, executive functions have been most widely
studied in ADHD, with consistent deficits found in sus-
tained and control-dependent aspects of attention, working

memory, inhibitory processes, set-shifting, and fluency
[8—12]. Perspectives derived from a cognitive neuroscience
framework have emphasized a fundamental underlying dis-
turbance in cognitive control as the basis for these various
deficits [13]. However, cognitive domains that are distinct
from (and interacting with) control processes have been
increasingly addressed, including social cognition [14]. Par-
ticularly important, incentive/reward processes appear to be
altered in ADHD and related disorders, and recent models of
the pathophysiology of cognition in ADHD now emphasize
the disrupted integration of executive control processes with
motivational/reward processes, as the basis of ADHD phe-
nomenology [15-17]. Accordingly, the neural systems in-
vestigated to evaluate the neural basis of these cognitive
processes have focused first on disturbances in dorsal/lateral
fronto-striato-thalamic and fronto-cerebellar circuits, with
evidence derived from both structural [18—20] and function-
al [13, 21] neuroimaging; and more recently, the ventral
emotion/reward circuitry that includes the amygdala, ventral
striatum, and orbitofrontal cortex [17]. Recent meta-
analyses of structural neuroimaging studies have found chil-
dren with ADHD, relative to matched healthy comparison
groups, to exhibit smaller volumes of the basal ganglia
(including the right putamen, caudate, and globus pallidus)
[22, 23], and importantly, increasing age and stimulant
treatment were independently associated with relative nor-
malization of these volume deficits. Among adults with
ADHD, 1 of these meta-analytic studies found evidence
for reduced volume of the anterior cingulate cortex [22].
Overall, as with the genes/environment dichotomy, this
emerging “dorsal/ventral” (i.e., fronto-limbic) systems mod-
el may be characteristic of serious mental illness in general,
with substantial evidence supporting this type of model in
mood, anxiety, and personality disorders, substance-related
disorders and schizophrenia.

One critical link between these 2 large-scale systems in
the brain is the strong modulatory influence of monoamine
systems, especially NE and DA. Importantly for ADHD,
there is evidence for DA dysfunction in these circuits. Initial
findings from positron-emission tomography (PET) studies
using selective ligands for the DAT indicated elevated bind-
ing in the brains of ADHD patients (e.g., for more detail see
Dougherty et al. [24]), and a recent meta-analysis of 9
studies using either single photon emission tomography or
PET found an average increase of 14 % in striatal DAT
density among ADHD groups compared to healthy compar-
ison groups, with higher density among ADHD patients
without medication exposure [25]. In addition, recent stud-
ies, including those that control for potentially confounding
effects (such as medication exposure) have typically found
either no significant change or a reduction in DAT binding
(e.g., for more detail see Volkow et al. [26, 27], and for more
detail see Swanson et al. [28] for review of findings and
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controversies). The specific binding at D,/Dj receptors may
also be reduced, particularly in subcortical regions, includ-
ing the striatum and midbrain (nucleus accumbens and
hypothalamus) [28], and these regions appear to have im-
paired dihydroxyphenylalanine (DOPA) utilization as well
[29, 30]. Although the evaluation of the central NE system
in psychiatric disorders is hampered by the lack of available
ligands for norepinephrine transporter (NET) or adrenergic
receptors for use in humans, genetic and pharmacological
evidence also strongly implicates this system in the patho-
physiology of ADHD [31]. The present review summarizes
the effects of ADHD medications on the cellular processes,
and in ADHD patients, on the neural systems operation and
cognition as a potential basis for therapeutic effects. The
extensive empirical literature on the behavioral pharmacol-
ogy per se of stimulants is reviewed in detail elsewhere [32,
33]. Interestingly, much of that work, investigating the overt
behavioral (activating) effects of stimulants, involves drug
doses that are considerably higher than those which confer
benefits for cognition [34], and may therefore have more
clinical relevance for stimulant use disorders rather than the
treatment of ADHD. Clinical considerations in the use of
these medications (such as pharmacokinetics, efficacy, ad-
verse events, guidelines for use, and so forth) are also
reviewed in numerous publications elsewhere [35—41].

The Cellular Effects of ADHD Medications in Animal
Models

With few exceptions, medications with clinical efficacy for
ADHD exert potent inhibition of the NET and DAT. The 2
most widely prescribed ADHD medications (methylpheni-
date [MPH] and amphetamine [AMP]) both have nanomolar
range affinity for NET and DAT (for more detail see Madras
et al. [42]), and at clinically effective doses, they exert
significant occupation of these 2 transporters in humans
(determined by PET) [43]. Atomoxetine (ATM) similarly
shows potent (and highly selective) NET binding, and other,
less commonly used ADHD medications, such as modafinil,
desipramine, and buproprion all exert variable but signifi-
cant levels of inhibition of NET and/or DAT. At higher
concentrations, the 5-hydroxytryptamine transporter is
inhibited by MPH [44], AMP [45], and ATM [46], although
it remains unclear whether this contributes significantly to
clinical efficacy in ADHD. One characteristic consequence
of NET/DAT inhibition is a significant elevation of extra-
cellular concentrations of NE and DA (measurable by intra-
cranial microdialysis) in widespread regions of the brain
[47]. This includes DA elevation in the nucleus accumbens
[48-50]. However, each medication (including ATM, desi-
pramine, and modafinil) tends to raise both NE and DA
levels most strongly in frontal cortex, probably due to the
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role of the NET in clearing extracellular DA in this region
[51-54]. However, it is unclear whether these neurotrans-
mitter elevations persist with sustained stimulant treatment
[55]. Stimulant effects on catecholamine levels in the pre-
frontal cortex (PFC) also appear to be state-dependent, as
MPH effects are greater in animals that are restrained versus
those able to freely move [56]. Both MPH and AMP lead to
increased expression of the immediate early gene c-Fos after
acute administration [57], although this affect attenuates
(after MPH at least) with repeated administration [58, 59].
In contrast, chronic MPH administration leads to decreased
DAT density, particularly in the striatum [60, 61]; this also
increases vesicular DA transport by the vesicular mono-
amine transporter-2 [62].

AMP, however, has a number of additional actions in
catecholamine neurons that indirectly affect neurotransmis-
sion. AMP competes with DA for transport by the DAT
[63], yet it can also enter the cell by diffusion across the
plasma membrane [64]; AMP promotes internalization of
the DAT [65, 66], and it is sequestered by the vesicular
monoamine transporter into vesicles. AMP promotes DA
release into the cytoplasm by this mechanism, as well as
by acting as a weak base to abolish the vesicular pH gradient
[67]. AMP also inhibits monoamine oxidase, which also
increases cytoplasmic DA levels [68]. These increases in
cytoplasmic DA tend to lead to increased DA release by
reversal of DAT transport [69], which may involve channel-
like activity of the DAT [70, 71], and it is regulated via
phosphorylation by protein kinase C - Beta [72]. However, a
study that used both intracranial microdialysis and separate-
ly PET with [''C]raclopride found that while AMP
increases extracellular DA approximately four-fold higher
than MPH, the resulting DA concentrations at D,/D5 recep-
tors in the striatum are comparable [73]. AMP can also
stimulate NE efflux, probably also by reversing the action
of the NET, but this only occurs at considerably higher
doses [74]. AMP also increases transmembrane currents that
increase DA cell excitability [75], thereby increasing DA
release [76, 77], although it may also attenuate exocytotic
DA release via terminal D, autoreceptor activation, resulting
from reverse transport of DA [78]. Finally, AMP also stim-
ulates cAMP formation mediated by the trace amine recep-
tor 1 subtype [79], an effect not seen with MPH [42]. There
is recent evidence for interactions between the trace amine
receptor 1 and both DA neuron activity [80] and DAT
activity [81-83], suggesting that this may represent yet
another indirect effect on DA neurotransmission.

Stimulants used in ADHD also exhibit robust effects on
the discharge of NE and DA neurons and activity in target
neurons in terminal fields such as the PFC. Devilbiss and
Berridge [84] have conducted an elegant series of experi-
ments to characterize the effects of low-dose stimulants on
the discharge of NE single units in the LC, as the potential
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basis of efficacy for PFC-dependent cognition. Low doses
of MPH, for instance, are typically defined in the experi-
mental literature as <3 mg/kg orally, and aim to achieve
bioavailability which compares with that targeted in clinical
practice. These investigators found that low-dose MPH
modestly suppresses both tonic and phasic LC-NE discharge
in rats anesthetized with halothane [84], while preserving
the signal-to-noise ratio of phasic LC-NE responses to sa-
lient environmental events. Interestingly, they [84] also
found that MPH dose dependently increased the inhibitory
component of phasic Locus Coeruleus (LC) activity, which
has been proposed to form the basis for the attentional blink
(transient suppression of attention) observed in performance
of attention tasks in which the stimuli occur at very short
time intervals [85]. These low doses of MPH, which are
known to enhance working memory, also increase the
responsivity (both excitatory and inhibitory) of individual
PFC neurons and altered neuronal ensemble responses pref-
erentially within the PFC, without affecting spontaneous
PFC neuronal discharge rates [86]. MPH increases in corti-
cal excitability depend on «, receptor activation [87], and
MPH can both amplify long-term plasticity in the hippo-
campus [88] and facilitate learning-related strengthening of
cortical amygdala synapses via postsynaptic increases in
currents linked to the «-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid receptor [89]. In this latter study, intra-
amygdalar MPH enhanced cue-reward associations in a D;-
receptor dependent manner, and suppressed task irrelevant
behavior via D, receptors. Plasticity effects may also be
mediated by structural changes in neurons, as sustained
low-dose MPH treatment increases the length and complex-
ity of dendrites in cortical areas, such as the anterior cingu-
late [90]. MPH and AMP in low doses also modulate the
oscillatory pattern of postsynaptic membrane potentials,
accelerating oscillatory frequencies of neurons in the sub-
stantia nigra (pars compacta) and globus pallidus from ap-
proximately 0.03 Hz to 0.10 to 0.20 Hz [91]. ATM (at low
doses) also enhances the activity of neurons in the monkey
PFC, with enhanced firing for preferred directions during
spatial working memory performance, which is dependent
on o, receptors, and suppression of firing for nonpreferred
directions (dependent on D, receptor activation) [92]. In
contrast, higher doses of MPH suppress evoked responses
in PFC neurons [86] and other cortical regions (e.g., the
hippocampus) also show attenuated responses to high-dose
stimulants [93]. High doses of stimulants and other NET
inhibitors (e.g., antidepressants, cocaine) also profoundly
suppress LC-NE discharge, as increased NE activates soma-
todendritic «, autoreceptors [94-99] which hyperpolarize
LC cells via an inward rectifier K" current on LC neurons
[100]. There is some evidence, however, that the suppres-
sion of firing in LC-NE cells habituates in a span of time
with sustained MPH treatment [101].

The Cognitive Effects of Medications in ADHD Patients

There is an extensive empirical literature that evaluates the
effects of ADHD medications on cognitive performance in
ADHD patients (both children/adolescents and adults) in
both experimental and clinical settings. This literature has
been comprehensively reviewed in several available articles
[28, 33, 102—105], and due to both space considerations and
the present emphasis on neural effects of these medications,
the literature is briefly summarized here. Pietrzak et al. [102]
reviewed 40 placebo-controlled MPH treatment studies of
ADHD children reported since 1993, which indicated that
25 (62.5 %) of these studies found significant improvements
in 1 or more cognitive processes with MPH treatment.
Improvements on saccadic eye movement, planning and
cognitive flexibility, attention/vigilance, and inhibitory con-
trol were each found in at least 70 % of the original reports
that assessed these particular cognitive functions. Long-term
memory and working memory/divided attention improve-
ments were noted in 58 % and 50 % of the studies, respec-
tively. Among these reports, higher doses of MPH (when
compared in individual studies to lower doses) generally
conferred greater improvements on tasks of attention/vigi-
lance, and working and long-term memory, but not in plan-
ning/cognitive flexibility, inhibitory control, or motor speed.
The authors of the review addressed sources of variability in
the set of primary reports, including measurement issues and
other methodological concerns, variability within and be-
tween patients in medication response, and the complexities
of stimulant dose-response relationships in general. The
long-term effects of stimulant treatment on cognition in
ADHD patients are comparatively more complex and incon-
sistent. The largest, most rigorous clinical trial of ADHD
treatment to date (the Multimodal Treatment study of
ADHD) found that stimulant treatment was associated with
immediate post-treatment improvements in reading and
mathematics achievement test scores, along with clinical
improvement [106]. However, the academic gains were lost
at the 3-year naturalistic follow-up [107], and importantly,
only 32.5 % of the original 579 patients enrolled in the study
were still in treatment with stimulants at the 8-year follow-
up [108].

Other studies have found that with a period of time, those
ADHD patients who remain on stimulant medications may
show improved sustained attention and verbal learning
[109], and advantages in academic achievement [110].
However, these are relatively smaller studies with self-
selected patients in naturalistic longitudinal treatment
designs, and therefore the conclusions from these findings
must be tempered. Some observers have concluded that
while ADHD medications improve short-term academic
performance of children with ADHD, they may not have
lasting effects on long-term academic achievement, as
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measured with standardized achievement tests or rates of
grade failure [104]. It is also important to note that there
may be a divergence of goals with clinical versus cognitive
improvement, as the doses used by clinicians to manage the
classroom behavior of a child may be suboptimal (or even
deleterious) for cognition (for more detail see Gadow [111]
and Swanson et al. [112]). An important, relatively recent,
innovation in clinical study design that can rigorously ad-
dress this issue involves the use of analog classroom para-
digms as experimental settings to study ADHD treatment
effects. These studies permit controlled observation periods
for up to 12 to 14 h, and have shown clear dose-dependent
benefits for concurrent overt behavior and mathematics
performance with 1-to-5-week treatment courses with mixed
amphetamine salts [113], methylphenidate [114] or lis-
dexamphetamine (a d-amphetamine pro-drug that is activat-
ed with intestinal and/or hepatic biotransformation) [115].
Among adults with ADHD, a naturalistic study of young
adults found that stimulants improve sustained attention and
verbal learning [109]; otherwise, the evidence that stimulant
treatment improves cognition and/or academic achievement
in college students or adults with ADHD is inconsistent (for
more detail see Advokat [104]). The potential for ADHD
medications to improve cognition and academic achieve-
ment in adults with ADHD remains understudied. In partic-
ular, whether these medications can positively impact
academic outcome (given the high school failure rates in
ADHD) or improve cognition among adults who experience
persisting ADHD in the face of a ubiquitous age-related
cognitive decline throughout the adult years, there pose
important questions deserving further rigorous research.
The use of novel measures of cognitive task performance
is gaining favor as an important methodological innovation
in evaluating drug effects on cognition. This includes the
use of ex-Gaussian analyses to evaluate reaction times (RTs)
that are not normally distributed, and Fourier transformation
of RT data to evaluate periodicity in task performance.
These types of analyses have shown that MPH may have
selective effects on an ex-Gaussian RT component in
ADHD patient performance (i.e., RTs found at the tail of a
distribution) [116], and that MPH can normalize a baseline
group difference in which the ADHD group exhibits a
stronger oscillatory pattern of RT [117, 118].

Despite the uncertainty of the long-term effects of stim-
ulant medications on cognitive function and academic
achievement, there is promising evidence that these medi-
cations have positive effects on brain structure in ADHD.
Medicated ADHD patients, compared to well-matched un-
medicated ADHD patient groups, have significantly larger
(i.e., more normal) volumes of the basal ganglia [119], right
anterior cingulate gyrus [120], posterior inferior vermis of
the cerebellum [121] and total white matter [122], and
increased cortical thickness [123, 124]. In addition, recent
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meta-analyses support the notion that stimulant treatment is
associated with normalization of basal ganglia volumes [22,
23]. Although these studies are cross-sectional in design,
they are strongly suggestive that stimulant medication treat-
ment can remediate the gross structural brain abnormalities
found in this condition.

Effects of ADHD Medications on Brain Function
in ADHD: Neuroimaging Studies

The expanding literature is emerging, which reports the
neural effects of these medications in ADHD patients with
functional neuroimaging (see Table 1 for summary). MPH
increases blood flow in the cerebellum of adults with
ADHD [125], and moderate and high doses of MPH alter
T2 relaxation time (a functional magnetic resonance imag-
ing proxy for blood flow) in the cerebellum of children with
ADHD in a manner associated with the baseline activity
levels of the child, with increases in the most active children
and opposite effects in the children lacking clinical hyper-
activity [126]. MPH effects on striatal [''C]raclopride dis-
placement also correlate with measures of impairment in
continuous performance test performance in unmedicated
adolescents with ADHD [127]. Functional magnetic reso-
nance imaging studies that evaluate drug effects on regional
brain activation while the ADHD patient performs cognitive
tasks have primarily included children and adolescents, and
have targeted complex cognitive processes, such as those
that are highly dependent on PFC-based networks. In stud-
ies of MPH effects on attention in these patients, MPH is
found to normalize activation in the parietotemporal cortical
regions, and frontal connectivity with both the striatum and
the cerebellum under high sustained attention demands, and
normalized orbitofrontal cortex (OFC) activity in these sub-
jects in response to reward [128]; and remediated the hypo-
activity observed in the inferior aspect of the left dorsal
striatum during a divided attention condition [129]. In work-
ing memory paradigms, stimulant treatment increased activ-
ity in 3 brain networks (identified via independent
components analysis of task-related activation during Stern-
berg task performance), strengthened the connectivity in
frontoparietal regions, and led to task-related recruitment
of brain regions not previously engaged [130], although
another study found no effects of MPH treatment on cortical
network activity during the Sternberg performance [131]. In
addition, 1 study found PFC activation and fronto-
subcortical connectivity decreased with drug treatment in
ADHD adolescents [132], and other studies have found
improved in-scanner working memory performance on
MPH without associated changes in task-related brain acti-
vation, in children [133] and adults with ADHD [134].
Cognitive processes that are more explicitly control-
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dependent have been studied as well for MPH effects in
ADHD patients. Brain activation measured during go/no-go
task performance is associated with varied responses to
MPH, including increases in frontal and striatal areas in
children with ADHD [135], increased fronto-striatal and
cerebellar activation in children with ADHD (whereas
ADHD adults showed striatal and cerebellar responses with-
out frontal changes among parent-child ADHD dyads)
[136], and normalized task-related default-mode deactiva-
tion that was attenuated in ADHD children at baseline [137].
A few conflict-processing tasks have been used to interro-
gate PFC-based networks in response to MPH treatment in
ADHD. These studies have found that MPH treatment mod-
ulates the brain regions that mediate suppression of interfer-
ence, including the dorsal anterior midcingulate cortex
[138], lateral PFC [139], and normalizes inhibition-related
activity in fronto-parietal and thalamic areas [140], error-
related activity in parietotemporal cortex and cerebellum
[140], and conflict-related activation in right inferior PFC
and striato-thalamic regions [141], although not all studies
have found MPH effects on PFC in conflict monitoring in
ADHD [142]. Other studies have investigated diverse
processes, finding MPH to partly remediate altered pat-
terns of activity in frontal and temporal cortical regions
during interval time discrimination [143], and stimulant
treatment to normalize both amygdala activity and
amygdala-lateral PFC connectivity in response to sublim-
inal exposure to facial expressions of fear [144]. Overall,
this literature suggests that distributed cortical-subcortical
circuits (which include important nodes in the frontal and
parietal cortex, dorsal striatum, thalamus and cerebellum,
and mediate complex, and control-dependent cognitive
processes that are disturbed in ADHD) are responsive
to ADHD drug treatment and probably serve as impor-
tant mediators of cognitive and clinical efficacy. Conclu-
sions at this point in time should be tempered by the
acknowledgment of numerous methodological issues in
the existing literature. These include the near-ubiquity of
prior stimulant treatment among ADHD patients at study,
which is likely associated with sustained changes in the struc-
ture and function of neurons in the brain, relatively small (and
heterogeneous) samples that limit the replicability of findings,
and a frequent lack of concordance between the neural and
task performance effects of drug treatment, which may leave
the significance of drug-related changes uncertain in the brain.
In addition, there may not be any simple relationship of
regional brain effects of treatment to changes in cognitive
function. These may have complex multiphasic dose-
response relationships (established in animal studies of both
physiology and cognition, and in clinical trials with ADHD
patients), and drug effects could be dependent on cellular
changes that emerge in time, mediated by transcriptional and
plasticity processes.

Conclusion/Future Directions

The current pharmacopoeia for ADHD is large and diverse.
Nonetheless, all effective medications for ADHD share mod-
ulatory actions on catecholaminergic neurons in the brain.
This is consistent with the multiple lines of evidence impli-
cating the central DA and NE systems in the pathophysiology
of ADHD. These neurochemical systems strongly modulate
all the cognitive processes that are important in this disorder.
Classic psychostimulants share several key actions on these
cells and systems; however, there are potentially important
differences in the cellular effects of methylphenidate versus
amphetamine, the clinical implications of which are not yet
understood. The clinical efficacy of agents, such as the x,
receptor agonists guanfacine and clonidine suggest that cate-
cholamine transport inhibition is not the only route to efficacy.
In addition, the observation that drugs without significant
direct DA effects, such as the o, receptor agonists, as well
as atomoxetine and desipramine all remediate ADHD symp-
toms, indicates that action on the central LC-NE system
(probably targeting both NE and DA signaling in the PFC)
is a key mediator of effective drug action for ADHD. Al-
though the functional role of catecholamine systems in the
modulation of distributed neural circuits is a topic of intensive
research, the effects of these drugs on those modulatory pro-
cesses is still emerging. This is a rich and important area of
research that stands to inform not only the basic science of
neural network operation, but also to support advances in the
treatment of this high-impact disorder.
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