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Abstract
Pancreatic ductal adenocarcinoma (PDA) is a common and lethal malignancy, resulting in over
250,000 deaths per year world-wide. Despite extensive efforts, cytotoxic and targeted therapies
have provided only limited efficacy for PDA patients to date. One contributing factor to the failure
of systemic therapies may be the abundant tumor stromal content that is characteristic of PDA.
The PDA stroma, aptly termed the tumor microenvironment (TME), occupies the majority of the
tumor mass and consists of a dynamic assortment of extracellular matrix components and non-
neoplastic cells including fibroblastic, vascular and immune cells. Recent work has revealed that
the PDA stroma supports tumor growth and promotes metastasis, and simultaneously serves as a
physical barrier to drug delivery. Accordingly, methods that alter stromal composition or function,
for instance interference with the vasculature via Notch/Hedgehog pathway inhibition or relief of
vascular compression by hyaluronidase, are under active investigation. Here we will review our
current understanding of the PDA tumor microenvironment, and highlight opportunities for further
exploration that may benefit patients.
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Tumor microenvironment – Achilles heel of pancreatic cancer?
Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignant disease of the exocrine
pancreas with a 5-year survival rate of less than 5% (1). In the United States, it represents
the fourth-leading cause of cancer-related deaths, with an estimated 43,920 new cases and
37,390 deaths in 2012 (2). The majority of patients initially present with advanced and
metastatic disease, with only 10-15% of patients being candidates for surgical resection.
Unfortunately, post-surgically most patients still relapse despite adjuvant systemic therapies
(3). This dismal prognosis is a result of the late diagnosis of the disease, the lack of
biomarkers allowing early screening, the early metastatic dissemination and ultimately the
resistance to systemic therapies.
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Recent years have seen significant advances in the treatment for many tumor types,
including melanoma, lung and colorectal cancer based on the rational design of targeted
therapies directed at molecular alterations arising in cancer cells (4). Unfortunately, similar
success has not occurred in PDA, which remains a lethal disease. Gemcitabine, the current
standard-of-care chemotherapeutic was approved mainly on the basis of patient benefit and
produced only a modest increase in survival (5). Even targeted therapy approaches have had
limited success so far. Indeed, the only other drug approved is the EGFR tyrosine kinase
inhibitor Erlotinib (Tarceva), that when combined with gemcitabine increased overall the
survival from 5.91 to 6.24 months (6). A promising classical combination chemotherapy
approach recently reported is FOLFIRINOX (oxaliplatin, irinotecan, leucovorin and 5-
fluorouracil), which achieved a significant survival benefit for patients with metastatic PDA
compared to gemcitabine (11.1 versus 6.8 months) (7). Unfortunately, FOLFIRINOX is only
suitable for patients with good performance status due to increased toxicity. Therefore, new
approaches are sorely needed for the vast majority of PDA patients. What are the reasons
that most conventional and targeted therapies fail to provide substantial response rates in
pancreatic cancer? The challenges faced by oncologists in the treatment of pancreatic cancer
may in part be explained by the diverse influences exerted by the microenvironment on
cancer cells. Intriguingly, there is a huge discrepancy between the relative success and
effectiveness of therapies, including gemcitabine reported in preclinical assays (cell culture,
xenograft mouse models) and subsequent failure in human PDA (8). Revealing the
underlying molecular mechanisms of the microenvironment-tumor cell cross-talk is
challenging due to the heterogeneous nature of the PDA stroma. Importantly, the generation
of genetically engineered mouse models (GEMMs) for pancreatic cancer that faithfully
recapitulate the human disease, including resistance to gemcitabine, has enabled new
approaches to understand the importance of the TME in disease pathogenesis and
therapeutic response (9-11). These GEMMs are founded on early genetic analyses that
discovered the presence of a single point mutation in the KRAS oncogene in over 90% of
human PDA specimens (12). Subsequent genetic manipulation of the orthologous gene in
mice demonstrated that this mutation was sufficient to initiate the formation of premalignant
ductal transformation (pancreatic intraepithelial neoplasia, PanIN). Further studies showed
that the loss or mutation of tumor suppressor genes commonly acquired during human
disease progression (Tp53 and Ink4a/Arf) cooperate with Kras in mice to promote invasive
cancer (13-15). More insight into the underlying genetic alterations in pancreatic cancer is
provided in the review by Iacobuzio-Donahue et al. in this issue (16).

Pancreatic ductal adenocarcinoma is one of the most stroma-rich cancers. It is not
uncommon for stromal components to outnumber cancer cells as illustrated in Fig.1. PDA
stroma is very heterogeneous and comprised of cellular and acellular components, such as
fibroblasts, myofibroblasts, pancreatic stellate cells, immune cells, blood vessels,
extracellular matrix and soluble proteins such as cytokines and growth factors. The TME is
not a static entity but is constantly changing in composition especially in the progression
from preneoplastic PanIN to invasive PDA. We aim to outline the current evidence for TME
influences on multiple aspects of PDA. These include proliferation and survival, metastasis,
resistance to therapy and escape from immune control. We have limited our analysis to
studies carried out in the most relevant GEMMs or orthotopic tumor models as well as
clinical data because xenograft/allograft models have a fundamentally different composition
and functionality of the microenvironment including dramatic differences in ECM
components, immune cells and tumor vasculature. This fact must be considered in the design
of future research and interpretation of published data.
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Stromal fibroblasts - the pancreatic stellate cell
Pancreatic stellate cells (PaSCs) were identified in 1998 as a rare stromal cell type in the
healthy pancreas (17, 18). Their peri-acinar star shaped morphology, characteristic marker
protein expression and storage of fat droplets rich in vitamin A resembled hepatic stellate
cells and inspired the name. Under homeostatic conditions PaSCs are quiescent and their
physiological role has yet to be delineated. Acute and chronic inflammatory conditions
cause activation of PaSCs which is characterized by morphological changes, increased
proliferation, deposition of extracellular matrix and expression of alpha-smooth muscle actin
(α-SMA) as well as the loss of the fat droplets (19). Based on the observation that activated
PaSC are detected in areas with high collagen content, it was postulated that PaSC may be
causally involved in the pathogenesis of pancreatic fibrosis (20). While the embryonic origin
of PaSCs has not yet been addressed mesenchymal cells in the bone marrow are a likely
source for PaSC in adult mice after injury (pancreatitis, partial pancreatectomy) and in
DMBA-initiated sarcomatoid pancreatic tumors (21-23).

The scarcity of PaSCs and their limited life span in culture has prompted the generation of
immortalized PaSC lines from human, rat and mouse pancreata (24-30) (Table 1). Such
immortalized PaSCs have enabled the dissection of important cross-talk pathways between
PaSCs and neoplastic PDA cells by co-culturing in monolayers or three-dimensional
models. Indeed, it was recently reported that all-trans-retinoic acid (ATRA) induced the
quiescence of PaSCs and this led to decreased proliferation and survival of pancreatic cancer
cell in three-dimensional co-culture and in a GEMM (31). Therefore, PaSCs represent a
resource that may be harnessed to explore the tumor-promoting aspects of tumor fibroblasts
in PDA.

Co-cultures of PaSCs and PDA cells have generally demonstrated an enhancement of
pancreatic cancer cell proliferation and migration by release of growth factors and cytokines
(32). In vivo studies corroborate those findings, revealing that the co-injection of pancreatic
stellate cells with tumor cells in orthotopic models of PDA increases tumor size and causes a
higher incidence of metastasis (25, 33). A subsequent study from the Apte group
investigated the role of PaSCs in the metastatic process and found that they orchestrate
metastatic dissemination by co-migrating with neoplastic cells to potentially establish the
appropriate metastatic niche or “soil” (34). Two recent publications may provide an
additional explanation for the enhanced tumorigenicity of tumor cells/PaSC co-transplants.
In vitro experiments demonstrated that PaSC increase the stem cell phenotype of pancreatic
cancer cells and suggest that pharmacological targeting of PaSC could have unrecognized
additional benefits (35, 36). The identification of major signalling pathways activated in
PaSCs in response to contact with cancer cells will be an interesting platform on which to
develop therapies targeting PaSCs. For instance, the MAP kinase pathway plays a prominent
role in the response to mitogenic stimuli of which PDGF seems most potent (37, 38). Other
potential targets include stimulators of the fibrinogenic program such as FGF, downstream
effectors generated by transforming growth factor β (TGFβ), connective tissue growth factor
(CTGF) and epidermal growth factor (EGF). Additional insights may be gleaned by
investigating pathways known to be relevant for hepatic stellate cell activation (39). Finally,
targeting specific pathways germane for PaSC-neoplastic cell cross-talk may also modulate
other aspects of the TME including the vascular and immune system.

Extracellular matrix as an obstacle to therapy
Pancreatic ductal adenocarcinoma is histologically characterized by the abundance of of
extracellular matrix (ECM), commonly also referred to as desmoplasia (Fig. 1A-D).
Extracellular matrix components include collagen, fibronectin, proteoglycans and hyaluronic
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acid, as well as catalytically active enzymes and proteinases. The accumulation of ECM
components distorts the normal architecture of pancreatic tissue inducing an abnormal
configuration of blood and lymphatic vessels (40-42). One factor potentially contributing to
therapeutic resistance in PDA may be the rigidity of the ECM that compresses blood vessels,
leading to reduced perfusion that ultimately impedes the delivery of drugs to neoplastic
cells. Indeed, we previously reported that the concentration of active intracellular metabolite
of gemcitabine, 2′,2-difluorodeoxycytidine triphosphate (dFdCTP), was high in stroma-poor
subcutaneous or orthotopic xenografts/syngeneics but hardly detectable in stroma-rich PDA
tumors in a GEMM (11). Further analysis revealed that transplanted tumors exhibited an
increased vascular content and function as compared to primary GEMM tumors and human
PDA. Since sonic hedgehog (SHH) signaling has been shown to be restricted to the stromal
compartment and enhance the desmoplastic reaction (43, 44) our laboratory reasoned that
pharmacological inhibition of the SHH pathway may positively impact on gemcitabine
delivery. As predicted, the combination of a Smoothened inhibitor (IPI-926) with
gemcitabine caused a depletion of tumor stroma and resulted in increased mean vessel
density and patency (11). This alteration of the TME was paralleled by significantly
enhanced intratumoral concentrations of dFdCTP, transient disease stabilization and a
survival benefit (11). Several clinical trials have been initiated as a result of this and are
recruiting patients to investigate the mechanism and treatment effect of pharmacological
SHH-inhibitors in pancreatic cancer patients (http://clinicaltrials.gov; NCT01195415,
NCT01064622, NCT01130142, NCT01096732). Unfortunately, Infinity Pharmaceuticals
announced in January 2012 that it was halting its phase II trial of the Smoothened inhibitor
IPI-926 plus gemcitabine (NCT01130142). This is very surprising in light of the
encouraging results of 31% partial response rate (10% for gemcitabine only) reported in a
previous phase Ib trial (ASCO 2011, abstract #4114). An analysis of this trial is underway
by the investigators conducting this trial.

Secreted protein acidic and rich in cysteine (SPARC) represents another proposed target to
facilitate depletion of the tumor stroma in pancreatic cancer. SPARC is overexpressed by
fibroblasts in the TME of human and murine PDA (Figure 1C) and has been shown to
inversely correlate with survival (45, 46). A novel drug formulation consisting of paclitaxel
associated with albumin (Abraxane or nab-paclitaxel) has been hypothesized to accumulate
in and potentially deplete PDA tumor stroma via binding of albumin to SPARC-positive
fibroblasts thus representing a mechanism for targeting a specific cell type within the PDA
tumor microenvironment (47). The first clinical trial of gemcitabine in combination with
nab-paclitaxel showed a promising overall survival of 12.2 months, and the subset of
patients with elevated SPARC expression correlated with increased survival in this study.
The potential role of SPARC as a predictive biomarker for positive responsive to nab-
paclitaxel and gemcitabine contrasts with a separate report that showed a poor prognosis for
PDAC patients who had SPARC enriched tumors resected and received standard adjuvant
therapy (45, 46). In this trial patients with high SPARC levels had a mean overall survival of
17.8 months as compared to 8.1 for low SPARC (48). A preclinical study in a GEMM from
our laboratory confirmed the remarkable efficacy of nab-paclitaxel in combination with
gemcitabine, although in contrast to data originating from patient derived xenografts
(PDXs), we did not observe stromal depletion in our preclinical setting. Instead, we reported
a mechanism involving impaired gemcitabine metabolism due to reactive oxygen species
(ROS)-mediated degradation of cytidine deaminase (49). Further in depth investigations are
required to elucidate the exact role of SPARC as a novel biomarker for PDA patients, in
particular whether treatment with nab-paclitaxel represents the sole determinant for its
prognostic impact.

Another possible strategy to relieve vessel compression and aid drug delivery is to
enzymatically break down the ECM scaffold. Many cancers are rich in hyaluronan (HA), a
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megadalton glycosaminoglycan that retains water due to its high colloid osmotic pressure
(Figure 1D) (50). This provides elasticity to connective tissue in healthy organs but
excessive HA accumulation in solid tumors raises interstitial fluid pressure and compresses
blood vessels. We and others have recently shown in a GEMM of PDA that enzymatic
remodelling of the ECM is indeed a promising avenue. Hyaluronan degradation by
hyaluronidase PEGPH20 decreased interstitial fluid pressure in KPC tumors (51), as shown
previously in a prostate cancer xenograft model (52). Consequently increased vessel
patency, drug delivery and survival were observed (51, 53). It will be interesting to see if
this concept holds true in human pancreatic cancer when the results of an ongoing Phase I/II
trial of hyaluronidase (PEGPH20) plus gemcitabine will be released (NCT01453153).

The conundrum of hypovascularity in pancreatic cancer
As alluded to in the previous paragraph, the vasculature in PDA is profoundly affected by
the excessive desmoplasia. As a consequence, vascular dysfunction represents a major
obstacle to pharmacodelivery. Moreover, how cancer cells maintain their nutrient demands
to fuel the rapid growth despite the lack of adequate perfusion is elaborated upon in the
accompanying review by Le et al. in this issue (54). The discovery of the hypovascularity
and perfusion impairment has broken with the general assumption of an “angiogenic switch”
required for tumor progression (55, 56). Unlike pancreatic neuroendocrine tumors, which
are clearly dependent on angiogenic factors their exocrine counterparts seem to thrive
without the requirement for excessive angiogenesis (11, 57). In fact, hypovascularity and
perfusion impairment have long served as diagnostic tools in the imaging of pancreatic
masses (58, 59), but mechanisms behind these histopathological features have not been fully
elucidated.

Transcriptional analysis has previously demonstrated a gradient of angiogenic activation
from normal pancreas to PDA (60). Consistent with this finding, components of the
prototypically angiogenic VEGF pathway are highly expressed in tumor cells and associated
endothelia (61, 62). Despite this, tumor samples show substantially lower microvessel
densities (MVD) than that of normal pancreas (Figure 2) (11, 57). While VEGF
immunostaining is positively correlated with MVD, it has limited association with patient
survival (63, 64). Despite these contradictory findings anti-angiogenic therapy was tested in
PDA. Initial approaches targeted matrix metalloproteinases using Marimastat and BAY
12-9566, as well as the integrins αVβ3 and αVβ5 using Cilengitide. These compounds did
not provide any clinical benefit in trials (65-67). More recently targeted agents such as
Bevacizumab, an anti-VEGFA monoclonal antibody, have been investigated in advanced
pancreatic cancer in combination with gemcitabine and did not improve survival compared
to gemcitabine plus placebo in a randomized phase III trial (5.8 vs 5.9 months) (68). In
addition, there was no significant benefit to overall survival in combining Bevacizumab with
erlotinib and gemcitabine compared to the combination of the latter two compounds (7.1 vs
6.0 months) (69). Bevacizumab has also been evaluated in other combinations including
with docetaxel and with concurrent capecitabine and radiation without any proven benefit,
although certain studies are still underway (70, 71). VEGF receptor inhibition using Axitinib
in combination with gemcitabine also had no beneficial effect on overall survival (72). In
addition, the kinase inhibitor Sorafenib, which targets VEGFR as well as PDGFR, c-KIT,
Raf1 and FLT3 was found to be inactive in advanced pancreatic cancer (73). Likewise,
discouraging results testing sunitinib in a preclinical trial in the LSL-
KrasG12D;p53R172H/+;Ptf1a-Cre model add to mounting evidence of PDA’s angiogenic
independence and dominance of tumor-driven angiostasis (57). This phenotype suggests that
endogenous inhibitors in the microenvironment might exert an overriding angiostatic effect
during PDA’s natural history. Many of these factors are generated from plasma and
extracellular matrix proteins by proteases, which are frequently upregulated in tumor and
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stellate cells (PaSCs) (74). For example, angiostatin and endostatin are produced by PDA
and detected at high concentrations in patients’ circulation (75, 76). Moreover, while
activated PaSCs are ostensibly proangiogenic, their co-culture with tumor cells robustly
increases endostatin levels, demonstrating the angiostatic potential of such heterotypic
interactions (77).

On the whole anti-angiogenic therapies have proven not to be viable option for pancreatic
cancer, and while therapeutic delivery may contribute to these failures, alternative
approaches targeting the PDA vasculature remain attractive and potentially feasible. Two
scenarios are possible: If PDA maintains itself on frugal use of restricted resources as a
consequence of limited perfusion it may be conceivable that impairing perfusion even more
could tip the balance towards widespread hypoxic necrosis (78). In contrast, increasing
tumor perfusion may seem counterintuitive but could synergise with cytotoxic therapy to
increase the intratumoral drug delivery and response.

Is PDA hypoxic?
The previous paragraph laid the groundwork for this question. Most solid tumors contain
areas of below optimal oxygen concentration (hypoxia). This occurs as a result of inefficient
tumor vascular supply and a high metabolic need for oxygen (79). Many studies have
provided evidence that hypoxic cells are more resistant to both chemotherapy and
radiotherapy, can increase their invasive and metastatic potential, ultimately creating a more
aggressive disease (80, 81). The ability of cancer cells to survive under these hypoxic
conditions results from ability to co-opt pathways necessary for embryonic development
under hypoxic conditions. The main pathway involved in the hypoxic response is the
hypoxia inducible factor (HIF) pathway (82). HIF can induce a wide range of gene products
controlling cellular metabolism and energetics, cell survival, migration and pH (83). The
HIF transcription factors also direct the transcription of many angiogenic growth factors
(84).

Considering that the hypovascular nature of PDA has a significant impact on perfusion and
drug delivery (11) it would be reasonable to assume a hypoxic state. However, direct
evidence is sparse and the majority of publications have used surrogate markers for
measuring hypoxia, such as necrosis or expression of HIF target genes (85-87). Only one
small study involving 7 patients with pancreatic cancer has directly measured the oxygen
pressure during panreaticoduodenectomy by inserting needle electrodes. It found a dramatic
reduction in oxygenation of tumor tissue versus normal pancreas (88). Interestingly, pre-
clinical work in an orthotopic model of pancreatic cancer has shown a lack of correlation
between microvessel density and hypoxia, perhaps suggesting that a hypovascular pancreatic
tumor is not directly linked to hypoxia (89). Nevertheless, this work did predict more
aggressive behaviour, including a more metastatic phenotype in hypoxic tumors. Clinical
work is underway to assess the prognostic significance of these results in pancreatic cancer
patients, using the hypoxia probe, pimonidazole, administered 24 hours prior to surgery
(NCT01248637).

The reason hypoxia poses a challenge to the field of anticancer therapeutics is that it
provides a niche for slow-cycling, highly drug-resistant cells, which may be identical to the
proposed cancer stem cells (see review by Penchev et al. in this issue, (90, 91). Thus
standard chemotherapy agents fail because they are unsuccessful at targeting the cell within
the hypoxic TME, which might be those that most need to be eliminated (92). Additionally,
hypoxic conditions are also known to stimulate the Notch signaling pathway and it has
recently been shown that pancreatic cancer cells can be sensitised by Notch inhibition (78).
Thus, the hypovascular state of PDA could be exploited by novel therapeutic approaches
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such as hypoxia activatable prodrugs (93). Further investigations are required into the
downstream Notch targets that are important for tumor cell survival under hypoxic
conditions. Currently, a clinical trial is investigating the benefit of combining Notch
pathway inhibition and gemcitabine (NCT01232829, NCT01098344).

Out of balance - immune cells in PDA
Similar to other cancer types, inflammation seems to be crucially linked to PDA
development as exemplified by chronic pancreatitis being a major risk factor (94). However,
the molecular details are still obscure and are just beginning to be elucidated (95, 96). A
comprehensive analysis of the immune cell composition of PanIN and PDA in the LSL-
KrasG12D;Pdx1-Cre mice defined an important baseline for future studies (97). Using
enzymatic tumor digestion followed by FACS analysis it revealed that immune cells make
up roughly 50% of the tumor cell mass (Figure 3 illustrates similar findings by
immunofluorescence). From this study it is apparent that immunosuppressive cell types such
as regulatory T cells and myeloid derived suppressor cells (MDSCs) are predominant with
hardly any cytotoxic T lymphocytes (CTLs) infiltrating the tumors. This paints a picture of a
striking imbalance in pro-tumorigenic and anti-tumorigenic immune cells. To add to the
complexity, a recent study revealed a new immunosuppressive cell type in the stroma of
PDA and other cancers. This cell expresses fibroblast activation protein α (FAPα), and
FAPα cell ablation resulted in immunological control of tumor growth in several
subcutaneous tumor models (98).

Successful immunotherapy depends on the cancer cells expressing proteins that can be
recognized as altered by the immune system. These fall in two categories: tumor associated
antigens (TAA) are non-mutated self proteins that are aberrantly regulated (overexpressed or
expressed in other tissues or oncofetal antigens), while tumor specific antigens (TSA) are
generated as a consequence of the mutational events in neoplastic cells and are de novo
antigens. The goal is to induce high-affinity cytotoxic T cells (CTL or CD8 T cells) without
causing autoimmunity. Antigens targeted in immunotherapy clinical trials in PDA have
included Muc1, mesothelin, Kras, carcinoembryonic antigen (CEA), survivin and telomerase
as well as whole tumor cells engineered to express GM-CSF (reviewed in (99)).

The first phase I trial using irradiated allogeneic granulocyte-macrophage colony-
stimulating factor (GM-CSF) expressing tumor cell vaccines was well tolerated and found to
be safe for use in humans (100). This warranted a larger phase II trial to investigate the
disease free and overall survival after surgical resection followed by chemoradiation and
vaccination, which reported a median survival of 24.8 months (101). Another approach is to
pulse dendritic cells with tumor antigens ex vivo and re-infuse them into patients. Muc1-
pulsed dendritic cells were evaluated in a phase I/II trial in patients with resected pancreatic
and biliary tumors. The vaccine transiently increased the percentages of functional CD4 and
CD8 T-cells as well as regulatory T-cells. 4/12 (33%) of patients in this study were alive
five years post-surgery with a median survival time of 26 months (range of 13-69 months)
(102). Both of these studies compare favourably in terms of the median survival for resected
pancreatic cancer, which is normally between 11-20 months. A third approach is the use of
blocking/neutralizing antibodies such as Ipilimumab, which targets CTLA-4, a surface
protein expressed by activated T cells that confers inhibitory signals. Unfortunately,
Ipilimumab as a single agent was found to be ineffective in a phase II trial in locally
advanced and metastatic pancreatic cancer. However, one of the patients on this study
experienced significant delayed regression of the primary tumor and 20 hepatic metastases,
which may merit further investigation (103).
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GEMMs are an ideal system to evaluate immune therapeutic approaches in PDA, however
few reports exist to date on this topic. This may be because the tumor antigens for PDA are
unknown making the tracing of immune responses very difficult. Nonetheless, a recent
immunotherapy study employed the “KPC” GEMM (LSL-KrasG12D;LSL-p53R172H/+;Pdx1-
Cre) to evaluate whether activation of antigen presenting cells via stimulation of CD40
would result in increased tumor antigen presentation and priming of effector T cells (104).
Treatment with agonistic anti-CD40 achieved tumor stabilization and even regression in
KPC mice but was surprisingly T cell independent. Instead, tumor control was exerted by
the activated macrophages targeting the fibrotic stroma. Furthermore, an early phase clinical
trial with anti-CD40 antibody showed promising results in patients (104).

Conclusions and future outlook
The influences of the stroma in pancreatic cancer are as manifold as its components (Figure
4). But this curse may be turned into a blessing as this complexity also provides numerous
avenues for therapeutic exploration (clinical trials mentioned in this review are summarized
in Table 2). Accumulating evidence suggests that the extensive desmoplastic reaction may
be at least partly responsible for the innate chemoresistance in pancreatic tumors by creating
barriers that fence off tumor cells from circulating active therapeutic compounds. Breaching
this stromal barrier represents a promising strategy to improve the delivery and efficacy of
cytotoxic drugs in the future. Therapeutic benefit may be gained by strategies aimed at
depleting the desmoplastic stroma, exploiting the poor vasculature or activating the immune
system to target tumor cells. We anticipate that future therapies will have to be tailored to
target several of the described components of the microenvironment to achieve long lasting
therapeutic response.
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Fig.1.
PDA contains an abundant stroma. A Mouse PDA tissue was stained with Picrosirius Red
and imaged under polarized light to visualize collagen fibres (20x magnification). B
Masson’s Trichrome staining highlights connective tissue distribution in an example of
mouse PDA. Collagen fibres are staining in blue with the cytoplasm appearing in red (40x
magnification). C Immunohistochemistry for SPARC on murine PDA (α-SPARC
polyclonal antibody, Protein tech catalogue number: 15274-1-AP, 10x magnification). D
Histochemical staining of hyaluronan (biotinylated hyaluronan binding protein, Calbiochem
385911, 10x magnification) reveals pan-stromal deposition in murine PDA.
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Fig. 2.
Murine PDA is characterized by hypovasularity. In this example of CD31
immunohistochemistry the dotted line denotes the boundary between tumor (T) and
peritumoral diseased pancreas (PT) (20x magnification).
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Fig.3.
Prominent immune cell infiltration exists in mouse PDA. This immunofluorescence staining
illustrates the abundance of immune cells marked by CD45 expression (red) between
neoplastic glandular structures (stained for EpCam in blue) and α-SMA positive stromal
fibroblasts and perivascular cells that likely represent pericytes (green) (20x magnification).
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Fig.4.
Schematic of the TME network, crosstalk and interdependence in PDA with a focus on
therapeutic intervention points. A Activated pancreatic stellate cells lay down vast amounts
of ECM, which causes a constriction/collapse of the sparse vessel network. This impedes on
gemcitabine delivery. Hypoxia generates niches for slow-cycling cells that are not targeted
by chemotherapeutics. Also, an immunosuppressive microenvironment further supports
tumor growth. B Hedgehog pathway inhibition causes stromal depletion accompanied by
reduced ECM. The ECM can also be enzymatically targeted and both interventions lead to
increased vessel patency and intra-tumoral gemcitabine delivery. The immune system can be
stimulated to turn against cancer cells for instance by anti-CD40 antibody treatment.
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Table 1

Overview of published pancreatic stellate cell lines of either human, mouse or rat origin.

Name of
cell line

Source Method of
immortalization

Reference

RLT-PaSC Primary human from
chronic pancreatitis

SV40 large T antigen
+ hTERT

26

25HPaSC Human PDA SV40 large T antigen
+ hTERT

25

PS-1 Human pancreas
(transplantation tissue)

hTERT 24

irPaSC Sprague-Dawley
rat

SV40 large T antigen 28

SAM-K Male Wistar rat SV40 large T antigen 29

SIPS Male Wistar rat Spontaneous
immortalization

27

LTC-7 and
LTC-14

Male LEW.1W SV40 large T antigen 30

imPaSC C57BL/6 mouse SV40 large T antigen 28
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