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Abstract
Phylogeny shows that CD4 T cell memory and lymph nodes (LNs) co-evolved in placental
mammals. In ontogeny, retinoic acid orphan receptor (ROR) γ-dependent lymphoid tissue inducer
(LTi) cells program the development of mammalian LNs. Here, we show that while primary CD4
T cell expansion is normal in RORγ-deficient mice, the persistence of memory CD4 T cells is
RORγ-dependent. Furthermore, using bone marrow chimeric mice we demonstrate that LTi cells
are the key RORγ-expressing cell type sufficient for memory CD4 T cell survival in the absence
of persistent antigen. This effect was specific for CD4 T cells, since memory CD8 T cells survived
equally well in the presence or absence of LTi cells. These data demonstrate a novel role for LTi
cells, archetypal members of the innate lymphoid cell family, in supporting memory CD4 T cell
survival in vivo.

INTRODUCTION
The hallmark of mammalian immunity is the capacity to make CD4 T cell-dependent
memory immune responses, and this underpins the success of vaccination strategies.
Phylogeny shows that both LNs and CD4 T cell memory antibody responses evolved in
placental animals, as marsupials have evidence of memory (1) and LNs (2, 3), whereas
monotremes have neither (4, 5). The formation of LNs is dependent upon RORγ-expressing
LTi cells, key members of the recently described innate lymphoid cell family (6). While the
function of LTi cells in the developing embryo is clear, their potential roles within mature
secondary lymphoid tissue are currently being elucidated.

Recent studies have found them to be important in the repair of lymphoid tissues after
pathogen related injury (7), the production of IL-22 (8), and T cell independent production
of IgA in the gut (9). We previously found that in mature, but not in embryonic mice, LTi
cells express high levels of the TNF family members, OX40-ligand(L) and CD30L (10, 11)
and we have linked signalling through the receptors for these molecules with the capacity to
mount CD4 memory antibody responses (12, 13). Unlike antigen-presenting cells such as
dendritic cells and B cells that can also express OX40L and CD30L, LTi cells completely
lack expression of CD80 and CD86, and do not present antigen (13). Since LNs and CD4
memory antibody responses arose in the same evolutionary window, we speculated that LTi
cells might provide survival signals required for the maintenance of memory CD4 T cells in
the absence of antigenic stimulation. To test this we have now analyzed CD4 memory
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responses in mice lacking LTi cells. Here we provide direct evidence that LTi cells maintain
memory CD4 T cells in vivo, demonstrating a further crucial role for these innate lymphoid
cells in supporting adaptive immune responses.

MATERIALS AND METHODS
Mice

Animals were bred in accordance with home office guidelines at the University of
Birmingham, Biomedical Services Unit. Mice used were BoyJ, CD3εtg26,
CD3εtg26RORγ−/−, RORγ−/−, Rag−/−, Rag−/− × OTII, Rag−/− × SM1. The following mouse
was obtained through the NIAID Exchange Program, NIH: C57BL/6-Tg(OT-I)-
RAG1<tm1Mom> (14) (15). Experimental and control CD3εtg26RORγ−/− mice were sub-
lethally-irradiated (1 × 450 Rad), given BM from CD3εtg26 or CD3εtg26 RORγ−/− mice i.v.
and used 4-5wks after reconstitution.

Immunisation and cell transfer
To track antigen specific CD4 T cells, mice were infected i.v. with 107 ActA mutant Listeria
monocytogenes (Lm), as described (16). To generate memory T cells, ~5 ×104 SM1, OTII
or OTI T cells were transferred into Rag−/− mice, which were then immunised and memory
cells harvested 3-4 wks later. To stimulate SM1 cells, recipient mice were immunised i.v.
with 107 attenuated Lm expressing FliC peptide (target antigen of SM1 T cells), a kind gift
from Dr. Sing Sing Way. To stimulate OTII and OTI cells, recipient mice were immunised
i.p. with 100μg alum-precipitated OVA.

Flow cytometry
For tetramer staining, cells from secondary lymphoid tissue were pooled and stained for 1hr
at RT with 2W1S:I-Ab. All cell surface staining was done at +4°C for 30mins. Samples were
run using a Fortessa (BD) and analysed using Flow-Jo software (Treestar).

Immunofluorescence and image analysis
Frozen tissue sections were cut and stained with as described previously (17).

Statistics
Statistical significance was tested using the Mann-Whitney U Test and a two-tailed p value
calculated.

RESULTS AND DISCUSSION
Memory CD4 T cells fail to survive in RORγ−/− mice

To investigate whether CD4 T cell survival was dependent upon LTi cells, we first
immunized RORγ−/− and RORγ−/+ littermate mice with nitrophenylated chicken γ
globulin, (NP-CγG). We assessed the primary anti-NP IgM and IgG responses in the serum
7 days (7d) post immunization and found no significant difference (Supplementary Figure
1). To assess a memory response, we analysed splenic NP-specific IgG plasma cells at 4
days post challenge (Supplementary Figure 1). Although RORγ−/+ mounted a characteristic
memory response, this was absent in RORγ−/− littermates (Supplementary Figure 1,
p=0.006). While consistent with defective memory CD4 T cell survival, these experiments
did not discriminate between B or T cell defects in the antibody response. To specifically
test memory CD4 T cell survival in RORγ−/− mice, we analysed endogenous 2W1S+ CD4 T
cells(16). Mice were infected with an Lm-2W1S peptide (16) and the pMHCII tetramer
2W1S:I-Ab was used to identify responding cells in secondary lymphoid tissue (spleen and
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LNs from WT mice, only spleen from RORγ−/− mice). Comparable numbers of 2W1S:I-
Ab+ CD4 T cells were recovered from WT and RORγ−/− mice 7 days post infection (dpi)
(Figures 1A and 1B). No significant differences were seen in the expression of CXCR5,
PD-1, Bcl-6 or T-bet by 2W1S+ CD4 T cells at 7 dpi, indicating a normal primary response
with formation of follicular T helper cells and other T effector cell subsets. (data not shown)
(18). Strikingly, by 28 dpi, numbers of 2W1S:I-Ab+ cells were significantly reduced
(p=0.003) in RORγ−/− mice compared with WT controls and this difference was even
greater at 70 dpi (Figure 1B).

RORγ-expressing LTi cells mediate memory CD4 T cell survival
Although these data demonstrated that polyclonal antigen specific CD4 memory T cells
were not maintained in RORγ−/− mice, they did not show directly that LTi cells were
responsible. Differences between WT and RORγ−/− mice could have been attributed to the
absence of LNs in the latter and other cell populations are RORγ-dependent (19-21).
Therefore to test directly the requirement for LTi cells we performed the following
reductionist experiment, exploiting the CD3εtg26 mouse (22) that lacks T and NK cells but is
LTi cell-sufficient (10). These mice were crossed with RORγ−/− mice to make mice
deficient in T, NK and LTi cells (CD3εRORγ−/−) (Supplementary Figure 2). To reconstitute
LTi cells in the spleen, CD3εRORγ−/− mice were irradiated and reconstituted with bone
marrow (BM) from CD3εtg26 mice (Supplementary Figure 2, mice designated LTi+).
CD3εRORγ−/− mice irradiated and reconstituted with BM from CD3εRORγ−/− (mice
designated LTi−) were used as controls. Since LNs only develop during an embryonic
window, they were absent in both LTi− and LTi+ mice. LTi-like cells expressing NK1.1 and
NKp46 (23) were absent in the spleens of CD3εtg26 mice compared with the spleens of
Rag−/− mice (Supplementary Figure 2). The LTi cells in CD3εtg26 mice expressed high
levels of OX40L, whilst expression of OX40L by dendritic cells was comparable in
CD3εtg26 and CD3εRORγ−/− mice (Supplementary Figure 2). Therefore we had generated
mice with the same secondary lymphoid tissue but sufficient or deficient in LTi cells, to test
the role of LTi cells in memory T cell survival.

Transfer of pre-made memory cells into LTi+ or LTi− mice would exclude possible effects
of LTi cell deficiency on the generation of these cells. A pure cohort of memory CD4 SM1
TCR transgenic T cells was generated (see Materials and methods) and then transferred
(~2.5×105) into LTi+ and LTi− hosts. Four wks after transfer of memory SM1 T cells and
without further exposure to antigen, a clear population persisted principally in the spleen of
LTi+ mice, and to a lesser extent in the BM and other non-lymphoid tissues such as the lung
and liver (Figures 2A, B and C). In contrast, this population was almost entirely absent in
LTi− mice. To control for complexities arising from chimeric mice, a similar experiment
was performed using Rag−/−RORγ−/+ and Rag−/−RORγ−/− mice, with similar results
(Figure 2D). We also confirmed these findings with a second TCR transgenic T cell, OTII
cells, which again persisted only in LTi+ mice (Figure 2E).

Finally, we have found that numbers of LTi are dependent on RORγ expression as Rag−/−

RORγ−/+ have fewer LTi cells than Rag−/− RORγ+/+ mice (Supplementary Figure 2). In
these mice, survival of CD4 T cells is highly correlated with LTi cell number, consistent
with CD4 T cell survival influenced by LTi cells. It is currently unclear how LTi cells
maintain memory CD4 T cells. Agonistic anti OX40 Abs did maintain memory OTII cells in
LTi− mice (Figure 2F), indicating that provision of this signal could keep memory CD4 T
cells alive in vivo. Our previous observations that LTi cells express high levels of OX40L
and CD30L, and signals by these molecules are essential for the survival of memory CD4 T
cells (12, 13), would suggest this may be how LTi cells provide survival signals. We have
previously identified that memory OTII cells associate with LTi cells much more frequently
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than naive OTII cells within the spleen, (24) supporting a model where cellular interactions
mediate survival.

LTi cells are not required for memory CD8 T cell survival
To investigate whether memory CD8 T cell survival was also LTi cell-dependent, memory
OTI cells were generated in Rag−/− mice and transferred into Rag−/− RORγ+/+ and
Rag−/−RORγ−/−, which were then immunised with OVA. Three wks post immunisation the
survival of OTI cells in either the spleen or BM was comparable between LTi cell-sufficient
and LTi cell-deficient hosts (Figures 3A and B). When memory OTI and SM1 cells were
cotransferred into LTi+ and LTi− chimeric mice, memory OTI cells could be recovered from
both LTi+ and LTi− mice, but memory SM1 cells were absent specifically in LTi− mice
(Figure 3C).

LTi cells reside at sites of memory cell recirculation
To investigate where LTi cells and memory CD4 T cells might interact in vivo, we analysed
RORγ expression in secondary lymphoid tissue to determine the location of these cells.
Within the spleen, LTi cells (defined as RORγ+IL-7Rα+CD3−) were located at the marginal
sinus and within the bridging channels (Figure 4A), coinciding closely with the sites of
lymphocyte entry and trafficking into the white pulp (25). Similarly, within the LN, LTi
cells were found clustered at the marginal sinus and interfollicular spaces (Figure 4B), the
site where re-circulating T cells enter from the afferent lymph (26). Thus, LTi cells are
ideally placed to encounter re-circulating memory CD4 T cells. In addition, these locations
are known to be rich in IL-7 expression (27), and the IL-7 signal is recognized as an
essential part of CD4 memory survival (28). We have previously shown that in vitro, culture
with IL-7 will increase OX40 expression on memory but not naive CD4 T cells (12). Culture
with IL-7 also increased CD30L expression by LTi cells in vitro (10). Based on these data
and our previous findings, we propose a simple model whereby memory CD4 T cells
upregulate OX40 in response to IL-7 signals received as they re-enter lymphoid tissues,
enabling them to engage OX40L expressed by LTi cells in the immediate vicinity.
Therefore, LTi cells can function as regulators of memory CD4 T cells, distinct from OX40
and CD30 controlled effector function driven by antigen presenting cells (29). In summary,
we show that a further function of LTi cells is the support of memory CD4 T cell survival.
These data link the evolution of LNs and CD4 memory in placental mammals with LTi cell
functions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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BM bone marrow

Lm Listeria monocytogenes
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LN lymph node

LTi lymphoid tissue inducer

ROR retinoic acid orphan receptor.
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Figure 1. Memory CD4 T cells fail to survive in RORγ−/− mice
A, Detection of CD44hi LM-2W1S:I-Ab+ CD4 T cells in secondary lymphoid tissue from
WT and RORγ−/− mice at 7 and 70 dpi with Lm-2W1S. Plots representative of 5 mice per
time point.
B, Quantitation of total numbers of CD44hi Lm-2W1S:I-Ab+ CD4 T cells isolated from WT
(white) and RORγ−/− (grey) at 7, 28 and 70 dpi. Each triangle represents an individual
mouse. Results representative of 2 independent experiments. Bars show medians.
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Figure 2. RORγ-dependent splenic LTi cells are sufficient for CD4 memory survival
A, Spleen, BM, liver and lung tissue from LTi+ and LTi− mice was analysed by flow
cytometry for the presence of memory SM1 T cells following their transfer 4 wks
previously. Memory SM1 cells express low levels of CD3 and were identified as
CD45.1+CD45.2+(CD3lo)CD4+ CD44hiIL-7Rα+ (lacking expression of B220,CD11b and
CD11c); data representative of 5 LTi+ and LTi− mice.
Enumeration of memory SM1 cells in the spleen (B) and BM (C) 4 wks after transfer into
LTi+ and LTi− mice. Results representative of 2 independent experiments. Bars show
medians.
D, Enumeration of memory SM1 cells in secondary lymphoid tissue 4 wks after transfer into
Rag−/−RORγ−/+ and Rag−/−RORγ−/− mice respectively. Data pooled from two independent
experiments. Bars show medians.
E, Enumeration of memory OTII cells in the spleen after transfer into LTi+ (white) and LTi−

(grey) mice, analysed 3 wks after transfer and 4 days post challenge. Data pooled from two
independent experiments. Bars show medians.
F, Number of memory OTII cells 14 days after transfer into LTi+ and LTi− mice given
either anti-OX40 Abs or control rat IgG, bars show medians. Data representative of two
independent experiments.
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Figure 3. Memory CD8 T cells do not require LTi cells for survival
Enumeration of memory OTI cells recovered from secondary lymphoid tissue (A) and BM
(B) of Rag−/−RORγ+/+ and Rag−/−RORγ−/− mice 21 days post transfer. Results
representative of 2 independent experiments. Bars show medians.
C, Enumeration of memory OTI and SM1 TCR transgenic T cells after co-transfer into LTi+

(white) and LTi− (grey) chimeric mice. Mice analysed 4 wks post transfer, memory cell
numbers recovered from the spleen (triangles) and BM (circles) shown. No SM1 cells were
detected in LTi− spleen or BM and were given an arbitrary value of 1. Bars show medians.
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Figure 4. LTi cells reside at sites of memory cell recirculation
A, Serial sections of CD3ε spleen stained for expression of MAdCAM-1 (green) and IgM
(red), or RORγ (green), MAdCAM-1 (turquoise), IL-7Rα (yellow), counterstained with
DAPI (grey). Scale bar represents 100μm or 50μm in enlarged panel. Data representative of
6 mice analysed.
B, Sections of mesenteric LN from WT mice stained for expression of RORγ (green),
IL-7Rα (yellow), CD3 (blue), counterstained with DAPI (grey). Scale bar represents 50μm,
‘F’ marks follicle.
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