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Abstract
Recent advances in NMR methods now allow protein complexes to be studied in great detail in a
wide range of solution conditions. Isotope-enrichment strategies, resonance-assignment
approaches and structural-determination methods have evolved to the point where almost any type
of complex involving proteins of reasonable size may be studied in a straightforward way. A
variety of isotope editing and filtering strategies underlie these powerful methodologies.
Approaches to the characterization of the dynamics of protein complexes have also matured to the
point where detailed studies of the effects of complexation on dynamics can be studied over a
wide range of timescales.

Introduction
Advances in the field of NMR since its emergence fifty years ago have been staggering. As
the technology has developed, there has been a corresponding explosion in the number of
studies of proteins by NMR methods (for recent reviews, see [1–3]). The continuing interest
in the interaction of proteins with small ligands and biopolymers has provided a potent
driving force for the development of new NMR techniques to probe the structural and
dynamic characteristics of protein complexes. This review focuses on the methodologies and
strategies that have been developed to study complexes between proteins and various types
of ligands, including small organic molecules, peptides and proteins, nucleic acids,
carbohydrates, and lipids.

Methodology
One of the basic issues facing the NMR spectroscopist when approaching a noncovalent
complex of a protein with a ligand molecule is the question of the lifetime of the complex. Is
the complex in slow, intermediate or fast exchange with its dissociated components on the
NMR timescale? Significant structural information may be gained in the fast exchange limit
by use of the transferred nuclear Overhauser effect (NOE; see, for example, [4•]), although
this and related approaches are inherently limited (for a review, see [5,6]). Notable examples
of the use of the fast exchange limit to provide detailed structural information about the
ligand in the protein-bound state include the characterization of interactions between
calmodulin and small peptides [7,8]. However, one must conclude that a complex in slow
exchange with its dissociated components on the NMR timescale is the most ideal condition
for detailed structural studies. In this situation, the full power of multinuclear,
multidimensional NMR methods can be applied to the structural and dynamic
characterization of the complex. The use of heteronuclear NMR brings to the forefront the
issue of isotopic enrichment of the ligand and/or the protein. Manipulation of the fact that
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two separable entities are involved is often extremely advantageous. Basically, the
resonance assignment and structure determination problems presented by a stable binary
complex of proteins is not different from that of a single protein, except for the fact that the
former may be isotopically manipulated in a more selective manner. Three distinct isotopic
enrichment strategies have been used to simplify the resonance-assignment problem
presented by protein–ligand complexes: uniform deuteration of one component; uniform 13C
and/or 15N enrichment of one component; and uniform 13C and/or 15N enrichment of both
components of the complex.

Ironically, it appears that the uniform isotopic enrichment of proteins by biosynthetic means
is often far easier and more cost effective than uniform, or even selective, isotopic
enrichment of peptides or other small ligands by chemical synthesis. Enrichment of proteins
with 13C, 15N and, to a lesser extent, 2H is now often routinely achieved by bacterial
expression of the structural gene during growth on labeled media. Routes to reasonably cost-
effective eukaryotic expression of proteins using 13C, 15N-containing minimal or rich media
are also now available (see, for example, [9,10]).

Uniform deuteration has been used to simplify the 1H spectra of protein-ligand complexes
such as that between calmodulin and melittin [11] and between cyclophilin and cyclosporin
[12]. In these cases, the subsequent analysis of the structure of the bound peptide relied
entirely on 1H–1H interactions. In the context of 1H resonance assignments, which must rely
on 1H–1H J-coupling to provide intraresidue side chain resonance correlations and
subsequently identification, the size of the complex becomes an issue. Although significant
improvements have been made in isotropic mixing sequences employed in TOCSY (total
correlation spectroscopy) experiments (see, for example, [13]), the limitations presented by
a long effective correlation time on chemical-shift correlation via direct 1H–1H J-coupling
places a severe restriction on the size of the complex that can be efficiently studied by this
approach. This is especially true when the spectrum of the bound peptide differs greatly
from that of the free peptide and therefore requires highly reliable chemical-shift correlation
via J-coupling to allow comprehensive resonance assignments to be obtained.

A more flexible strategy is to incorporate 15N and/or 13C into the ligand itself. This serves to
provide a heteronuclear chemical shift for purposes of resolution and a means to distinguish
the 1H resonances of the ligand from those of the receptor protein. In cases where the ligand
is made by chemical synthesis, the cost effective availability of suitably isotopically
enriched precursors may often be limited. This is especially true for peptides and
deoxyoligonucleotides. One recent example is the use of α15N-labeled tBOC-protected
amino acids to prepare a peptide corresponding to the calmodulin-binding domain of the
smooth muscle myosin light chain kinase [14].

In some cases, extensively isotopically enriched ligand can be prepared by biosynthetic
means. Recent examples include the uniform enrichment of cyclosporin with 13C and its
subsequent use to study the conformation of the peptide bound to cyclophilin [15,16].
Surprisingly, fusion protein expression vectors, which can be used to rescue small peptides,
have not yet been used extensively for isotopic enrichment of small peptides. Ironically, the
availability of reasonably efficient semisynthetic approaches to the preparation of
isotopically enriched RNA [17] far exceeds that available for DNA (although see [18•]).

Characterization of the interface of a protein-ligand complex was made much more feasible
by the general development of heteronuclear multidimensional NMR. The use of HCCH-
TOCSY and related experiments (for reviews, see [1–3]) allows nearly complete resonance
assignments for long side chains which are often at the interface between proteins and their
bound ligands. Recently, two experiments have been developed that provide a reliable path
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to the assignment of methionine methyls [19], which are often at the center of hydrophobic
interfaces, and to the arginine guanidino group [20], which often participates in ionic
interactions. Both of these approaches rely on isotopic enrichment (see, for example, [21]).
A number of strategies using both homonuclear and heteronuclear NMR approaches have
been developed to study bound water molecules, which are often critical to the structural
integrity of protein complexes (for reviews, see [22,23]).

In cases where isotopic enrichment of the bound peptide becomes problematic, a somewhat
more difficult spectroscopic approach may be used to isolate 1H–1H interactions exclusively
involving the unlabeled peptide. This is achieved by uniformly enriching the receptor
protein with 15N and/or 13C and editing the spectrum of the complex on the basis of whether
or not a given 1H is J-coupled to a heteronucleus. The standard X-filter selects for those 1H
resonances that are scalar coupled to NMR-active X-nuclei (for a review, see [24]). This
same approach applied in the opposite sense is termed reverse X-filtering: only signals due
to protons coupled to NMR-inactive X-nuclei survive. However, as pointed out by Fesik and
coworkers [25], reverse filtration is a much more demanding task than simply selecting 1H
nuclei that are J-coupled to a heteronucleus. Reverse X-filtered experiments therefore often
employ multiple strategies to suppress resonances arising from protons bonded to 15N
or 13C. The library of experiments employing X-filtration and reverse X-filtration to
simplify the NMR spectra of protein complexes is now relatively stable (for a review, see
[26]) with only a few recent additions (see, for example, [27]).

Although the methods available for solving the resonance-assignment problems peculiar to
protein complexes are now well established and complete, approaches available to study
dynamics at the interface are less evolved. Recent developments in the use of both 13C [28•,
29•] and 2H relaxation [30•] in conjunction with existing 15N relaxation methods (for a
review, see [31]) improve the ability of relaxation techniques to probe the effect of
complexation on the internal dynamics of both ligand and protein. Deuterium relaxation has
recently been employed to probe the effects of complexation by the Src homology 2 (SH2)
domain on its phosphotyrosine-containing peptide ligand [32] and 15N relaxation has been
used to probe the role of protein dynamics in gating ligand binding to the HIV protease
[33•]. It appears that the effects of complexation on the internal dynamics of proteins may be
directly related to changes in the fundamental thermodynamic properties of the system [34].
This is a most exciting development.

Use of the exchange of backbone amide hydrogens with solvent is now a well-established
approach to the characterization of less frequent motions than those dominating NMR
relaxation phenomena. In favorable cases, it has been possible to measure hydrogen
exchange (HX) behavior directly in a protein–ligand complex. This approach has been
especially illuminating in studies of calmodulin–peptide complexes where HX behavior
revealed not only the dynamics of a peptide while bound to calmodulin but also allowed the
sequence of steps in the binding and release of the peptide ligand to be inferred [35•]. Access
to binding and dynamic behavior within protein complexes that are too large for direct study
can be obtained by NMR analysis of HX labeling patterns. A first level application is the
delineation of protein interaction surfaces. Here, time-dependent hydrogen–deuterium
exchange labeling is performed in the complex. The protein interaction surface, marked by
amide sites that are made slow exchanging in the complex, is analyzed later in one of the
separated partners. The method has been applied to protein–monoclonal antibody
interactions [36–39], enzyme–inhibitor complexes [40,41] and the interaction of proteins
with micellar systems [42]. Similarly, NMR analysis of hydrogen exchange labeling has
provided amino acid resolved information on global dynamics in redox pairs [43,44], on
local dynamics in the crystalline state [45,46], on long range dynamic effects in DNA–
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repressor interactions [47], and even on the functional action of massive chaperonin proteins
(Mr 800 000) on their bound, partially structured target [48,49].

Protein-small ligand complexes
There have been a number of applications of detailed NMR studies of proteins in complex
with small molecules including water. Most of these complexes, studied in the slow
exchange limit, provided extremely high resolution information about the binding site and
interactions inherent in stabilizing the complex. Notable examples include studies of the
complex of phosphatidylinositol-4,5-bisphosphate with the pleckstrin domain [50], the
binding of FK506 to its putative target [51], and the dynamic consequences of the binding of
folate to dihydrofolate reductase [52•]. Particularly nice examples of the use of NMR
spectroscopy to unravel the structural and dynamic consequences of the binding of metals to
apoproteins are found in recent studies of calbindin [53•], recoverin [54•,55•], and
calmodulin [56•,57•,58]. Water, which has been shown to be integral to the tertiary structure
and function of individual proteins (see, for example, [59]) has also been found by NMR to
be intimately involved in their complexation of small molecules (see, for example, [51,60•]),
other proteins or peptides (see, for example, [51]), and nucleic acids [61,62]. Evidence
suggesting the presence of disordered water within a nonpolar cavity of interleukin-1β has
also been presented ([63•]; but see also [64,65]).

Protein-protein complexes
Studies of protein–peptide complexes have been commonly used as models of their often
much larger parent protein–protein complexes. Early examples include the use of
synthetically 15N-enriched peptides to provide the first direct confirmation of the
amphiphilic helix model for the structure of calmodulin-binding domains bound to
calmodulin [14] and the first characterization of the fast dynamics of a bound domain [66].
The calmodulin–peptide complexes also fueled the development of many of the reverse
filtered experiments described above and led to the dramatic characterization of the complex
between calmodulin and the calmodulin-binding domain of the myosin light chain kinase
[67]. The interaction of calmodulin with peptides corresponding to calmodulin-binding
domains of target proteins also serves to illustrate the use of transferred NOE to characterize
the structure of a bound peptide [8] and the fast exchange limit to cross-assign spectra [7].
Early work with cyclosporin illustrated a variety of approaches to the protein–peptide
complex including deuteration [12] and 13C-enrichment coupled with X- and reverse X-
filtering [15,16]. The structural characterization of bound peptide ligands with irregular
secondary structure is exemplified by the more recent work on the complex between SH2
domains and phosphotyrosine peptide ligands [68,69] and between thioredoxin and its target
peptide from the transcription factor NFκB [70]. Studies of the SH2 domain also serve as
useful examples of the use of nitrogen and deuterium relaxation to examine the effects of
complexation on the dynamics of the protein [71•,72]. Finally, a particularly difficult
complex involving the oligomerization domain of p53 has also recently been solved ([73];
see also [74,75]).

Protein-nucleic acid complexes
Studies of protein–DNA complexes have been somewhat limited by the inability to prepare
isotopically enriched DNA. Although there are now a number of highly successful examples
of studies characterizing protein–DNA complexes without the benefit of isotopically
enriched DNA (see, for example, [76–80,81•,82–84]), recent developments in the
preparation of isotopically labeled DNA [18•] will hopefully make the complete structural
characterization of protein–DNA complexes as easy as that of protein–protein complexes.
Although the methodology for the labeling of RNA is now well established [85•,86] only a
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limited number of comprehensive NMR-based studies of the structure of protein–RNA
complexes have been reported (see, for example, [87•,88]).

Miscellaneous protein complexes
There has been extensive recent development of NMR methods directed at the resonance-
assignment problem in carbohydrates (see, for example, [89]), their conformational analysis
(see, for example, [90,91]) and the characterization of protein–carbohydrate complexes (for
a recent review, see [92]). The transferred NOE approach has been extensively used in
studies of protein–carbohydrate complexes (see, for example, [93–96]), and is usually
combined with a hard sphere exo-anomeric force field during the refinement of the structure.

The interaction of peptides and proteins within micellar environments has long been the
object of study by NMR methods. Detergent micelles have been used to simply solubilize
proteins in water (see, for example, [97•,98]). Recent examination of highly asymmetric
micelles, termed bicelles, suggests a potential path to the characterization of membrane
proteins by high resolution NMR [99•,100•]. This is a most promising area and one which
we anticipate will bear significant fruit in the coming years.

Conclusions
The last few years have seen a significant maturation of the techniques available to
characterize the structure and dynamics of not only proteins but also nucleic acids,
carbohydrates and lipids. The interaction of proteins with other small molecules and
biopolymers can now be studied by NMR in great detail under a range of experimental
conditions. The characterization of protein complexes by NMR can be expected to be one of
the crowning achievements of the NMR technique.
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