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Background: The �-loop (Arg-164 to Asp-179) is a conserved region among class A �-lactamases.
Results: InKPC-2, a carbapenemase of significant clinical importance, Arg-164 substitutions in the�-loop selectively enhanced
ceftazidime hydrolysis.
Conclusion: Ceftazidime resistance may proceed by a novel mechanism that uses covalent trapping and hydrolysis.
Significance: Future antibiotic design must consider the distinctive behavior of the �-loop of KPC-2.

Gram-negative bacteria harboring KPC-2, a class A �-lacta-
mase, are resistant to all �-lactam antibiotics and pose a major
public health threat. Arg-164 is a conserved residue in all classA
�-lactamases and is located in the solvent-exposed �-loop of
KPC-2. To probe the role of this amino acid in KPC-2, we per-
formed site-saturation mutagenesis. When compared with wild
type, 11 of 19 variants at position Arg-164 in KPC-2 conferred
increased resistance to the oxyimino-cephalosporin, ceftazi-
dime (minimum inhibitory concentration; 323128 mg/liter)
when expressed in Escherichia coli. Using the R164S variant of
KPC-2 as a representative �-lactamase for more detailed analy-
sis, we observed only a modest 25% increase in kcat/Km for cef-
tazidime (0.01530.019 �M�1 s�1). Employing pre-steady-state
kinetics andmass spectrometry, we determined that acylation is
rate-limiting for ceftazidime hydrolysis by KPC-2, whereas
deacylation is rate-limiting in the R164S variant, leading to
accumulation of acyl-enzyme at steady-state. CD spectroscopy
revealed that a conformational change occurred in the turnover
of ceftazidime by KPC-2, but not the R164S variant, providing
evidence for a different form of the enzyme at steady state.
Molecular models constructed to explain these findings suggest
that ceftazidime adopts a unique conformation, despite preser-
vation of �-loop structure. We propose that the R164S substi-
tution in KPC-2 enhances ceftazidime resistance by proceeding
through “covalent trapping” of the substrate by a deacylation
impaired enzymewith a lowerKm. Future antibiotic designmust
consider the distinctive behavior of the �-loop of KPC-2.

Resistance to �-lactam antibiotics (e.g., penicillins, cepha-
losporins, and carbapenems; Fig. 1) remains a major clinical
challenge. In Gram-negative pathogens, �-lactamases (EC
3.5.2.6) represent the most common enzymatic mechanism of
antibiotic resistance (1). As a consequence of facile transfer of
�-lactamase (bla) genes amongbacteria, the commercialization
of novel classes of �-lactams has repeatedly prompted wide-
spread resistance (2–5). Presently, carbapenemase-type �-lac-
tamases are emerging that hydrolyze carbapenem antibiotics,
which until recently were used as “last resort” drugs for treat-
ment of life-threatening infections (3, 6).
Among carbapenemases, theAmbler classAKlebsiella pneu-

moniae carbapenemase (KPC)5 family is the most widespread
(1, 7). The blaKPC-2 gene is encoded on a plasmid and has been
found in Enterobacteriaceae (e.g., K. pneumoniae and Esche-
richia coli) and Pseudomonas aeruginosa (8–10). Moreover,
pathogens harboring KPC-2 are resistant to all �-lactams and
�-lactamase inhibitors, severely limiting treatment options and
leading to high fatality rates (9, 11–14). Therefore, the bio-
chemical characterization of KPC-2 is critical to inform the
design of novel �-lactams with efficacy against KPC-2-produc-
ing pathogens.
In an effort to understand the structural basis for catalysis by

class A carbapenemases, crystal structures of KPC-2, NmcA,
and SME-1 have been solved (Fig. 2A) (15–18). Distinct from
non-carbapenemase class A enzymes, KPC-2 �-lactamase
exhibits a widened active site and a recessed position of the
catalytic nucleophile, Ser-70. An additional notable feature is a
Cys-69–Cys-238 disulfide bond, covalently linking the active
site b3 �-strand and the helix encompassing Ser-70. Comple-
mentary mutagenesis studies have determined that Trp-105,
Thr-237, and Arg-220 of KPC-2 define novel catalytic proper-
ties (19–21).
The �-loop is a “hot spot” for substitutions that extend the

substrate spectrum of many class A enzymes (22, 23). This
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region (residues 164–179 in class A �-lactamases) forms the
“floor” of the active site and containsGlu-166 andAsn-170, two
residues that participate in priming a watermolecule for deacy-

lation of the �-lactam (Fig. 2B) (15, 24–26). In the class A peni-
cillinases TEM-1 and SHV-1, the flexibility of the �-loop is
restricted by a network of hydrogen and ionic bonds, one of
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FIGURE 1. Chemical structures of �-lactams used in this study. On ceftazidime, R1 and R2 side chains are indicated. Note the bulky, oxyimino R1 side chains
characteristic of the extended spectrum cephalosporins cefotaxime, ceftazidime, and cefepime, and the monobactam aztreonam.

FIGURE 2. A, structure of KPC-2 (Protein Data Bank code 2OV1). The nucleophile Ser-70 and residue of focus in this study, Arg-164, are indicated. Active site
regions are color-coded as follows: orange, SXXK motif (residues 70 –73); green, SDN loop (130 –132); blue, �-loop (164 –179); red, b3 �-strand (234 –242).
B, sequence alignment of the �-loops of KPC-2 with other class A carbapenemases (blue), penicillinases (red), and cephalosporinases (green). Note the strict
conservation of Arg-164 and Asp-179. C, overlay of �-loops from TEM-1 (red) and KPC-2 (blue), showing the salt bridge between Arg-164 and Asp-179.
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which connects Arg-164 and Asp-179 at opposite poles of the
“neck” of the �-loop (Fig. 2C) (27, 28). Disruption of the Arg-
164/Asp-179 salt bridge by substitution at either residue
enhances the “flexibility” of the �-loop, thereby allowing for
hydrolysis of extended-spectrum cephalosporins (29, 30). In
some variants, this occurs in the apo enzyme (e.g., the R164S
variant of TEM-1), whereas in others, it requires ligand binding
(e.g., SHV R164H or -S) (31, 32).
There exists a high degree of both sequence and structural

conservation in the �-loop region of KPC-2 and TEM-1,
including conservation of the salt bridge between Arg-164 and
Asp-179 (Fig. 2, B and C). Therefore, we were compelled to
generate a full library of substitutions at Arg-164 in KPC-2 and
perform a complete biochemical characterization of the Arg-
164 variant enzymes. The data reveal that �-loop substitutions
at this conserved residue distinctly impact catalysis of ceftazi-
dime an important advanced generation antibiotic and argue
for a “covalent trapping”mechanismof resistance in addition to
hydrolysis.

MATERIALS AND METHODS

Plasmids, PCR Primers, andMutagenesis—For antimicrobial
susceptibility testing, all KPC-2 variants were generated in the
pBR322-catI plasmid harboring the blaKPC-2 gene as described
previously (9). For protein purification the R164S substitution
was generated in pET24a(�) harboring blaKPC-2 without the
sequence encoding the leader peptide, a plasmid generated pre-
viously (21). The QuikChange XL site-directedmutagenesis kit
(Agilent, Santa Clara, CA) was used to generate all variants,
following the manufacturer’s protocol. For PCR mutagenesis,
seven degenerate oligonucleotide sets covering all 19 amino
acid substitutions (Thermo Fisher Scientific, Hampton, NH) at
Arg-164 were generated and yielded 15 of the 19 variants. The
R164H, R164S, R164I, and R164F variants were constructed by
site-directed mutagenesis. All primers were designed using
Agilent genomics software. All of the mutations were verified
by sequencing.
Antimicrobial Susceptibility Testing—Lysogeny broth (LB)

minimal inhibitory concentration (MICs) determinations for
�-lactams were performed on single clones of E. coli DH10B
(Invitrogen) harboring pBR322-catI-blaKPC-2 or a variant. We
performed our experiments according to the criteria of the
Clinical and Laboratory Standards Institute (33). The MICs
shown in Table 1 are the mode of at least three independent
experiments.
Immunoblotting—E. coli DH10B harboring pBR322-catI-

blaKPC-2 or a variant were grown to stationary phase in LB con-
taining 20 mg/liter chloramphenicol selection. The cells were
pelleted and boiled for 10min in Laemmli buffer to induce lysis.
The details of the immunoblotting procedure were described
previously (21). The membranes were probed with a rabbit
anti-KPC-2 polyclonal antibody (Sigma-Genosys) and, as a
loading control, an anti-DNA-K rabbit polyclonal antibody
(Stressgene, San Diego, CA).

�-Lactamase Purification—KPC-2 and R164S proteins were
purified from E. coliOrigami2 DE3 (Novagen, Darmstadt, Ger-
many) harboring pET24a(�) blaKPC-2 or the variant as
described previously (21). Briefly, bacteria grown in super opti-

mal broth were induced to express �-lactamase with 500 �M

isopropyl-�-D-thiogalactoside for 2 h at 37 °C, at a startingA600
of 0.6. Bacterial cells were pelleted and frozen at �20 °C for at
least 12 h. The pellets were lysed in a buffer containing 40
mg/ml lysozyme, and the cleared supernatant was subjected to
preparative isoelectric focusing. Gel segments containing
�-lactamase were identified by assaying for activity against
nitrocefin. The purity of active fractions was assessed by SDS-
PAGE followed by staining with Coomassie Brilliant Blue R250.
Fractions that were qualitatively determined to be more than
�80% pure were pooled and concentrated in preparation for
anion exchange chromatography, whichwas performed using a
HiTrap Q HP column (GE Healthcare). Purity was reassessed,
and fractions containing more than �90% purity were pooled,
exchanged into 10mM PBS (pH 7.4), and concentrated. Protein
concentration was calculated by measuring absorbance at �280
and using the extinction coefficient of the protein. The identity
of each protein preparation was confirmed by mass spectrom-
etry (described below). The proteins were stored at either 4 °C
for �1 week or, for longer periods, at �20 °C in 50% glycerol.
Kinetics—�-Lactamases hydrolyze �-lactam substrates

through a two-step mechanism, which is commonly repre-
sented as follows.

E � S -|0
k1

k �1

E:SO¡
k2

E � SO¡
k3

E � P (Eq. 1)

In this scheme, k1 is a second order rate constant governing the
formation of the precovalent Henri-Michaelis complex, E:S,
and k�1 is a first order rate governing its dissociation. k2 repre-
sents the first order rate constant for formation of the acyl-
enzyme, E � S. k3 represents the first order rate constant for
product deacylation and release.
The relationship between reaction velocity (v) and substrate

concentration can be represented by the Henri-Michaelis-
Menten equation.

v � �Vmax*[S]���Km � [S]� (Eq. 2)

kcat � Vmax�[E] (Eq. 3)

kcat � k2*k3��k2 � k3� (Eq. 4)

Qualitatively, kcat represents the first order rate constant for
reaction of the E:S to generate product and regenerate free
enzyme, Km is the concentration of substrate required to reach
1⁄2 Vmax, and kcat/Km is the second order rate constant for reac-
tion of the free E and S to form free E and P. To measure the
steady-state parameters kcat, Km, kcat/Km, reactions were initi-
ated at room temperature in 10 mM PBS (pH 7.4) containing
variable amounts of enzyme depending on the enzyme-sub-
strate pair, where conditions always conform to the steady-
state assumption (�10% of the substrate is consumed in the
reaction). Initial velocities were obtained on an Agilent 8453
diode array spectrophotometer by monitoring changes in
absorption upon �-lactam ring opening, using the following
extinction coefficients: ampicillin, 	�235 � �900 M�1 cm�1;
cephalothin, 	�262 � �7660 M�1 cm�1; nitrocefin, 	�482 �
17,400 M�1 cm�1; cefoxitin, 	�260 � �6225 M�1 cm�1; cefo-
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taxime,	�262 � �7250 M�1 cm�1; ceftazidime,	�256 � �7600
M�1 cm�1; cefepime, 	�260 � �750 M�1 cm�1; aztreonam,
	�318 � �640 M�1 cm�1; and imipenem, 	�299 � �9000 M�1

cm�1. For velocity determinations for ampicillin, cephalothin,
nitrocefin, and imipenem, a 1-cm path length quartz cuvette
was used. For cefoxitin, cefotaxime, ceftazidime, cefepime, and
aztreonam, a 0.2-cm path length quartz cuvette was used.
Steady-state kinetic parameters were derived by a nonlinear

least squares fit of the data to Equation 2 using the program
Origin 8.1 (OriginLab, Northampton, MA). The velocities for
cefepime hydrolysis by KPC-2 did not approach saturation at
testable concentrations. In this case, the slope of the velocity
versus cefepime concentration line is the second order rate con-
stant for hydrolysis at steady state, kcat/Km.
Pre-steady-state Kinetics—Pre-steady-state kinetics were

carried out on an Applied Photophysics �*-180 stopped flow
spectrophotometer. 100 �M ceftazidime was reacted with
either 2 or 4 �M KPC-2 or the R164S variant at 25 °C for times
ranging from 2 to 20 s. At least four reactions were performed
under each condition. The data were analyzed using Pro K soft-
ware. To determine the burst, �, the linear portion of the curve
corresponding to the steady-state velocity was extrapolated
back to the y-intercept at time � 0 s. The following equation
describes the burst.

� � [E]*[a��a � b�]2 (Eq. 5)

Based on the reaction in Equation 1, a is the net rate constant
for formation of E-S from free E and S (a � k2[S]/(K
 � [S])
where K
 � (k�1 � k2)/k1), and b is k3 (34).
Electrospray Ionization (ESI)-MS—In these experiments, 19

�M (10 �g) �-lactamase was incubated with ceftazidime at a
molar ratio of 1:100 at room temperature in 10 mM PBS (pH
7.4). For KPC-2 and the R164S variant, the reactions proceeded
for 5, 15, and 60 s. The reactions were quenched by equilibra-
tion to 0.2% formic acid. The samples were desalted and con-
centrated using a C18 ZipTip (Millipore, Bedford, MA) accord-
ing to the manufacturer’s protocol. ESI-MS of the eluted
sample was performed on a Q-STAR Elite quadrupole time of
flight mass spectrometer equipped with a TurboIon spray
source (Applied Biosystems, Framingham, MA), and spectra
were deconvoluted using the Applied Biosystems Analyst
program.
CD and Thermal Denaturation—CD experiments were car-

ried out in a Jasco (Easton, MD) J-815 spectrometer with a
Peltier effect temperature controller. Quartz cells with a 0.1-cm
path lengthwere used for all experiments. For thermal denatur-
ation, 19 �M KPC-2 or the R164S variant with or without 250
�M ceftazidime were monitored for helical content by CD at
�220 between 25 and 65 °Cwith a heating rate of 2 °C/min. Two-
state, reversible denaturation was verified by the return of the
original CD signal of the protein upon cooling and by compar-
ison of the enzyme activity prior to denaturation and then after
cooling.
For CD spectra, 19 �MKPC-2 or the R164S variant was incu-

bated with 250 �M ceftazidime in PBS (pH 7.4). CD spectra
were obtained at room temperature, and data points were
recorded every 0.1 nm between �200 and �260 with a scan rate of

20 nm/min. CD spectra for ceftazidime alone were taken and
subtracted from the spectra of enzyme and ceftazidime.
Molecular Modeling—The KPC-2 �-lactamase crystal coor-

dinates (Protein Data Bank accession code 2OV5) were used to
generate the R164S variant by substituting serine for arginine at
position 164. The KPC-2 structure and the generated R164S
model were optimized by energyminimization usingDiscovery
Studio 3.1 software (Accelrys, San Diego, CA) (19). The mini-
mizationwas performed in several steps, using steepest descent
and conjugate gradient algorithms to reach the minimum con-
vergence (0.01 kcal/mol*Å). The protein was immersed in a
water box, 7Å fromany face of the box, and the solvationmodel
employed was with periodic boundary conditions. The force
field parameters of CHARMmwere used forminimization, and
the particle mesh Ewald method addressed long range electro-
statics. The minimized structures were utilized for construct-
ing the Michaelis-Menten and acyl complexes with ceftazi-
dime. The ligand structure was built using D.S. Fragment
Builder tools. The CHARMm force field was applied; the mol-
ecule was solvated with periodic boundary conditions andmin-
imized using a Standard Dynamics Cascade protocol (onemin-
imization using the steepest descent algorithm, followed by
adopted basis Newton-Raphson algorithm and three subse-
quent dynamics stages at a constant pressure and 300 K). The
minimized ligand was docked in the active site of the enzyme/
model using flexible docking algorithm (19). The generated
conformationswere visually inspected, themost favorable were
solvated, and energy was minimized using the conjugate gradi-
ent algorithmwith periodic boundary conditions to 0.001 min-
imum derivatives. To check the stability and look for possible
conformational changes of the complex, molecular dynamics
simulation was conducted (19). The molecular dynamics sim-
ulation was run for 6 ps.

RESULTS AND DISCUSSION

Consequences of the Arg-164 Substitution on the Phenotype,
Protein Expression, and Stability of KPC-2 Variants Expressed
in E. coli—Site-saturation and site-directed mutagenesis were
performed in the pBR322-catI vector harboring blaKPC-2 yield-
ing all 19 variants at position Arg-164 (Ambler numbering
scheme). To evaluate how substitutions at this site impact bac-
terial susceptibility to�-lactams, we transformed pBR322-catI-
blaKPC-2-R164X into the uniform E. coliDH10B background and
measured MICs. Penicillins (ampicillin) narrow and extended
spectrum cephalosporins (cephalothin, cefoxitin, cefotaxime,
ceftazidime, and cefepime), aztreonam, and carbapenems (imi-
penem, meropenem, ertapenem, and doripenem) were tested.
The results are presented in Table 1.
KPC-2 expressed in E. coli conferred high level resistance to

ampicillin (MIC� 4096mg/liter) and cephalothin (1024mg/li-
ter). In general, all the engineered Arg-164 substitutions
resulted in reduced MICs to ampicillin, cephalothin, cefo-
taxime, cefepime, aztreonam, and imipenem. In contrast, 11 of
19 substitutions conferred elevatedMICs for ceftazidime versus
KPC-2 (32 to 128 mg/liter). The R164S variant of KPC-2
expressed in E. coli was chosen for further study (see below)
because this substitution demonstrates the highest level of
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resistance to ceftazidime and possesses clinical correlates in
other class A enzymes (35, 36).
This pattern of susceptibility findings prompted us to exam-

ine expression levels of the Arg-164 variants grown in E. coli
DH10B.Herewe askedwhether loss or gain of resistance result-
ing from altering the amino acid at Arg-164 was a consequence
of changes in protein expression or catalytic properties. With
some exceptions (R164L, R164I, R164M, R164E, R164V, and
R164F), our immunoblotting experiments showed that steady-
state expression levels paralleled the resistance to ampicillin
and cephalothin (Fig. 3). These observations indicated that, in
general, the phenotype of the KPC variants expressed in bacte-
ria may be partly governed by the expression level of the
enzyme.
As a biochemical correlate, we next determined whether the

change in the nature of the amino acid across the “neck” of the
�-loop had any “cost” on protein thermal stability.We purified
the R164S variant for analysis because this substitution in other
class A �-lactamases is predicted to disrupt the key salt bridge
with Asp-179. Melting temperature (Tm) was determined by
monitoring CD difference at �220 as the temperature was raised

from 25 to 65 °C, and affirmed a two-state, reversible denatur-
ation. The Tm was 56 °C for KPC-2 and 52 °C for the R164S
variant (Fig. 4). These observations support the notion that loss
of the ionic bond between �-loop “neck” residues Arg-164 and
Asp-179 destabilizes class A enzymes while enhancing their
activity against ceftazidime. This “activity/stability tradeoff” is
common among �-lactamases (37, 38).

Because Arg-164 substitutions both decreased protein
expression and enhanced resistance to ceftazidime, we hypoth-
esized that ceftazidime may increase the stability of the R164S
variant, leading to a greater intracellular abundance of the
enzyme and, perhaps, higher ceftazidime resistance. Incuba-
tion with ceftazidime raised the Tm � �1 °C for both KPC-2
and R164S, suggesting that ceftazidime did not substantially
stabilize the R164S variant (Fig. 4).We interpret from this find-
ing that the more ceftazidime resistance in the variant stems
not from enhanced protein stability but is likely a result of
changes in the catalytic properties conferred by the R164S
substitution.

�-Lactam Kinetics—To understand how disruption of the
salt bridge between Arg-164 and Asp-179 impacts catalysis by

FIGURE 3. Immunoblot for KPC-2 and, as a loading control, DNA-K, probing E. coli DH10B cells harboring pBR322-catI-blaKPC-2 R164X grown in LB.

TABLE 1
MIC values for �-lactams (mg/liter)
AMP, ampicillin; THIN, cephalothin; TAX, cefotaxime; TAZ, ceftazidime; FEP, cefepime; AZT, aztreonam; IMI, imipenem.

AMP THIN TAX TAZ FEP AZT IMI

E. coli DH10B 1 4 .06 0.25 0.06 0.25 0.12
pBR322-catI-blaKPC-2 4096 1024 8 32 8 256 4
Hydrophobic
R164G 2048 256 4 128 4 128 1
R164A 2048 256 4 128 4 64 0.5
R164L 1024 256 0.12 64 1 16 0.12
R164V 256 64 0.06 64 0.5 2 0.25
R164I 256 16 0.12 128 0.25 1 0.12
R164M 1024 256 0.12 64 1 16 0.25

Positive
R164K 2048 256 4 128 4 128 1
R164H 2048 512 4 64 8 128 2

Negative
R164D 2048 256 4 128 4 128 1
R164E 2048 256 4 128 4 64 0.5

Aromatic
R164F 1024 128 0.12 64 1 16 0.25
R164Y 1 8 .06 4 0.12 0.5 0.12
R164W 1 4 .06 0.25 0.06 0.25 0.12

Polar
R164S 2048 256 4 128 4 64 1
R164T 2048 256 4 128 4 64 1
R164N 2048 512 4 128 4 256 2
R164Q 2048 512 4 128 4 128 1

Unique
R164P 1 8 0.5 128 0.5 2 0.12
R164C 1 8 0.06 0.25 0.06 0.25 0.12
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KPC-2, we performed steady-state kinetic analysis on KPC-2
and the R164S variant. In concert with the relatively moderate
MIC changes, the R164S variant did not exhibit more than a

3-fold change in any steady-state kinetic parameter for all of the
substrates tested (Table 2). For ampicillin and cephalothin, the
substitution slightly decreased kcat/Km because of an increased

FIGURE 4. Thermal denaturation experiment. 19 �M KPC-2 or the R164S variant was incubated with or without 250 �M ceftazidime and tested by circular dichroism
at �220. Mean residue molar ellipticity values (MRE) were converted to a fraction of folded protein at each temperature by the formula: Fraction folded � MREtime point/
MREminimum. The calculated Tm values for KPC-2 and the R164S variant were 56 and 52 °C, respectively, whereas ceftazidime (TAZ) stabilized both proteins by 1 °C.

TABLE 2
Kinetics with �-lactams
The units of measure are �M for Km, s�1 for kcat, and �M�1 s�1 for kcat/Km.

KPC-2 R164S Fold change (R164S/KPC-2)

Ampicillin
Km 51 � 7 93 � 10 1.8
kcat 26 � 1 26 � 1 1
kcat/Km 0.5 0.3 0.6

Cephalothin
Km 30 � 6 40 � 8 1.3
kcat 250 � 20 280 � 20 1.1
kcat/Km 8.3 7 0.8

Nitrocefin
Km 7 � 0.7 8 � 1 1.1
kcat 95 � 10 66 � 7 0.7
kcat/Km 13 8 0.6

Cefoxitin
Km 340 � 100 260 � 50 0.8
kcat 8 � 1 3.2 � 0.5 0.4
kcat/Km 0.024 0.012 0.5

Cefotaxime
Km 515 � 160 260 � 70 0.5
kcat 180 � 20 90 � 10 0.5
kcat/Km 0.35 0.35 1

Ceftazidime
Km 375 � 60 180 � 30 0.5
kcat 5.8 � 0.6 3.5 � 0.3 0.6
kcat/Km 0.015 0.019 1.3

Cefepime
Km �1000 900 � 150 NA
kcat �6 6.1 � 0.6 NA
kcat/Km 0.0067 0.0067 1

Aztreonam
Km 920 � 160 700 � 115 0.8
kcat 280 � 30 120 � 10 0.4
kcat/Km 0.30 0.17 0.6

Imipenem
Km 14 � 2 11 � 2 0.8
kcat 13 � 1 5.5 � 0.5 0.4
kcat/Km 1 0.5 0.5
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Km. For oxyimino cephalosporins cefotaxime, ceftazidime, and
cefepime,we observed decreased kcat values andKm values (�2-
fold), indicating that the substitution lowers Km but inhibits
catalysis for these substrates (Table 2). The kcat/Kmwas altered
only for ceftazidime, with the variant exhibiting a modest
increase of 25% in catalytic efficiency.
Mechanistic Insights into Ceftazidime Hydrolysis and

Resistance—Given that the modest increase of the R164S
enzyme in kcat/Km for ceftazidimewas not completely sufficient
to explain the 4-fold enhanced resistance phenotype when
expressed in bacteria, we addressed the reaction mechanism in
more detail.
To determine whether conformational changes accompany

ceftazidime hydrolysis, we obtained CD spectra during the
course of the reaction. KPC-2 underwent a subtle loss of helicity
throughout �200–240 upon ceftazidime hydrolysis (Fig. 5A). In
contrast, the R164S variant CD spectrumdid not change appre-
ciably upon ceftazidime hydrolysis (Fig. 5B). Previously, Taibi-
Tronche et al. (39) observed a loss of helical content of TEM-1
during the course of cefepime hydrolysis. This similarity
between KPC-2 and TEM-1 raises the possibility that confor-
mational changes may be an important feature of extended
spectrum cephalosporin hydrolysis by class A enzymes. Our
findings suggest that the CD change observed may be a “slow”
relaxation of KPC-2 required to accommodate the bulky oxy-
imino R1 substituent of the substrate. In stark contrast, the CD
spectrum of the R164S variant did not change in the reaction,
suggesting that the variant may be “primed” to accommodate

ceftazidime and does not require the conformational change,
resulting in an enhanced Km. The differences exhibited in this
experiment may be further evidence for a lower Km of the
R164S variant for ceftazidime. Importantly, these data raise the
possibility that a different form of the enzyme is populated at
steady-state for the Arg-164 variant.
To understand how the KPC-2 R164S substitution impacts

the kinetics of acylation and deacylation, we performed timed
ESI-MS and pre-steady-state kinetic experiments. By ESI-MS
(t� 5, 15, or 60 s) and a ceftazidime:enzymemolar ratio (100:1),
we determined the proportion of acyl-enzyme to Michaelis-
Menten complex and used this ratio as an approximation of the
relative rate constants for acylation (k2) and deacylation (k3).
We observed that acyl-enzyme species were not captured with
the KPC-2 enzyme at any time point, suggesting that k3 is faster
relative to k2 (Fig. 6A). Surprisingly, for the R164S variant, a
species corresponding to an acyl-enzyme adduct appeared at
5 s, diminished at 15 s, and disappeared by 60 s, indicative of a
slower k3 (Fig. 6B) and accumulation of the acyl-enzyme at
steady-state.
Them/z of the R164S acyl-enzyme adducts at 5 and 15 swere

�	468 (Fig. 6C). The �	468 adduct corresponds to a ceftazi-
dime adduct in which the R2 group is eliminated (R2 elimina-
tion has been described previously and occurs rapidly with cef-
tazidime upon �-lactam ring opening) (31). An unexpected
mass of 29,264 Da, which we are unable to identify, was also
observed.
Stimulated by the results of the ESI-MS analysis and to verify

the results independently, pre-steady-state reactions were per-
formed with ceftazidime. Here 100 �M ceftazidime was reacted
with either 2 or 4 �M of KPC-2 or the R164S variant for 2–20 s;
a burst of substrate hydrolysis was detected with both enzymes.
For KPC-2, the burst, �, was low (0.20 for 2 �M KPC-2) and
slightly increased with increasing enzyme concentration (Fig.
7). These values suggest that k3 is fast relative to k2. Therefore,
k3 has a negligible impact on kcat, and k2 is the rate-limiting step
in ceftazidime hydrolysis. On the other hand, the � value of the
R164S variant was much higher (1.43 for 2 �M R164S), and
when the concentration of enzyme was raised, the � value
increased by 0.3 (Fig. 7). Because of the difficulty achieving sat-
urating substrate concentrations as a result of weak binding,
under these conditions the observed burst will not quantita-
tively reflect the maximal amplitude for either enzyme. How-
ever, the mutant clearly shows a burst of product formation
occurring pre-steady-state, providing evidence that k3 is slow
relative to the net rate constant for formation of E:S and E � S.
These results are perfectly consistent with the direct observa-
tion of acyl-enzyme by MS and the CD data showing distinct
enzyme forms for the mutant and wild type at steady-state.
Overall, we propose that the R164S substitution in KPC-2

augments ceftazidime resistance by enhancing kcat/Km (only
25%) and also through a change in the kineticmechanism of the
reaction. The data suggest that a mechanism favoring slow
hydrolysis relative to acylation (i.e., enhanced accumulation of
acyl-enzyme) as observed in the variant is dominant over
hydrolysis, as seen in KPC-2, in determining phenotype.
Although the R164S substitution has only a small effect on the
measured steady-state kinetic parameters, it likely results in a

FIGURE 5. Determination of protein secondary structure by circular dichr-
oism difference spectrum. 19 �M KPC-2 (A) or the R164S variant (B) was
incubated either alone or with 250 �M ceftazidime (TAZ), and CD spectra were
gathered and plotted as described under “Materials and Methods.”
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very large decrease in the hydrolysis rate, such that it becomes
at least partially rate-limiting for kcat. These characteristics are
reminiscent of those of the TEM-1 M182T/E166R variant,
which binds ceftazidime with low Km but is completely deacy-
lation-deficient yet still confers a high level resistance (40). This
study in TEM advanced a “covalent trapping” mechanism of
resistance, in which the enzyme serves as a “sink” for substrate
rather than as a catalyst.We infer from this that regeneration of

existing apo-enzyme via deacylation, which is faster for KPC-2,
is less important for determining resistance levels compared
with the translation of nascent enzyme.
We next considered whether “covalent trapping” of cefta-

zidime by KPC-2 is substrate-specific in E. coli. In answering
this question, we point out that resistance to cefotaxime, a
similar substrate, is not enhanced by the R164S substitution.
The substitution causes a similar �2-fold reduction in kcat
and Km for cefotaxime, resulting in an unchanged catalytic
efficiency. Unlike ceftazidime, however, cefotaxime is a
“fast” substrate (kcat � �200 s�1), such that the absolute
reduction in kcat observed in the variant for cefotaxime
(�100 s�1) is much greater than for ceftazidime (�3 s�1).
On the basis of this key difference, we posit that under our
experimental conditions, deacylation is dominant in clearing
“fast” substrates in vivo, whereas commitment to catalysis
may be the dominant determinant of resistance for “slow”
substrates.
Modeling of Ceftazidime Michaelis-Menten Complexes—To

anticipate the structural basis for the enhanced ceftazidime
resistance, we constructed molecular models of the Michaelis-
Menten complex of ceftazidime with KPC-2 and the R164S
variant to help explain our findings. To start, our model pre-
dicts that the disposition of the �-loop is similar, but not iden-
tical (Fig. 8A). Our representations did not suggest that there is
disorder in R164S, as observed in other structures (30, 32). The
mini helix encompassing Glu-166 and Asn-170 is slightly more
mobile in the R164S variant compared with KPC-2, but we do
not observe amajor reconfiguration of this segment as observed
in the R164S-substituted TEM-64 enzyme.We suspect that the
�-loop of KPC-2 is likely stabilized by as yet unidentified inter-

FIGURE 6. Deconvoluted ESI-MS spectra of ceftazidime reaction coordinate. A and B, 19 �M KPC-2 (A) or the R164S variant (B) was incubated with
ceftazidime (TAZ) at a 100:1 substrate to enzyme ratio, and reactions were quenched at 5, 15, or 60 s in 0.2% formic acid, processed, and then analyzed as
described under “Materials and Methods.” All of the measurements have an error of � 5 atomic mass units. C, ceftazidime undergoing R2 elimination to obtain
the �	468 adduct.

FIGURE 7. Pre-steady-state kinetic traces of ceftazidime hydrolysis. In a
stopped flow spectrophotometer, 100 �M ceftazidime was incubated with 2
and 4 �M KPC-2 or 2 and 4 �M the R164S variant, and the rate of product (P)
formation (converted from absorbance readings, 	�256 � �7600 M

�1 cm�1)
was followed for 2 s. Representative traces are shown.

Role of Class A Residue in KPC-2 �-Lactamase �-Loop

31790 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 287 • NUMBER 38 • SEPTEMBER 14, 2012



actions between�-loop residues and other active site motifs or
a network of water molecules that reside in the �-loop cavity
(27).
A secondnotable feature of themodel is the 2.3Åoffset ofO	

of Ser-70 between the two structures (Fig. 8A). By superimpos-
ing our models on the KPC-2 crystal structure (Protein Data
Bank code 2OV1), we find that a shift occurs in KPC-2, not the
variant (data not shown). The Ser-70 shift recalls the crystal
structure of Ke et al. (15), who found evidence of enhanced
flexibility of Ser-70, likely imparting the range of motion nec-
essary to position the nucleophile for hydrolysis of many
�-lactams.

Most importantly, ceftazidime adopts different conforma-
tions in the twomodels (Fig. 8B). In the KPC-2�-lactamase, the
aminothiazole ring in the R1 group of ceftazidime is oriented
toward the �-loop, whereas the di-methyl carboxyl group is
facing away, exposed to solvent. This conformation is reminis-
cent of previous crystal structures of D,D-peptidase/transpepti-
dase with cephalothin and cefotaxime (31, 41). In the R164S
variant, however, the position of the aminothiazole ring and the

dimethyl carboxyl group are reversed, with the di-methyl car-
boxyl oriented toward the �-loop.

Because of these possible conformational differences, the
stabilizing interactions between ceftazidime and the two
enzymes are quite different. In KPC-2, the �-lactam carbonyl is
situated in the oxyanion hole created by the main chain nitro-
gens of Ser-70 and Thr-237 (Fig. 8C). In contrast, in the R164S
variant, the carbonyl oxygen is not in the oxyanion hole, coor-
dinated by Lys-73 N
 and the nucleophile Ser-70 O	 (Fig. 8D).
These differences in the position of the �-lactam carbonyl oxy-
gen likely have important effects on catalysis, which can only
proceed if the incipient negative charge on the oxygen in the
tetrahedral transition state is properly stabilized by the oxyan-
ion hole. Furthermore, in the R164S variant, the interaction
between the ceftazidime carbonyl oxygen and the nucleophile
(O	) would likely inhibit its activation for attack on the carbon
of the �-lactam carbonyl, slowing catalysis.

Lastly, steric crowding between the side chain of Asn-170
and the aminothiazole group of ceftazidime contributes to the
poor affinity of class A non-carbapenemases for extended spec-

FIGURE 8. Molecular representations of the Michaelis-Menten complexes of ceftazidime with KPC-2 or the R164S variant. A, superimposition of the
KPC-2 (beige) and R164S (green) KPC-2 models, with the �-loops and positions of Ser-70 highlighted. The �-loop demonstrates slightly increased flexibility in
the R164S variant, but the spatial positions of all side chains are within 1 Å in the two models. Conversely, the O	 of Ser-70 has shifted 2.3 Å in the model for
KPC-2. B, superimposition of the models, highlighting the conformations of ceftazidime in the KPC-2 (beige) and R164S (green) models. The arrow indicates the
flipping of the ceftazidime aminothiazole and di-methyl carboxyl groups in the two models. C and D, representation of the predicted interactions by DS Studio
3.1 between ceftazidime and indicated active site residues in KPC-2 (C) and the R164S variant (D), indicated by blue dotted lines. In particular, note the hydrogen
bond between the main chain oxygen of Asn-170 and the R1 carboxyl group of ceftazidime in the R164S, but not KPC-2 model. Also note the more extensive
stabilization of the �-lactam carbonyl in the KPC-2, but C3 carboxylate in the R164S variant.
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trum cephalosporins (31). Similarly, in the KPC-2 model, the
terminal amino group of the aminothiazole ring resides within
3.2 Å of themain chain oxygen of Asn-170 (Fig. 8C). This inter-
action imposes steric and possibly electrostatic constraints. In
contrast, in theR164S variant, the ceftazidime carboxyl group is
located 2.8 Å from the main chain oxygen of Asn-170 and is
predicted to hydrogen bond with the ceftazidime moiety (Fig.
8D). This “flipping” of the ceftazidime carboxyl and aminothi-
azole in the active site likely facilitates an electrostatically favor-
able interaction in the R164S variant, contributing to the
enhanced affinity for ceftazidime.

CONCLUSION

In this work we have evaluated how substitutions at residue
Arg-164, a conserved active site �-loop “neck” residue com-
monly mutated in TEM-type (ESBLs), impact catalysis and sta-
bility of the class A carbapenemase KPC-2. The “ceftazidime-
selective” resistance compelled us to investigate the kinetic
mechanism for ceftazidime hydrolysis by KPC-2 and the highly
resistant R164S variant. We feel that two important points
emerge from the findings in this paper.
The first relates to structure/function; �-loop flexibility is

directly coupled to catalytic properties in class A �-lactamases.
The microbiological, kinetic, and modeling data for KPC-2
R164S, considered in concert with similar data for SHV-1 and
TEM-1, suggest that greater enhancement in �-loop flexibility
in the penicillinases is accompanied by greater catalytic and
phenotypic changes than for KPC-2, where we see more mod-
erate catalytic effects. In contrast, despite relative preservation
of�-loop structure, the thermal stability of the R164S variant is
decreased. TEM-1 Arg-164 and SHV-1 Asp-179 variants dis-
play similarly decreased stability, but concomitantly display
increased �-loop flexibility and a much more dramatic gain in
ceftazidime activity. Why this “activity/stability tradeoff” is
more favorable to TEM-1 and SHV-1 penicillinases than to the
KPC-2 carbapenemase is unknown.
The second important point is that the kinetic mechanism

also argues for a “covalent trapping” ceftazidime resistance
mechanism by R164S. The kinetic data suggest that for sub-
strates such as ceftazidime, slow hydrolysis and accumulation
of the acyl-enzyme is more critical than regeneration of native
enzyme via deacylation in determining resistance phenotypes
in bacteria. Design of “next generation” oxyimino cepha-
losporins and monobactams should pay special attention to
�-lactamase affinity and acylation kinetics to preserve their
clinical longevity.
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