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Prevention and control of infectious diseases remains a major public health challenge and a number of highly virulent
pathogens are emerging both in and beyond the hospital setting. Despite beneficial aspects such as use in biocontrol
and bioremediation exhibited by members of the Burkholderia cepacia complex (Bcc) some members of this group have
recently gained attention as significant bacterial pathogens due to their high levels of intrinsic antibiotic resistance,
transmissibility in nosocomial settings, persistence in the presence of antimicrobials and intracellular survival capabilities.
The Bcc are opportunistic pathogens and their arsenal of virulence factors includes proteases, lipases and other secreted
exoproducts, including secretion system-associated effectors. Deciphering the function of virulence factors and
assessment of novel therapeutic strategies has been facilitated by use of diverse non-vertebrate hosts (the fly Drosophila
melanogaster, the microscopic nematode Caenorhabditis elegans, the zebrafish and the greater Galleria mellonella wax
moth caterpillar larvae). Researchers are now employing sophisticated approaches to dissect the virulence determinants
of Bcc with the ultimate goal being the development of novel anti-infective countermeasures. This editorial will highlight
selected recent research endeavors aimed at dissecting adaptive responses and the virulence factor portfolio of
Burkholderia species.

Burkholderia cepacia Complex
(Bcc)

The Burkholderia cepacia complex (Bcc)
currently consists of 17 closely related
Gram-negative species that occupy differ-
ent environmental niches.1-3 Most Bcc
species are also opportunistic mammalian
pathogens, being particularly problematic
for cystic fibrosis4 (CF) patients and
immune-compromised individuals. The
two most clinically relevant species are
B. cenocepacia and B. multivorans, account-
ing for . 85% of all Bcc infections in CF
patients.5 Bcc species are metabolically
diverse which allows them to thrive in
many, even adversarial environments.
They also have been shown to produce
antifungal agents and were therefore pre-
viously used as biocontrol agents for plant
protection,6 a practice that has been
discontinued due to the risk of oppor-
tunistic infection of compromised indivi-
duals. Metabolic diversity and survival in

diverse ecological niches has been, in part,
attributed to the large (7–9 Mb) genomes
found in Bcc bacteria. The genomes of
all Bcc species sequenced to date have
multiple replicons, consisting of three
assigned chromosomes. Some strains also
contain plasmids that can be quite large.7,8

Some Bcc members have gained atten-
tion as significant bacterial pathogens due
to their high levels of intrinsic antibiotic
resistance,9,10 transmissibility in nosoco-
mial settings, persistence in the presence of
antimicrobials11,12 and intracellular sur-
vival capabilities.4,13 The Bcc are oppor-
tunistic pathogens and their arsenal of
virulence factors includes proteases, lipases
and other secreted exoproducts, including
secretion system associated effectors.
Understanding mechanisms of Bcc patho-
genesis parallels and supports development
of novel therapeutic approaches aimed at
disarming the pathogens in the host.14,15

Because BCC bacteria are widely antibiotic
resistant, phage therapy is currently being

investigated as a possible alternative treat-
ment for these infections.16,17

Adaptive Responses

Development of chronic B. cenocepacia
lung infections in CF patients requires
successful colonization and long-term
survival, which necessarily includes adapta-
tion to cope with stressing selection
pressures within the CF lung. These
include host immune defenses, antimicro-
bial therapy, nutrient availability and
oxygen limitation. Several transcriptomic
studies based on DNA microarrays gave
mechanistic insights into these adaptive
strategies.18,19

One study compared gene expression
levels in two clonal variants isolated during
long-term colonization of a CF patient
who died from cepacia syndrome. The
isolates studied represented the first
B. cenocepacia isolate retrieved from the
patient and another isolate, obtained three
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years later, which was characterized by
increased resistance to different classes of
antimicrobials. No fewer than 1,000 genes
were found to be differently expressed
between the two variants indicating a
marked reprogramming of gene expres-
sion. Notable upregulated genes included
those encoding factors involved in trans-
lation, ornibactin biosynthesis (iron
acquisition), drug efflux and in adhesion
to epithelial lung tissue and mucin. Other
genes differentially expressed suggested
adaptation to the nutritional and oxygen-
limited environments of the CF lung. This
transcriptional reprogramming reflects
events occurring during long-term coloniza-
tion, antibiotic therapy and disease pro-
gression.18 An independent analysis of
B. cenocepacia grown in cystic fibrosis
sputum found similar changes in expression
of genes linked to antimicrobial resistance,
oxidative stress, iron metabolism and
motility.19

Dissecting the Bcc Virulence
Portfolio

Several recent studies were aimed at
dissecting key aspects of Bcc virulence.
One study was designed to explore the role
of the second messenger cyclic diguanosine
monophosphate (c-di-GMP) in the regu-
lation of biofilm formation and virulence
in B. cenocepacia. c-di-GMP is known to
control a wide range of functions in
bacteria.20,21 In B. cenocepacia, elevated
intracellular levels of c-di-GMP promote
wrinkly colony, pellicle and biofilm forma-
tion. The bcam1349 gene was identified in
a screen for transposon mutants rendered
unable to respond to elevated levels of
c-di-GMP. This gene is predicted to encode
a transcriptional regulator of the CRP/FNR
super family. Purified Bcam1349 protein
was shown to bind c-di-GMP in vitro
and to enhance Bcam1349 binding to
target promoter regions. A bcam1349
mutant showed reduced virulence in the
Galleria mellonella larvae infection model.
Summarily, Bcam1349 was shown to be
a transcriptional regulator that binds
c-di-GMP and regulates biofilm formation
and virulence in B. cenocepacia in response
to c-di-GMP levels.22

Another study employing transposon
mutagenesis identified mutants that were

no longer pathogenic in a Caenorhabditis
elegans infection model. Surprisingly, the
observed attenuation of virulence in these
mutants was due to loss of chromosome 3.
This prompted a follow-up study that,
employing an elegant genetic approach,
demonstrated that chromosome 3 was
indeed not an essential chromosome but
rather a megaplasmid.23 Phenotypic char-
acterization of mutant derivatives missing
chromosome 3 revealed that the mega-
plasmid previously annotated as chro-
mosome 3 encodes traits required for
virulence in multiple hosts (rat, zebrafish,
C. elegans, G. mellonella and Drosophila
melanogaster), enzymes for secondary
metabolism (e.g., production of com-
pounds with antifungal activity), meta-
bolic traits (e.g., D-xylose, fatty acid and
pyrimidine utilization) and other accessory
functions (e.g., exopolysaccharide produc-
tion and proteolytic activity) in members
of the Bcc complex.23

Several studies have investigated the
molecular basis for emergence of pheno-
typic variants during chronic, long-term
Bcc infection of CF patients’ airways. One
variation is the transition from the mucoid
morphology prevalent in Bcc bacteria to a
non-mucoid morphotype.

Using RNA microarray and proteomic
isobaric tagging, so called relative and
absolute quantitation technologies, one
study examined a pair of mucoid and
non-mucoid isolates of B. cenocepacia
obtained from a chronically infected CF
patient.24 During chronic infection, the
mucoid isolate lost the B. cepacia epidemic
strain marker and acquired a mutation in
the cepR gene, encoding a LuxR homolog
quorum sensing regulatory protein. The
non-mucoid isolate overexpressed several
putative virulence factors, including a
nematocidal protein, AidA, and the oxida-
tive stress response protein AhpC, a key
microbial determinant for resistance against
phagocytic cell killing, presumably as an
adaptation to oxidative stress in the non-
mucoid isolate. The results support the
notion that chronic B. cenocepacia infection
produces both genetically and phenotypi-
cally distinct variants in the CF lung.24

Trait development during chronic CF
lung infection was also studied using two
morphologically distinct B. multivorans
clonal isolates.25 Expression profiling of

mucoid and non-mucoid isolates revealed
decreased expression of genes encoding
products related to virulence-associated
traits and metabolism in the non-mucoid
isolate. In comparison to its mucoid
predecessor, the non-mucoid variant
lacked exopolysaccharide and exhibited
lower motility, reduced chemotaxis and
increased biofilm formation, particularly
under microaerophilic conditions. These
traits were paralleled by decreased survival
rate of the non-mucoid strain in an acute
G. mellonella infection model. The overall
conclusions of these studies were that Bcc
adaptation during chronic lung infection
can result in genotypic and phenotypic
variation that likely contributes to their
fitness while maintaining their capacity
for survival in the opportunistic mam-
malian niche.25

Emergence of the G. mellonella
Larvae Infection Model

for Virulence and Therapeutic
Efficacy Studies

The non-vertebrate hosts (C. elegans,
D. melanogaster and G. mellonella) have
been used extensively to model patho-
genesis with a variety of microorganisms
and evaluate the efficacy of novel anti-
microbial modalities.26-30 The G. mello-
nella larvae infection model has recently
gained popularity in Burkholderia research.
For example the G. mellonella-B. cenoce-
pacia infection model was used to evaluate
the therapeutic potential of B. cenocepacia-
specific phage16 and small molecule com-
pounds, including fatty acids.31

Bcc infections are difficult to eradicate
because of widespread intrinsic and
acquired resistance.32-34 Unfortunately,
antimicrobial susceptibility in vitro has been
a poor predictor of therapeutic efficacy in
vivo. The efficacy of phage therapy was
therefore assessed in G. mellonella larvae
infected with two epidemic CF Bcc strains.
The results indicated that in this in vivo
model Bcc phage therapy was highly
effective under certain conditions and may
be a viable alternative therapeutic strategy to
antibiotic treatment.16

While exploring the therapeutic efficacy
of fatty acid derivatives, the omega-3 fatty
acid docosahexaenoic acid (DHA) was
found to be the most active compound
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in vitro against B. cenocepacia K56-2, a CF
epidemic strain, and against one represen-
tative member of all 17 Bcc species. The
results showed that DHA has in vitro
activity against Bcc bacteria. Depending
on the concentration used, its mode of
action was either bacteriostatic or bacteri-
cidal. DHA also showed some in vivo
therapeutic efficacy in the G. mellonella-
B. cenocepacia infection model when given
in a single dose, albeit at very high
concentrations (50 mM). The authors
concluded that DHA may be a useful
nutraceutical for treating CF patients
infected with Bcc.31

Lastly, the wax moth larvae infection
model has also been employed to compare
virulence among different Burkholderia
spp, including B. pseudomallei and its close
relatives B. thailandensis and B. oklaho-
mensis.35 B. pseudomallei is the causative
agent of melioidosis, a difficult-to-treat
disease of animals and humans increasingly
recognized in tropical and subtropical
regions of the globe with a variable and
often fatal outcome.36,37 In murine models
of infection, different B. pseudomallei
strains exhibit varying degrees of virulence,
whereas B. thailandensis and B. oklaho-
mensis are highly attenuated in mice. This
variability of infection also appears
dependent on mouse strain and route of
infection.38 Alternative infection models,
including G. mellonella, are able to
distinguish between strains of B. pseudo-
mallei, B. thailandensis and B. oklahomen-
sis, with B. oklahomensis consistently being
the least pathogenic species. These differ-
ences reflect, for the most part, virulence
patterns observed in murine infection
models.35 There are, however, notable

exceptions. B. pseudomallei strain 708a,
which in the intranasal acute BALB/c
melioidosis model is fully virulent,39 was
avirulent in G. mellonella larvae infections.

Concluding Remarks

Burkholderia spp comprise metabolically
diverse and apt bacteria whose full viru-
lence potential remains to be elucidated. It
is therefore not too surprising that new
virulence factors are being discovered on a
fairly regular basis. Recent examples
include a Bcc toxin that is hemolytic
and required for full virulence40 and a
B. pseudomallei toxin, named Burkholderia
lethal factor 1.41

Using transposon mutagenesis,
Thomson et al.40 identified a Bcc gene
cluster capable of expressing a toxin that is
a broad-specificity hemolysin required for
full Bcc virulence. Functionally related to
the previously identified antifungal com-
pound burkholdine or occidiofungin,
the Bcc toxin is synthesized via a non-
ribosomal peptide synthetase (NRPS)
mechanism, and mutations in this gene
cluster cause a significant reduction
in both hemolysis and G. mellonella
mortality. Molecular screening by PCR
of 54 Bcc isolates revealed that not all Bcc
species contain this NRPS gene cluster
and of those that do, only select strains
produce hemolytic activity. Toxic activity
by this occidofungin/burkholdine-like
compound appeared limited to B. ambi-
faria, B. contaminans, B. pyrrocinia and
B. vietnamensis. Of particular interest is
that the NRPS cluster responsible for this
toxin’s synthesis is not expressed by two
of the most clinically important species,

B. cenocepacia and B. multivorans. The
authors speculate that its identification
in Bcc species better adapted to soil
environments suggests that this gene
cluster and its associated toxin evolved to
protect the respective Bcc bacteria from
ecological niche predators such as fungi
and amoeba.

Burkholderia lethal factor 1 (BLF1) was
identified in B. pseudomallei.41 It is a
potent cytotoxin against eukaryotic cells
and lethal when administered to mice via
the intraperitoneal route. The toxin acts
on translation initiation factor eI4A and
abolishes its helicase activity, thereby
inhibiting translation. Unlike other similar
cytotoxic factors, for example Escherichia
coli cytotoxic necrotizing factor 1
(CNF1-C), BLF1 lacks receptor binding
and necrotizing domains, which are essen-
tial for cytoplasmic delivery of CNF1-C.
Despite lacking these domains, BLF1 is
toxic to some eukaryotic cells, for example
J774 macrophages. However, other cells
such as 3T3 cells were insensitive to BLF1
unless cytoplasmic delivery was assisted
with a protein-delivery reagent. It has
been argued that the intracellular lifestyle
of B. pseudomallei alleviates the need for
eukaryotic cell delivery, but lack of an
obvious prokaryotic secretion signal does
not explain how the toxin is secreted
from the bacterial cell for intoxication of
its host cell.
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