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Induced pluripotent stem cells (iPSC) 
hold significant promise for advancing 

biomedical research. In the case of mono-
genic diseases, patient-iPSC and their 
derivatives contain the disease-causing 
mutation, suggesting the possibility of 
recapitulating salient disease features in 
vitro. Fanconi anemia (FA) is the most 
common inherited bone marrow failure 
syndrome. The etiology of bone marrow 
failure in FA remains largely unclear, 
but limited studies on patient bone mar-
row cells indicate cell intrinsic defects as 
causative. We examined the feasibility of 
modeling FA in a system based on hema-
topoietic differentiation of patient-specific 
iPSC. An informative iPSC-based model 
is predicated on the ability to derive dis-
ease-specific (uncorrected) patient iPSC 
that contain the disease-causing muta-
tion, are pluripotent, maintain a normal 
karyotype and are capable of hemato-
poietic differentiation. Careful analysis 
of hematopoietic differentiation of such 
iPSC holds the promise of uncovering 
new insights into bone marrow failure and 
may enable high-throughput screening 
with the goal of identifying compounds 
that ameliorate hematopoietic failure. 
Ultimately, genetic correction, molecular 
characterization and successful engraft-
ment of iPSC-derived cells may provide an 
attractive alternative to current hemato-
poietic stem cell-targeted gene therapy in  
some monogenic diseases, including FA.

Introduction

The discovery of novel therapies is often 
supported by pre-clinical models that 
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recapitulate salient disease features. While 
highly penetrant monogenic diseases are 
generally amenable to this approach, the 
pre-clinical models available for the study 
of the inherited bone marrow failure syn-
drome Fanconi anemia (FA) are limited. 
FA results from biallelic mutations in any 
of 15 genes, leading to characteristic devel-
opmental anomalies, cancer predisposition 
and near universal onset of bone marrow 
failure during childhood.1 Current tools 
for biomedical research include cell-free 
extracts for biochemical studies, immor-
talized patient cell lines, knockdown of 
the FA pathway in zebrafish2 and gene-tar-
geted knockout mice. Individual murine 
genetic knockouts of Fanca, Fancc, Fangg 
and Fancd2 have been generated but do 
not develop bone marrow hypoplasia.3 
Limited studies of murine knockout and 
human and FA hematopoietic progenitors 
have revealed an intrinsic hypersensitivity 
to the inhibitory cytokines (tumor necro-
sis factor α, interferon-gamma) and oxi-
dative stress.4-7 However, the mechanisms 
underlying bone marrow failure remain 
elusive, and there are currently no effec-
tive pharmacologic treatments that can 
halt the progression of the disease.

Direct reprogramming represents a 
novel approach to obtaining patient-spe-
cific stem cells. Because of their virtually 
unlimited replicative capacity and clon-
ability, induced pluripotent stem cells 
(iPSC) can provide adequate material for 
sophisticated molecular analysis. In addi-
tion, large quantities of otherwise limited 
differentiated cells, such as hematopoi-
etic progenitor cells, can be generated ex 
vivo (reviewed in ref. 8). A growing 
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any iPSC. However, utilizing optimized 
reprogramming conditions including 
hypoxia (5%  O

2
) and a lentiviral vector 

co-expressing all four reprogramming 
factors,12 we were able to derive both 
uncorrected and corrected patient-specific 
iPSC lines from two patients belonging 
to the FA-A and FA-C complementa-
tion group, respectively13. Utilizing these 
uncorrected, disease-specific human FA 
iSPC lines, we sought to evaluate the fea-
sibility of disease modeling.

Results

Somatic mosaicism may occur in up to 
25% of FA patients.14-17 Given the signifi-
cantly reduced reprogramming efficiency 
of somatic FA cells, we evaluated the pos-
sibility that reprogramming might have 
occurred in a selected subset of somatic 
cells that had undergone reversion of the 
FANCA gene mutation. DNA sequencing 
of the patient fibroblasts and the resul-
tant iPSC clones revealed that the patient 
sample contained biallelic mutations in 
the FANCA gene and is heterozygous for 
c.2853–1_-19del19bp, inherited pater-
nally, and c.1535C > G/p.Ser512Stop, 
inherited maternally. Analysis of the 
corresponding iPSC line confirmed the 
presence of the same disease-causing 
mutations, effectively ruling out a rever-
sion event (Fig. 2A).

Reprogramming has been shown to 
generate genotoxic stress, causing cell 

provide a platform for dissecting disease-
specific cellular and molecular perturba-
tions of hematopoietic differentiation. In 
a second step, such a system may enable 
high-throughput screening of chemical 
libraries with the goal of identifying com-
pounds that may ameliorate hematopoi-
etic failure (Fig. 1).

In 2009, Raya and colleagues reported 
the failure of six FA patient samples 
to undergo direct reprogramming in 
28  attempts. FA iPSC could only be 
obtained if the somatic cells were first 
corrected by transgenic expression of 
the wild type FA cDNA in the somatic 
cells, suggesting that the FA biochemical 
pathway is critical for the derivation and 
maintenance of pluripotent stem cells.11 
We recently demonstrated that repro-
gramming activated the FA pathway and 
resulted in increased double-strand DNA 
breaks and senescence in cells defective 
in the FA pathway. Consistent with an 
important role of the FA pathway in the 
reprogramming process, the reprogram-
ming efficiency of Fanca-/- tail-tip fibro-
blasts was 10-fold decreased as compared 
with wild type littermate controls, indi-
cating that somatic FA cells are resistant 
but not refractory to reprogramming. In 
our hands, attempts at reprogramming 
seven FA patient fibroblast samples under 
standard conditions (21% oxygen ten-
sion) with retroviral vectors expressing 
the four reprogramming factors (OCT4, 
SOX2, KLF4, c-MYC) failed to yield 

number of reports indicate the possibility 
of eliciting disease-relevant phenotypes in 
iPSC-derived cells. Conceptually, direct 
reprogramming of somatic cells results in 
iPSC lines harboring the patient mutation. 
In the case of monogenic disorders, iPSC-
derived cells are obligate carriers of the 
patient mutation, and cell types afflicted 
by the disease can therefore be expected to 
display a disease-relevant phenotype. This 
paradigm is illustrated by a growing num-
ber of neuronal, muscular and hematopoi-
etic diseases that have been recapitulated 
in iPSC-based models (reviewed in ref. 9)

Given the strong penetrance of bone 
marrow failure in FA, Tulpule and col-
leagues reasoned that human embryonic 
stem cells (hESC) rendered FA-deficient 
by a RNA interference (RNAi) knock-
down of FANCA or FANCD2 would 
display deficits in hematopoietic differ-
entiation in vitro. Indeed, directed dif-
ferentiation of FANCD2 (and to a lesser 
degree FANCA) deficient hESC, resulted 
in measurable decreases of CD45+ cells, 
reduced numbers of hematopoietic pro-
genitor colonies and reduced expression 
levels of hematopoietic-specific genes, 
demonstrating that perturbation of the FA 
biochemical pathway in human pluripo-
tent stem cells causes measurable defects 
in hematopoietic differentiation.10 Based 
on the hypothesis that defects of blood 
formation in vitro may provide insights 
into critical processes occurring in vivo, 
we reasoned that human FA iPSC can 

Figure 1. In vitro blood formation of Fanconi anemia induced pluripotent stem cells. (1) Direct reprogramming of human FA fibroblasts yields disease-
specific iPSC containing patient gene mutations. (2) Directed differentiation of iPSC results in hematopoietic progenitor cells, enabling disease model-
ing and chemical screens.
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susceptibility of FA cells to genomic 
stress and DNA damage, analysis of copy 
number variations or gene mutations by 
single nucleotide polymorphism array 
and whole-exome sequencing is likely to 
be informative with regard to changes 

reprogramming, blocking damaged cells 
from becoming iPSC. Conversely, it is also 
possible that only a small subset of somatic 
FA cells that acquire mutations conferring 
a growth and survival advantage achieves 
pluripotency. Because of the increased 

cycle arrest,18 cellular senescence19,13 and 
copy number variations.20 Given the sig-
nificantly reduced reprogramming effi-
ciency of somatic FA cells, it is conceivable 
that FA cells accumulate an increased bur-
den of genomic damage prior to or during 

Figure 2. Feasibility of deriving hematopoietic cells from uncorrected FA-A iPSC. (A) DNA sequencing chromatograms showing disease-causing 
compound heterozygous mutations in the FANCA gene, present in the patient fibroblasts and resultant iPSC. (B) Normal karyogram of the FA-A.2 iPSC 
line. (C) Teratoma derived from the FA-A.2 iPSC line (2X overview and 20X magnification). (D) Formation of embryoid bodies (EBs) from FA-A iPSC.2. 
Dissociated EBs yielded hematopoietic colony-forming units (CFU); Cytology of hematopoietic cells derived from CFU (Wright-Giemsa stain).
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recapitulates many important aspects of 
early hematopoietic development.24,21,25 
Tulpule et al. recently demonstrated that 
knockdown of FA genes in hESC results 
in decreased blood formation in vitro, 
including significantly decreased numbers 
of CD45+ cells, decreased expression of 
hematopoietic genes and decreased hema-
topoietic colonies in hematopoietic growth 
factor-containing semisolid methylcellu-
lose. These defects were rescued by trans-
genic expression of the complementing FA 
cDNA,10 thus proving, in principle, that 
human pluripotent stem cells with defects 
in the FA pathway display a disease-spe-
cific phenotype. Other recent examples 
of disease modeling include iPSC-derived 
cardiomyocytes from patients with long 
QT syndrome and neuronal cells derived 
from patients with the neurodegenera-
tive Rett syndrome. The former showed 
characteristic electrophysiologic altera-
tions that were exacerbated by treatment 
with catecholamines and attenuated by β 
blockade,26 while the latter showed fewer 
synapses and altered electrophysiology. 
The defects in Rett syndrome neurons 
were rescued genetically by expression of 
the wild type MeCP2 gene and chemically 
by exposure to gentamycin.27

We recently demonstrated that uncor-
rected, disease-specific human FA iPSC 
can be obtained under optimized condi-
tions, albeit at a decreased efficiency.13 
Importantly, we showed here that FA iPSC 
are pluripotent, capable of maintaining 
a normal karyotype, forming embryoid 
bodies and yielding hematopoietic cells 
upon directed differentiation. Contrary 
to hESC that represent generic cell lines 
unrelated to patients with a specific dis-
ease of interest, human FA iPSC contain 
patient-specific mutations. Given that FA 
is a monogenic disease with strong pen-
etration, we speculate that FA iPSC will 
demonstrate a measurable hematopoietic 
phenotype in vitro. Such a model system, 
based on expandable, disease- and patient-
specific stem cells (rather than generic 
human ES cell lines) will enable biologic 
studies that were previously limited due 
to a paucity of primary FA hematopoi-
etic bone marrow cells. As indicated in 
Figure 1, this model system may provide 
the opportunity to screen chemical librar-
ies for compounds with biologic effects on 

Laboratory). Teratomas were dissected 
after 9 weeks, fixed in 10% paraformal-
dehyde, embedded in paraffin, and 4-μm 
sections were stained with H&E (Rodent 
Histopathology Core, Dana-Farber 
Cancer Institute /Harvard Cancer Center). 
Images were obtained using a Nikon 
Eclipse 90i microscope. Cytogenetic 
analysis of g-banded metaphases was per-
formed by Cell Line Genetics.

Hematopoietic differentiation. Hema- 
topoietic colony-forming activity of 
human iPSC lines was assayed as 
described previously.21 Briefly, embry-
oid bodies were dissociated after 16 d, 
and 1x104 or 3x104 cells were seeded in 
methylcellulose containing recombinant 
cytokines (MethoCult H4434; StemCell 
Technologies). Individual CFU colonies 
were picked, and cytospins were stained 
with the Wright-Giemsa stain method. 
Photographs were taken using a Nikon 
Eclipse TS100 microscope.

DNA sequence analysis. DNA was 
extracted from the patient fibroblasts, and 
the resultant iPSC lines and PCR were 
amplified by primers flanking the muta-
tions that were previously observed in this 
family. PCR fragments were sequenced 
on an ABI prism sequencer and inter-
preted with Sequencher sequence analysis 
software.

Discussion

Bone marrow failure remains the pri-
mary cause of morbidity and mortality 
in FA and occurs nearly universally, with 
a median age of onset of seven years. By 
age 40, 90% of FA patients develop bone 
marrow failure.22 The mechanisms under-
lying bone marrow failure remain unclear, 
and there are currently no pharmacologic 
treatments with long-term efficacy. In 
vitro myeloid and erythroid colony growth 
of bone marrow and peripheral blood cells 
from FA patients is decreased, suggest-
ing the contribution of an intrinsic cel-
lular defect to the bone marrow failure.23 
However, studies of primary human FA 
bone marrow cells are limited, and knock-
out mouse models do not recapitulate the 
human phenotype. For instance, these 
mice do not develop bone marrow failure.3

Hematopoietic differentiation of 
hESC in the embryoid body (EB) system 

occurring in the somatic cells vs. the resul-
tant iPSC. We performed cytogenetic 
analysis of G-banded metaphase cells in 
two uncorrected human FA-A iPSC lines. 
One line (FA-A.1) contained cytogenetic 
abnormalities in all 20 metaphases that 
were analyzed, including trisomy 12, a 
translocation of unknown genetic mate-
rial to the long-arm of chromosome 15, 
and an abnormal Y-chromome (data not 
shown). The second line (FA-A.2) did not 
show any clonal cytogentic aberrations, 
instead revealing a normal 46, XY karyo-
type in 18 of 20 metaphases (Fig. 2B). We 
therefore elected to conduct subsequent 
experiments utilizing the FA-A.2 iPSC 
line.

To assess whether FA-A.2 iPSC is 
pluripotent, we injected this iPSC line 
intramuscularly into non-obese dia-
betic/severe combined immunodeficient 
(NOD/SCID) mice. Histologic analysis 
of the cystic tumors that arose after nine 
weeks demonstrated well-differentiated 
teratomas containing endo-, meso- and 
ectodermal elements (Fig. 2C). We next 
evaluated the ability of FA-A.2 iPSC to 
undergo directed differentiation and form 
hematopoietic cells. Embryoid bodies were 
formed in the presence of hematopoietic 
cytokines as previously described.21 After 
16 d, the embryoid bodies were dissoci-
ated and seeded into cytokine-containg 
semisolid methylcellulose. We observed 
the formation of granulocyte, macrophage 
and mixed (GM) colonies. Cytologic anal-
ysis of individual colonies confirmed the 
presence of hematopoietic cells (Fig. 2D). 
Taken together, these data indicate that 
modeling of FA hematopoietic differen-
tiation in a human iPSC-based system 
is feasible and warrants detailed studies 
involving a panel of individual patient 
iPSC lines.

Experimental Procedures

Patient-specific fibroblasts were obtained 
after informed consent under a proto-
col approved by the Boston Children’s 
Hospital Institutional Review Board.

Teratoma formation and karyo-
type analysis. Teratomas were assessed 
by injecting 3 x106 iPSCs intramuscu-
larly into NOD/SCID mice (NOD.
CB17-Prkdcscid/J strain; The Jackson 
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biomedical research and developing new 
therapies. While the long-term goal of 
regenerative medicine remains compelling 
but futuristic, it is likely that iPSC-based 
disease models will yield important new 
insights in critical areas, including bone 
marrow failure.
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