
THE JOURNAL OF CHEMICAL PHYSICS 137, 084508 (2012)

Theory for cross effect dynamic nuclear polarization under magic-angle
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We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in
nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two elec-
trons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can
be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees
of adiabaticity. If the electron spin-lattice relaxation time T1e is large relative to the MAS rotation
period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin
by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave
frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the
nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have dif-
ferent polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become
equal serve to maintain non-uniform saturation across the ESR line. We present analytical results
based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical
calculations for the evolution of the time-dependent three-spin system. These calculations provide
insight into the dependence of cross effect DNP on various experimental parameters, including MAS
frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole
coupling strengths, and the nature of the biradical dopants. [http://dx.doi.org/10.1063/1.4747449]

I. INTRODUCTION

Dynamic nuclear polarization (DNP) offers a method
to significantly boost the signal in nuclear magnetic reso-
nance (NMR) experiments, which are often limited by low
signal-to-noise. By transferring some of the larger electron
spin polarization to the nuclear spins, the nuclear polariza-
tion and thus the NMR signal can be increased by as much as
two orders of magnitude. This can enable experiments that
would not be practical without DNP. DNP has a long his-
tory, beginning with its prediction1 and discovery2 in 1953.
More recently, the development of high frequency microwave
sources3, 4 and biradical dopants5 and the availability of com-
mercial equipment6 has encouraged many research groups to
use DNP for solid state NMR at high magnetic fields.3, 7–9

Many of these solid state DNP-NMR experiments use
magic-angle spinning (MAS), yet how MAS may affect DNP
mechanisms has not been discussed in detail. There are many
possible methods for transferring spin polarization from elec-
trons to nuclei.10, 11 Here, we will focus on mechanisms which
apply to solid state DNP at high magnetic field using continu-
ous wave microwave excitation of the electron spins, as is typ-
ical for the experiments referenced above. The solid effect,12

cross effect,13 and thermal mixing14–16 DNP mechanisms
have been reviewed previously for non-rotating samples, for
example, by Maly et al.10 These effects can be roughly dif-
ferentiated by the role of electron-electron couplings and by

a)Author to whom correspondence should be addressed. Electronic mail:
thurberk@niddk.nih.gov. Tel.: 301-451-7253. FAX: 301-496-0825.

the method of matching the energy of the nuclear spin flip.
The solid effect does not require any electron-electron cou-
pling. The electron-nucleus hyperfine coupling alone allows
the microwaves to excite a nominally forbidden two-spin tran-
sition. The difference of the microwave frequency and the
electron spin resonance (ESR) frequency matches the NMR
frequency. For the cross effect, one electron-electron coupling
is required, in addition to the hyperfine coupling. The differ-
ence between the two ESR frequencies matches the NMR fre-
quency. For thermal mixing, energy matching with the nuclear
spin flip is achieved by use of electron-electron couplings.

With the recent interest in DNP experiments, there has
also been increased interest in theoretical analysis. Recent
theoretical work has focused on DNP in static samples,
primarily using quantum mechanical models, for the solid
effect17 and the cross effect.18, 19

In this article, we discuss a minimal model for cross ef-
fect DNP under MAS, with two electron spins and one nuclear
spin. This three-spin model is sufficient to illustrate solid ef-
fect and cross effect DNP. The primary focus is on cross ef-
fect DNP involving a pair of electrons with wide ESR lines
from g-anisotropy. Under these typical conditions, the cross
effect is much stronger than the solid effect. In this model,
cross effect DNP is composed of two time-dependent avoided
crossings of the three-spin energy levels under MAS and mi-
crowave irradiation. The first crossing, when the microwave
frequency matches one ESR frequency (ωm ∼ ωe1 or ωm

∼ ωe2), reduces the polarization of one of the electrons
from its thermal equilibrium value, creating or altering the
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polarization difference between the electrons. The second
crossing, when the difference of the ESR frequencies equals
the NMR frequency (ωe1 – ωe2 ∼ ±ωn), transfers some of
the polarization difference between the two electrons to the
nucleus. Below, we first discuss analytical estimates of the
effects of these avoided level crossings on the spin polariza-
tions. We then present numerical density matrix calculations
for this three-spin model.

II. ANALYTICAL TREATMENT OF DNP MECHANISMS
UNDER MAS

A. Three-spin Hamiltonian

For our model of cross effect DNP with MAS, we use
two electron spins and one nuclear spin. In numerical calcula-
tions, the nucleus is a proton. In angular frequency units, the
Hamiltonian is

H = ωe1S1z + ωe2S2z + ωnIz+d(2S1zS2z − S1xS2x − S1yS2y)

+hzz2IzS1z + hxz2IxS1z + hyz2IyS1z + ω1[(S1x + S2x)

× cos(ωmt) + (S1y + S2y) sin(ωmt)]. (1)

This Hamiltonian includes the interaction of the two elec-
trons and one nucleus with the static field in the z direction,
producing ESR and NMR frequencies ωe1, ωe2, and ωn, the
dipole-dipole coupling between the electrons, with coupling
constant d, and the hyperfine coupling between the nucleus

and one of the electrons, with coupling constants hαβ . To sim-
plify the equations, the weaker hyperfine coupling to the sec-
ond electron is neglected. In addition, we apply a rotating mi-
crowave field, with strength ω1 and frequency ωm, near the
ESR frequencies. The electron-electron dipole coupling and
hyperfine coupling are expressed in the high field limit with
respect to the ESR frequencies. However, the hyperfine cou-
pling is not in the high field limit with respect to the NMR
frequency, because the hxz and hyz terms (although small rel-
ative to ωn) are not entirely negligible and are essential for
DNP. Exchange coupling between the two electrons of the bi-
radical is not included, because significant exchange coupling
was not seen in the ESR spectrum of the Totapol nitroxide
biradical,20 which is a typical biradical used for cross effect
DNP experiments. Under MAS, ωe1, ωe2, ωn, d, and hαβ are
all time-dependent. For simplicity in our calculations, we ne-
glect the time dependence of ωn, since the time dependence of
the spin energy levels is dominated by the much larger elec-
tron g-factor anisotropy. The detailed forms of the time de-
pendence of these parameters are given in the supplementary
information.21

This three-spin Hamiltonian has the eight energy levels
sketched in Fig. 1. When the separations among the energy
levels are large compared to the electron-electron and hyper-
fine couplings, the eigenstates are close to the direct-product
states indicated in Fig. 1. The matrix representation of this
Hamiltonian in the direct-product basis is

H =

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉 |8〉

|1〉

|2〉

|3〉

|4〉

|5〉

|6〉

|7〉

|8〉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (ωe1 + ωe2 + ωn

+ d + hzz)

1
2 ω1e

−iωmt 1
2 ω1e

−iωmt 0 1
2 (hxz − ihyz) 0 0 0

1
2 ω1e

iωmt

1
2 (ωe1 − ωe2 + ωn

− d + hzz)
− 1

2 d 1
2 ω1e

−iωmt 0 1
2 (hxz − ihyz) 0 0

1
2 ω1e

iωmt − 1
2 d

1
2 (−ωe1 + ωe2 + ωn

− d − hzz)

1
2 ω1e

−iωmt 0 0 1
2 (−hxz + ihyz) 0

0 1
2 ω1e

iωmt 1
2 ω1e

iωmt

1
2 (−ωe1 − ωe2 + ωn

+ d − hzz)
0 0 0 1

2 (−hxz + ihyz)

1
2 (hxz + ihyz) 0 0 0

1
2 (ωe1 + ωe2 − ωn

+ d − hzz)

1
2 ω1e

−iωmt 1
2 ω1e

−iωmt 0

0 1
2 (hxz + ihyz) 0 0 1

2 ω1e
iωmt

1
2 (ωe1 − ωe2 − ωn

− d − hzz)
− 1

2 d 1
2 ω1e

−iωmt

0 0 1
2 (−hxz − ihyz) 0 1

2 ω1e
iωmt − 1

2 d

1
2 (−ωe1 + ωe2 − ωn

− d + hzz)

1
2 ω1e

−iωmt

0 0 0 1
2 (−hxz − ihyz) 0 1

2 ω1e
iωmt 1

2 ω1e
iωmt

1
2 (−ωe1 − ωe2 − ωn

+ d + hzz)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2)

B. Behavior near level crossings

The energy levels change rapidly under MAS when the
electrons have large g-anisotropy, as shown in Fig. 2(b)
for the central four energy levels of a nitroxide biradi-
cal in a 9.4 T external field. At various points during the

rotor period, the energies of direct-product states would
cross if the off-diagonal Hamiltonian terms were zero. In
fact, the energies of the eigenstates do not cross, because
of the perturbation from the electron-electron dipole cou-
pling, electron-nucleus hyperfine coupling, and microwaves.
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FIG. 1. Energy levels of a two-electron, one-nucleus system labeled with
approximate z-axis spin states. The central four energy levels are colored to
match Fig. 2(b).

Instead, at these points in the rotor period, we get an avoided
level crossing, resulting from a Hamiltonian with the follow-
ing form for the relevant two-level system (see the inset to
Fig. 2(b)):

H2L =
(

At E

E −At

)
, (3)

where A and E are real constants, and t is time. In angular
frequency units, the eigenvalues of H2L are22

E1,2 = ±
√

A2t2 + E2. (4)

For an avoided level crossing, if the time dependence is slow
enough (adiabatic), the eigenstate populations will follow the
energy levels. If the time dependence is very fast, there is no
time for the weak interaction E to act, and the populations
will stay in the same spin states across the level crossing. The
probability of the energy level populations following the adi-
abatic path (thus producing a net transition between direct-
product spin states in our analysis of DNP) is given by the
Landau-Zener expression22, 23

Padiabatic = 1 − exp(−πE2/A). (5)

To first order in E, the eigenstates of H2L are |a〉 + (E/2At)|b〉
and −(E/2At)|a〉 + |b〉, where |a〉 and |b〉 are the rel-
evant direct-product states. Thus, the time during which
the eigenstates significantly differ from the direct-product
states is on the order of 2E/A, linear in the off-diagonal
coupling E.

We note that, in our three-spin system, the relevant two-
level Hamiltonians near level crossings are not always real
(or if partly imaginary, do not have a fixed complex phase
for E), because, in our basis, IxSz is real, IySz is imaginary,
and their coefficients vary under MAS. However, we do not
expect the resulting Berry’s phase effects22 to be signifi-
cant, especially over a powder average. In addition, such ef-
fects are automatically included in the numerical calculations
below.

Adiabaticity at avoided level crossings can drive cross ef-
fect DNP under MAS. From Eq. (5), we can estimate the be-
havior of spin polarizations at the various level crossings. The
three avoided crossings that are important for the cross ef-
fect are numbered in Fig. 2: (1) electron-microwave crossing,
when the microwave frequency crosses an ESR frequency,
ωm ∼ ωe1,2; (2) three-spin crossing, when the difference of
the ESR frequencies crosses the NMR frequency, ωe1 – ωe2
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FIG. 2. As a function of the MAS rotor position angle, for one orien-
tation of a nitroxide biradical: (a) ESR frequencies (blue and red lines)
with microwave frequency indicated by dashed line; (b) central four en-
ergy levels of the three-spin system, colored to match Fig. 1; (c) electron
and nuclear polarization from density matrix calculations during the first ro-
tor period with hyperfine coupling, after equilibration of microwaves and
electrons for 5T1e. Parameters used for the calculations are listed in Ta-
ble I. Three types of energy level avoided crossings are circled in parts
(a) and (b): (1) ESR frequency crosses microwave frequency; (2) ESR
frequency difference crosses NMR frequency; (3) ESR frequencies cross.
The inset of part (b) shows an expanded view of the last avoided cross-
ing of the rotor period. For part (c), 100 sets of random T2e fields were
averaged.

∼ ±ωn; (3) electron-electron crossing, when ωe1 ∼ ωe2. (In
addition, the solid effect can be driven by an avoided level
crossing, when ωm ∼ ωe ± ωn.)

Near an isolated electron-microwave crossing (labeled 1
in Fig. 2(a)), it is sufficient to consider a 2 × 2 subspace,
spanned, for example, by direct-product states |1〉 and |2〉. In
a rotating frame at the microwave frequency, the 2 × 2 Hamil-
tonian matrix has the form

HEM =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 (−ωm + ωe1 + ωe2

+ωn + d + hzz)
1
2ω1

1
2ω1

1
2 (ωm + ωe1 − ωe2

+ωn − d + hzz)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(6)
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FIG. 3. Nitroxide powder pattern lineshape used for calculations, shown at
9.4 T. The electron g-tensor principal values are 2.0061, 2.0021, 2.0094. The
14N hyperfine coupling principal values are 18.8, 92.4, 18.2 MHz, for the x,
y, and z axes, respectively.25

The avoided level crossing occurs when the difference of
the diagonal elements of Eq. (6) (−ωm + ωe2 + d) crosses
through zero. The adiabatic probability (i.e., electron spin-flip
probability) is

PEM ≈1− exp

(
−πω2

1

/(
2
∂|ωe2|

∂t

))
≈πω2

1

/(
2
∂ |ωe2|

∂t

)
,

(7)
if the microwave frequency is fixed, and neglecting the small
time dependence of d. The rate of change of the ESR fre-
quency obviously depends on the MAS frequency ωr, the
magnetic field, the electron g-anisotropy tensor, the orienta-
tion of the radical, and the value of ωm. Still, we can es-
timate a typical adiabatic probability for a nitroxide rad-
ical at 9.4 T (ESR lineshape shown in Fig. 3), with the
other parameters relevant to our experiments as described be-
low. For microwaves at 264 GHz and 7 kHz MAS, a typi-
cal value for ∂ωe/∂t is 2π × 2 × 1013 s−2. With 80 kHz

microwave strength, a typical adiabatic probability is then
PEM ∼ 4 × 10−3. This relatively small probability for an elec-
tron spin flip induced by the microwave field at an electron-
microwave crossing is nonetheless significant, because with
electron spin-lattice relaxation time T1e ∼ 2 ms, we have
T1e ≈ 14tr, where tr = 2π /ωr is the MAS rotor period. With
multiple level crossings per rotor period (1.3 on average for
each electron spin for 264 GHz microwaves and the ESR line-
shape in Fig. 3), the total probability of an electron spin flip is
∼14% within T1e. This would result in a decrease of roughly
28% in the electron spin polarization. In agreement with this
estimate, the numerical calculations described in Sec. III have
an average total decrease in the electron polarization of 27%.
Significant perturbation of the electron spin polarizations is
produced, which can then be transferred to nuclear spin po-
larization as discussed below. In this simple adiabatic model,
the electron spin saturation increases in proportion to the mi-

crowave power. For a 5 W gyrotron microwave source, the
root-mean-squared ω1 has been estimated as 0.84 MHz.24 In
this case, the probability of an adiabatic electron spin flip is
∼0.3 in a single level crossing.

At the next important level crossing, the three-spin cross-
ing (labeled 2 in Fig. 2(b)), the energies of direct-product
states |2〉 and |7〉 (or |3〉 and |6〉) cross. These pairs of direct-
product states differ by flipping all three spins. According to
Eq. (1), no off-diagonal terms directly connect these pairs of
direct-product states. However, numerical calculations show
that there is an avoided level crossing at the three-spin cross-
ing, caused by the combination of electron-electron and hy-
perfine couplings, which creates a second order off-diagonal
interaction (see inset in Fig. 2). To analytically calculate the
adiabatic probability of flipping all three spins, we can derive
the lowest order off-diagonal coupling between these states by
block diagonalizing the Hamiltonian matrix, following simi-
lar analyses by Vanhouten et al.,15, 26 and Hu et al.19 We only
require the central four direct-product states (|2〉, |3〉, |6〉, and
|7〉), because without the microwaves, these four states are
not connected by off-diagonal elements with the outer four
states. Also, for simplicity, we derive the analytical result for
hyz = 0. The resulting 4 × 4 section of the Hamiltonian is

HCE =

|2〉

|7〉

|3〉

|6〉

|2〉 |7〉 |3〉 |6〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (ωe1 − ωe2 + ωn

−d + hzz) 0 − 1
2d 1

2hxz

0

1
2 (−ωe1 + ωe2 − ωn

−d + hzz) − 1
2hxz − 1

2d

− 1
2d − 1

2hxz

1
2 (−ωe1 + ωe2 + ωn

−d − hzz) 0

1
2hxz − 1

2d 0
1
2 (ωe1 − ωe2 − ωn

−d − hzz)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)
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To first order in the off-diagonal elements, the eigenstates of HCE are

∣∣2′〉 = N2′

[
|2〉 −

1
2 d

ωe1−ωe2+hzz
|3〉 +

1
2 hxz

ωn+hzz
|6〉

]
,

∣∣3′〉 = N3′

[
|3〉 +

1
2 d

ωe1−ωe2+hzz
|2〉 −

1
2 hxz

ωn−hzz
|7〉

]
,

∣∣6′〉 = N6′

[
|6〉 −

1
2 d

ωe1−ωe2−hzz
|7〉 −

1
2 hxz

ωn+hzz
|2〉

]
,

∣∣7′〉 = N7′

[
|7〉 +

1
2 d

ωe1−ωe2−hzz
|6〉 +

1
2 hxz

ωn−hzz
|3〉

]

(9)

where Ni is the normalization constant for the state i. We now transform the Hamiltonian in Eq. (8) to the basis in Eq. (9).
Keeping the lowest-order terms in d, hxz, and hzz, and ignoring any terms of third order and above, we obtain

H ′
CE ≈

∣∣2′〉
∣∣7′〉
∣∣3′〉
∣∣6′〉

∣∣2′〉 ∣∣7′〉 ∣∣3′〉 ∣∣6′〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (ωe1 − ωe2 + ωn

−d + hzz)
− 1

4dhxz

[
ωe1−ωe2−ωn

(ωe1−ωe2)ωn

]
0 0

− 1
4dhxz

[
ωe1−ωe2−ωn

(ωe1−ωe2)ωn

] 1
2 (−ωe1 + ωe2 − ωn

−d + hzz)
0 0

0 0
1
2 (−ωe1 + ωe2 + ωn

−d − hzz)
1
4dhxz

[
ωe1−ωe2+ωn

(ωe1−ωe2)ωn

]

0 0 1
4dhxz

[
ωe1−ωe2+ωn

(ωe1−ωe2)ωn

] 1
2 (ωe1 − ωe2 − ωn

−d − hzz)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

In this basis, the lowest-order terms of the Hamiltonian have
the avoided energy level crossing structure between states |2′〉
and |7′〉, and between states |3′〉 and |6′〉. To simplify the off-
diagonal elements further, we can calculate their approximate
values at the level crossings. For states |2′〉 and |7′〉, the cross-
ing occurs when ωe1 – ωe2 ∼ −ωn, and the off-diagonal el-
ement at the level crossing is ∼ –dhxz/2ωn. For states |3′〉
and |6′〉, the crossing condition is ωe1 – ωe2 ∼ ωn, and the
off-diagonal element is ∼dhxz/2ωn. A similar result has been
derived previously as the parameter K̃ in Eqs. (41) and (44)
of the paper by Hu et al.19 Numerical calculations, including
both hxz and hyz, confirm that the adiabatic probability for a
three-spin flip at the level crossing is

PTRIPLE ≈ πd2
(
h2

xz + h2
yz

)/(
2
∂|ωe1 − ωe2|

∂t
ω2

n

)
. (11)

For a typical biradical orientation in our conditions, ωn =
2π × 400 MHz, d = 2π × 9 MHz, h =

√
h2

xz + h2
yz = 2π

× 4.5 MHz, ∂|ωe1-ωe2|/∂t = 2π × 3 × 1013 s−2, and thus
PTRIPLE ∼ 4 × 10−3. This typical probability of an adiabatic
three-spin flip is low, but significant nuclear polarization can
be built up from many three-spin level crossings. In the nu-
merical simulations described below, typical DNP build-up
times are 10–100 ms, corresponding to 100–1000 three-spin
level crossings.

The third important energy level crossing is the electron-
electron crossing (labeled 3 in Figs. 2(a) and 2(b)). This cross-
ing occurs when the two ESR frequencies are equal (neglect-
ing the small hzz term), and the direct-product states |2〉 and
|3〉 (and also |6〉 and |7〉) have the same energy. The electron-
electron dipole coupling provides an off-diagonal Hamilto-

nian matrix element in the direct-product state basis, so an
adiabatic electron spin flip-flop can occur during the avoided
level crossing. For states |2〉 and |3〉, for example, the relevant
2 × 2 Hamiltonian matrix is

HEE =

⎛
⎜⎜⎝

1
2 (ωe1 − ωe2 + ωn

−d + hzz)
− 1

2d

− 1
2d

1
2 (−ωe1 + ωe2 + ωn

−d − hzz)

⎞
⎟⎟⎠ .

(12)
The probability of an adiabatic flip-flop is

PEE ≈ 1 − exp

(
−πd2

/(
2
∂ |ωe1 − ωe2|

∂t

))
. (13)

For a typical level crossing (d = 2π × 9 MHz, ∂|ωe1

− ωe2|/∂t = 2π × 3 × 1013 s−2), PEE ∼ 1 − exp(−28)
∼ 1, so the electrons trade their polarizations with very high
probability. As we shall see, the high adiabaticity at electron-
electron crossings is important for efficient cross effect DNP
with wide-line radicals under MAS. However, because of the
exponential form of PEE, this depends sensitively on d, ωr,
and the electron g-anisotropy. If the MAS frequency increases
from ωr/2π = 7 kHz to ωr/2π = 50 kHz, the non-adiabatic
probability increases from nearly zero to ∼2%. This small
probability, occurring for many electron-electron level cross-
ings during T1e, acts to equalize the polarization of the two
electrons in the biradical. Because cross effect DNP relies on
the polarization difference between the two electrons, the en-
hancement of steady-state nuclear spin polarization by DNP
is reduced at large ωr.

Also worth estimating is the probability that an elec-
tron spin in one biradical will exchange polarization with
an electron spin in a neighboring biradical. This probability
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depends on the concentration of biradicals. For a 10 mM con-
centration of biradicals, the average distance between one
electron spin and its nearest neighbor electron spin in a dif-
ferent biradical is 28 Å. This results in a typical dipole
coupling of ∼2π × 0.9 MHz, implying PEE ∼ 0.2. Thus, at
10 mM biradical concentration, electron spin polarization ex-
change between neighboring biradicals is significant, caus-
ing electron spin diffusion. Electron spin diffusion is not
included in our three-spin model, but may be important in
experiments.

C. Solid effect DNP

The solid effect can also be viewed as an adiabatic level
crossing, occurring when the microwave frequency crosses
the sum or difference of the ESR and NMR frequencies. The
adiabatic level crossing is in the rotating frame of the mi-
crowaves, but otherwise the form of the 4 × 4 Hamiltonian for
the solid effect is the same as in Eq. (8), but with ω1 replac-
ing d (see the supplementary information21). We can therefore
perform a similar block diagonalization of the Hamiltonian
and derive the adiabatic probability. At the solid effect cross-
ing condition, ωm ∼ ωe ± ωn,

PSE ≈ πω2
1

(
h2

xz + h2
yz

)/(
2
∂ |ωe|

∂t
ω2

n

)
. (14)

Comparing this to PTRIPLE in Eq. (11), the most significant
difference is that the solid effect has ω1 in place of d. Because
d in the biradical is typically much larger than ω1, the solid
effect is weaker. For our parameters and a typical radical ori-
entation, PSE ∼ 3 × 10−7. In addition, if the microwave fre-
quency is chosen so that ωm = ωe – ωn at some rotor position,
for many radical orientations there will be other rotor posi-
tions where ωm = ωe. If T1e is long compared to 1/ωr, then
the electrons will tend to be saturated at the “allowed” transi-
tion, and the electron polarization available to drive the solid
effect will be strongly reduced. The solid effect is thus ex-
pected to be weak for wide-line radicals with MAS. Solid ef-
fect DNP can be seen in our numerical calculations if the mi-
crowave strength is high and the electron-electron dipole cou-
pling is removed. However, the contribution to the total DNP
build-up rate and steady-state nuclear polarization is negli-
gible under our conditions, as expected from this analytical
estimate.

III. NUMERICAL SIMULATIONS OF CROSS EFFECT
DNP UNDER MAS

A. Algorithm

Beyond the above analytical treatment, the time evolu-
tion of the three-spin model can be calculated numerically
using an 8 × 8 density matrix description of the system.
For the numerical calculations, tr is divided into time steps
δt (typically 1 ns, unless otherwise specified) during which
the Hamiltonian is taken to be the constant operator H(tk) in
the kth time step, and the propagator is calculated as U(tk)
= exp[−iH(tk)δt]. The time dependence of the density matrix
is calculated as ρ(tk+1) = U(tk)ρ(tk)U(tk)−1. This calculation

is carried out in the rotating frame of the microwaves. It was
verified that reducing δt by a factor of ten did not significantly
affect the results.

To include spin relaxation, two different calculation
methods are used, depending on whether the relaxation is
caused by fast or slow fluctuations of local fields (relative to
the time step). For fast fluctuations, we assume that the values
of the spin-lattice relaxation time T1 and the transverse relax-
ation time T2 result from isotropic random fields, represented
by single spin operators (S1x, etc.). Since this contribution to
relaxation results from fast fluctuations, there is no frequency
dependence. Relaxation effects are evaluated in the eigenstate
basis, so that T1 relaxation affects the populations of instan-
taneous eigenstates and T2 relaxation affects coherences be-
tween eigenstates. For each pair of eigenstates |a〉 and |b〉 with
initial populations pa = 〈a|ρ|a〉 and pb = 〈b|ρ|b〉 and energies
Ea and Eb, the population change due to T1 relaxation during
time interval 	t is calculated from the electron and nuclear
spin-lattice relaxation times, T1e and T1n, as

	pa = (pbe−Ea/kT − pae−Eb/kT )

(e−Ea/kT + e−Eb/kT )

2

¯2

×

⎡
⎢⎢⎣	t

T1e

∑
i=1,2
k=x,y,z

|〈a |Sik| b〉|2 + 	t

T1n

∑
k=x,y,z

|〈a |Ik| b〉|2

⎤
⎥⎥⎦ .

(15)

T2 relaxation of off-diagonal elements pa,b = 〈a|ρ|b〉 is cal-
culated from the electron and nuclear transverse relaxation
times, T2e and T2n, as

	pa,b = −pa,b

⎛
⎜⎜⎝

∑
i=1,2
k=x,y,z

	t

T2e¯2
|〈a |Sik| a〉 − 〈b |Sik| b〉|2

+
∑

k=x,y,z

	t

T2n¯2
|〈a |Ik| a〉 − 〈b |Ik| b〉|2

⎞
⎟⎟⎠ . (16)

	t is taken to be 1% or less of the shortest relaxation time
from fast local field fluctuations (T2n in our calculations, as
discussed below). It was confirmed that calculating the relax-
ation at these intervals did not yield significantly different re-
sults from calculating the relaxation at every time point. This
was confirmed both for the standard parameters described be-
low and for relaxation times that were ten times shorter, at
MAS frequencies of 0.1, 7, and 50 kHz.

Relaxation from slow local magnetic field fluctuations is
treated by explicitly including a randomly varying field in the
Hamiltonian. T2e relaxation is treated in this way because ESR
experiments on similar nitroxide radicals in frozen solution
at lower magnetic field show a Gaussian T2e decay, charac-
teristic of slowly varying local magnetic fields from nearby
nuclei.27 In order to reproduce the 4 μs T2e value measured
in the ESR experiments, a longitudinal field with random
sign was applied to each electron independently to provide a
±65 kHz interaction with a correlation time of 2 μs. The
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calculations were averaged over ten different sets of random
magnetic fields, except where noted in the figure caption.

We expect T1e to be dominated by fast lattice
fluctuations.27 In addition, a T2e rate equal to T1e was in-
cluded to represent the T2e contribution from fast fluctuations.
T2n relaxation may be dominated by slow local field fluctua-
tions (from couplings to nearby 1H and electron spins). How-
ever, because T2e and T2n relaxation from slow fluctuations
does not affect the numerical results (discussed below), T2n

was treated as arising from fast fluctuations for the sake of
calculational efficiency. T1n also does not affect the numeri-
cal results because it is much longer than the length of any
of the simulations, and T1n was treated as arising from fast
fluctuations.

Powder averaging was performed by choosing random
orientations of the electron spin g-tensor, electron-electron
dipole coupling tensor, and electron-nucleus hyperfine cou-
pling tensor principal axes in the MAS rotor. No correlations
among the various orientation angles were used. In addition
to electron-1H hyperfine coupling, the electron-14N hyperfine
coupling of each nitroxide moiety is included, with the 14N
spin state randomly chosen for each nitroxide and kept fixed
during the calculations. (The electron-14N hyperfine coupling
effectively modifies the electron g-tensor, but has no other
effect.) In the following text, each “biradical orientation” is
one random choice of all interaction tensor orientations in the
MAS rotor. Powder averaging was done with the same set
of 200 orientations for all of the calculations, except where
noted in figure captions that the first 100 orientations were
used.

For each biradical orientation, the time dependence of the
density matrix was calculated starting from two different ini-
tial conditions: (1) thermal equilibrium of all three spins at
25 K, based on instantaneous energy levels at the beginning
of a MAS rotor period and (2) thermal equilibrium of the elec-
trons and the nucleus polarized to the thermal electron polar-
ization at 264.4 GHz, defined to be epol,th. By having two dif-
ferent initial nuclear polarizations, we avoid the problem of
distinguishing between a biradical orientation which has no
DNP effect and an orientation with DNP that happens to have
a final steady-state nuclear polarization close to the initial nu-
clear polarization. For each of these two initial conditions, the
time dependence of the density matrix was first calculated for
5T1e, without any electron-1H coupling or nuclear relaxation.
This allowed the electron polarizations to equilibrate with the
microwaves, without affecting the nuclear polarization. This
was done to simulate typical experimental conditions in which
the microwaves are applied continuously, while the 1H po-
larization is initially destroyed by a train of radio-frequency
pulses, then allowed to build up through DNP. After this equi-
libration period, the calculation was continued with the com-
plete Hamiltonian, typically for 71 ms (500tr at 7 kHz MAS)
unless otherwise noted. The simulation program was writ-
ten in C using the Intel Math Kernel Library which includes
LAPACK and CBLAS libraries for linear algebra functions.
A sample version of the program and an input file are given
in the supplementary information.21 The Biowulf Linux clus-
ter at NIH (Ref. 28) enabled us to run simulations for many
different parameter sets in parallel. The longest calculations
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FIG. 4. Time dependence of nuclear spin polarization for four different bi-
radical orientations for (a) nuclear spin polarization starting at thermal po-
larization and (b) nuclear spin polarization starting at thermal electron spin
polarization. In these simulations, the hyperfine coupling (hzz,max) and the
nuclear spin-lattice relaxation are not included for 5T1e (10 ms), then turned
on at time 0 to initiate DNP. Level crossings for each orientation: blue cir-
cles, both electron-microwave and three-spin crossings (shown in Fig. 2);
light blue squares, no three-spin crossing; red crosses, no electron-microwave
crossing, but has three-spin crossing; green diamonds, electron-microwave
crossing for higher frequency electron. 100 sets of random T2e fields were
averaged. For clarity, only some of the data points are shown.

(1.4 s = 104 × tr) took ∼18 h for each biradical orientation
using one core of an Intel Xeon X5550 CPU.

In order to summarize the behavior of the nuclear polar-
ization, we can look at the nuclear polarization, npol, at the
end of every rotor period (or within the rotor period for slow
MAS), as shown in Fig. 4. At typical MAS frequencies, the
change in npol per level crossing is small, so we get a reason-
ably smooth curve with an exponential form. We take the two
curves from the two initial conditions, and fit them simultane-
ously to the following equations to get a single time constant
tDNP and steady-state nuclear polarization npol,ss, normalized
to the thermal equilibrium polarization of an isolated proton
npol,th:

npol(t) = 1 + (npol,ss − 1)(1 − exp(−t/tDNP)), (17a)

npol(t) = epol,th + (npol,ss − epol,th)(1 − exp(−t/tDNP)).
(17b)

At low MAS frequencies, the nuclear polarization curves
are not smooth exponentials, but rather a series of step
changes in the nuclear polarization at the three-spin cross-
ings, but the same exponential fitting functions were used for
consistency.

To complete the powder average, once the fitting is done
for each radical orientation, an overall average steady-state



084508-8 K. R. Thurber and R. Tycko J. Chem. Phys. 137, 084508 (2012)

polarization is calculated by weighting the steady-state polar-
ization with the inverse time constant, as shown by Eq. (18).
Also, the average time constant is calculated by averaging the
inverse time constants:

npol,av =
∑N

k=1

(
npol,ss

tDNP

)
k∑N

k=1

(
1

tDNP

)
k

, (18a)

1

tDNP,av
= 1

N

N∑
k=1

(
1

tDNP

)
k

, (18b)

where the index k represents a single orientation and N is the
number of orientations. In Eq. (18a), weighting by (1/tDNP)k

is motivated by experimentally relevant situations in which
many biradicals with different orientations contribute to the
polarization of bulk nuclei through nuclear spin diffusion. The
fitting of the nuclear polarization curves, and the averaging of
the results was done using MATLAB.

B. Choice of parameters

The standard parameter values used for the calculations,
unless stated otherwise, are listed in Table I. These parame-
ters were chosen to be typical for our current experimental
conditions.9, 29 The microwave frequency of 264 GHz pro-
vides the maximum positive nuclear polarization at our mag-
netic field of 9.4 T. The microwave strength and T1e are esti-
mates from our non-spinning DNP experiments at 25 K with
a 30 mW microwave source. The electron-electron dipole
coupling is from experiments on Totapol biradicals by Song
et al.5, 20 The 1H hyperfine coupling is the strongest coupling
measured in an ESR experiment on Tempo radicals.30 T2e is
from lower field ESR measurements.27 The nuclear relaxation
times, T1n and T2n, account for 1H relaxation from mecha-
nisms outside our three-spin model. T1n is chosen to be long
enough to have no effect on the calculations, and for T2n, we
choose a reasonable value for the contribution to transverse
relaxation of 1H polarization arising from fast local field fluc-
tuations (not 1H–1H dipolar couplings).

C. Numerical results

Figures 2(a) and 2(b) show the ESR frequencies and
central four energy levels for one biradical orientation. Fig-
ure 2(c) shows the time dependence of the spin polarizations
for this orientation, during the first rotor period that the hy-
perfine coupling is present (after the electron polarizations
have been equilibrated with the microwaves for 5T1e as dis-
cussed above). The time dependence of the polarizations over
many rotor periods is shown in Fig. S1 of the supplemen-
tary information.21 The numerical calculations show results
at the level crossings that agree quantitatively with the analyt-
ical model. At the electron-microwave level crossings (1), the
polarization of one electron is reduced, creating a polarization
difference between the two electrons. At the three-spin cross-
ings (2), an adiabatic transition reduces this electron polariza-
tion difference and increases the nuclear polarization. Both of
these level crossings are weakly adiabatic, as expected from
the analytical estimates. Some three-spin crossings are more
adiabatic and provide more nuclear polarization than others.
This depends primarily on the orientations of the electron-
electron dipole coupling and the hyperfine coupling at that ro-
tor position, as well as the speed of the level crossing. At the
electron-electron level crossings (3), the two electrons typi-
cally swap their polarization with very high probability. As
a result, for our standard parameter values and most biradi-
cal orientations, the polarizations of the two electrons have
one value for the higher-frequency electron and another value
for the lower-frequency electron, even as the identity of the
higher-frequency electron changes at each electron-electron
crossing (see Fig. 2). This exchange of polarization at the
electron-electron crossings is beneficial for DNP in two ways.
First, a polarization difference between the electrons can be
efficiently created by electron-microwave crossings with ei-
ther or both electrons, as long as the microwave frequency al-
ways crosses the lower ESR frequency (or always the higher
ESR frequency, for the opposite sign of DNP). Figure 2 illus-
trates this with an example where the microwave frequency
crosses the ESR frequencies of both electrons, yet the polar-
ization difference adds constructively (rather than tending to
cancel out) because all the electron-microwave crossings are

TABLE I. Standard values of parameters for numerical calculations.

Parameter Standard value Justification

Microwave frequency, ωm/2π 264.0 GHz Thurber et al.9

Microwave strength, ω1/2π 80 kHz Thurber et al.9

NMR frequency, 1H, ωn/2π −400.9 MHz Thurber et al.9

Temperature, T 25 K Thurber and Tycko29

MAS frequency, ωr/2π 7 kHz Thurber and Tycko29

Electron-electron coupling, dmax/2π 23 MHz Hu et al.20

Hyperfine coupling, hzz ,max/2π 9 MHz Ohzeki et al.30

g-tensor principal values 2.0061, 2.0021, 2.0094 Snipes et al.25

14N hyperfine coupling principal values 18.8, 92.4, 18.2 MHz Snipes et al.25

T1e 2 ms Thurber et al.9

T2e from slow fluctuations 4 μs Sato et al.27

T2e from fast fluctuations 2 ms Thurber et al.9

T1n 1000 s Undoped 1H T1

T2n 0.2 ms Transverse 1H relaxation
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with the lower ESR frequency at that point in the rotor pe-
riod. Second, the sign of the polarization difference between
the higher-frequency electron and the lower-frequency elec-
tron is constant over the entire rotor period. As a result, the
polarization transfer to the nucleus has the same sign at each
three-spin level crossing.

As shown in Fig. 4, numerical results for the time depen-
dence of the nuclear polarization for different biradical orien-
tations can mostly be categorized into four types: (1) If both
three-spin and electron-microwave crossings occur during the
rotor period, efficient DNP can take place; (2) If no three-spin
crossing occurs, the electrons are decoupled from the nucleus,
and little DNP happens; (3) If no electron-microwave cross-
ing occurs, but a three-spin crossing does occur, there is little
electron polarization difference, and the nuclear polarization
is driven to a small value; (4) If an electron-microwave cross-
ing involves the higher-frequency electron at that point in the
rotor period (even though the microwave frequency is on the
low-frequency side of the ESR line), the DNP can be negative,
working against the majority of the orientations. The distri-
bution of npol,ss and tDNP values from 1000 random biradical
orientations is shown in Fig. 5. Roughly half of the orien-
tations are effective (arbitrarily defined as npol,ss > 15npol,th

and tDNP < 100 ms), while ∼2% of the orientations produce
significant nuclear polarization with the opposite sign (npol,ss

< −15npol,th). We emphasize that these results are for biradi-
cals with uncorrelated g-tensor orientations for the two elec-
tron spins. The probability of effective DNP could be altered
by correlation between the two g-tensor orientations, as would
occur in a conformationally constrained nitroxide biradical.20

Using the numerical calculations, we can see how DNP
depends on the system parameters. First, we find that the only
relaxation rate that affects DNP under our conditions is T1e.
A shorter T1e requires larger ω1 in order to achieve the same
differential electron polarization, as shown in Fig. 6. At large
ω1, there is a plateau in the value of npol,av. At these points,
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bols) and time constant (tDNP,av, open symbols) as a function of microwave
field strength (ω1/2π ) for T1e = 2 ms (circles) and T1e = 0.2 ms (diamonds).
Lines are drawn to guide the eye.

the electron polarization difference has been saturated, with
one electron at roughly zero polarization, while the other is at
roughly thermal polarization.

Figure 7 shows the dependence of DNP on hzz,max and
dmax. From Eq. (11), we expect tDNP,av to scale as the inverse
square of both hzz,max and dmax. tDNP,av does follow this scal-
ing for small hyperfine and electron-electron couplings, but
for larger couplings tDNP,av is not as short as this scaling would
predict. Presumably, this is because tDNP becomes comparable
to T1e. Figure 6 shows that reducing T1e also reduces tDNP,av.
npol,av decreases as dmax decreases, due to behavior at electron-
electron level crossings. When dmax is reduced, the electron-
electron crossing is no longer strongly adiabatic, and the elec-
tron polarization difference is not maintained.

The effect of the adiabaticity of the electron-electron
crossing can also be seen in the dependence on ωr in Fig.
8. As ωr increases, the electron-electron crossing becomes
less adiabatic and there are more crossings per unit time. The
electron polarization difference then decreases (see Fig. S2 of
the supplementary information21), and npol,av decreases. How-
ever, tDNP,av also decreases, which means the build-up rate of
nuclear spin polarization at high ωr does not drop as much
as the steady-state polarization. At low ωr, npol,av decreases
and tDNP,av increases. This is a consequence of the need to
cross both the electron-microwave crossing and the three-spin
crossing within ∼T1e, so the electron saturation has not re-
laxed by the time of the three-spin crossing.

Figure 9(a) shows the dependences of tDNP,av and npol,av

on ωm for a nitroxide biradical. The calculations show a de-
pendence on ωm very similar to that seen in experiments,
both with MAS (Refs. 5 and 31) and without MAS.9 When
ωm is near the middle of the ESR lineshape, npol,av is small
because both positive and negative DNP enhancements oc-
cur with similar probabilities. The shape of the dependence
of npol,av on ωm (i.e., the DNP excitation spectrum) is not al-
tered significantly by changing ωn, as shown in Fig. S3 of
the supplementary information.21 This result indicates that
the DNP excitation spectrum is determined primarily by the
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FIG. 7. Average steady-state nuclear spin polarization (npol,av, solid sym-
bols) and time constant (tDNP,av, open symbols) as a function of (a) hyperfine
coupling (hzz,max/2π ) and (b) electron-electron dipole coupling (dmax/2π ).
100 biradical orientations are calculated for 1.4 s (104 × tr). Lines are drawn
to guide the eye.

electron-microwave level crossings, which (depending on ωm)
produce either a net positive or a net negative difference
in spin polarizations between higher-frequency and lower-
frequency electrons.

Figure 9(b) shows results for a hypothetical biradical
composed of two different narrow-line radicals, with their
different isotropic g-factors chosen so that the two ESR fre-
quencies are separated by ωn and with relatively small g-
anisotropies. The simulations show that a narrow-line birad-
ical should be more efficient for cross effect DNP, as ex-
pected for two reasons: (1) The microwaves create a larger
net electron spin polarization difference, because the electron-
microwave crossings are more strongly adiabatic and only one
sign of electron spin polarization difference is created. (2) The
three-spin crossings are more strongly adiabatic.32, 33

Figure 10 shows the dependence of DNP on the static
magnetic field B. As B is increased from 9.4 T, the level cross-
ing model predicts that tDNP,av increases as B3 [see Eq. (11)], if
the adiabatic probability of the three-spin flip is the dominant
contribution to tDNP,av. The numerical calculations do show
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FIG. 8. (a) Average steady-state nuclear spin polarization (npol,av) and
(b) time constant (tDNP,av), as a function of MAS frequency (ωr/2π ) for
simulations with ω1/2π = 0.08 MHz and T1e = 2 ms (circles), with
ω1/2π = 0.8 MHz and T1e = 2 ms (squares), and with ω1/2π = 0.8 MHz
and T1e = 0.2 ms (diamonds). 100 biradical orientations were used for the
powder average and the calculations were run for 71 ms or longer. MAS
frequencies below 210 Hz were calculated with a 10 ns timestep. Lines are
drawn to guide the eye.

a strong increase in tDNP,av with increasing B, close to B3.
npol,av depends more weakly on B, decreasing with increasing
B due to less efficient saturation of electron spin polarizations
at electron-microwave crossings. However, the magnetic field
dependence presented here is only a partial description of the
dependence of cross effect DNP on B because it does not in-
clude changes in relaxation rates or electron spin diffusion
that would be expected to occur.

IV. DISCUSSION

A. Conditions for validity of the level crossing model

The level crossing model for cross effect DNP described
in Sec. II relies on several conditions being satisfied. Some of
these conditions are specific to the analytical estimates of adi-
abatic spin flip probabilities, and can be verified by compari-
son with the numerical calculations. First, the analytical esti-
mates are in the high field limit where the electron-electron
dipole coupling and hyperfine coupling can be treated as
perturbations to the Zeeman energies. The numerical cal-
culations support this approximation by showing the same
quantitative results at level crossings when the full Hamilto-
nian is included.

Second, the analytical estimates treat the electron-
microwave and three-spin level crossings separately. To
justify this numerically, we can calculate that the probability
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FIG. 9. Average steady-state nuclear spin polarization (npol,av, solid sym-
bols) and time constant (tDNP,av, open symbols) as a function of microwave
frequency (ωm/2π ) for (a) a Totapol biradical20 and (b) a hypothetical
narrow-line biradical, composed of two radicals with different g-factors (both
with 30 MHz axially symmetric g-anisotropy), so that the ESR frequencies
are separated by ωn. Lines are drawn to guide the eye.

of the two level crossings happening simultaneously is small.
For example, for random nitroxide biradical orientations,
there is only a ∼2% probability that the three-spin crossing
condition, ωe1 – ωe2 = ±ωn, is matched at the same time
that a coupled electron transition is resonant with the mi-
crowaves (defined as being within 1 MHz of 264 GHz) at
some point over the entire rotor period. This small fraction
of biradical orientations could still dominate the DNP if their
polarization rate was much faster than the other orientations.
However, the numerical results show that the few orienta-
tions with overlapping level crossings have values of tDNP and
npol,ss that are similar to other biradical orientations without
overlapping level crossings. One reason for this was pointed
out by Hu et al.19 as their Example 3. During the three-spin
crossing, if the microwaves are strong enough to excite tran-
sitions to both central eigenstates simultaneously, the nuclear
polarization time scale is slowed down to ∼dh/ωn, rather than
ω1/
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FIG. 10. Dependence of the average steady-state nuclear spin polarization
(npol,av, solid symbols) and time constant (tDNP,av, open symbols) on magnetic
field for microwave field strengths (ω1/2π ) of 2 MHz (circles) and 80 kHz
(diamonds). Calculations were performed for 1H NMR frequencies of 400.9,
600.0, and 800.0 MHz, with ωm/2π equal to 264.0, 395.1, and 526.8 GHz,
respectively (corresponding to the maximum positive DNP enhancements).
The calculations were run for 2000 × tr (286 ms). Lines are drawn to guide
the eye.

Third, the Landau-Zener formula does not include relax-
ation during the level crossing. One possible justification for
neglecting relaxation during the level crossing is that the re-
laxation times T1 and T2 are very long compared with the level
crossing time. This is true in our case for T1e, T1n, and T2n. On
the other hand, T2e is short enough to potentially cause signifi-
cant relaxation during a level crossing. However, ESR experi-
ments show that the T2e decay is Gaussian.27 This implies that
the local field fluctuations driving T2e relaxation are on a time
scale comparable to T2e. This means that the local magnetic
fields on the two electrons are essentially fixed for the dura-
tion of the electron-microwave and three-spin crossings (on
the order of 10–100 ns and 10 ns, respectively), and do not
cause relaxation during these level crossings. Closely related
to the above discussion of T2e relaxation is our treatment of
the spin energies as discrete levels, rather than energy bands
or lifetime-broadened levels arising from multiple-spin cou-
plings. We expect the energy width of the states to be much
larger than the energy level splitting at the three-spin cross-
ing (∼dh/ωn, typically of the order of 100 kHz). The electron
spins in one biradical have ∼1 MHz couplings to electron
spins in other biradicals, and also couplings of similar size
to other nearby nuclei.30 However, since the local fields from
these couplings fluctuate slowly, we view the energy width as
inhomogeneous (fixed local fields) for the time scale of the
level crossings.

Another requirement for considering each level cross-
ing separately and using the analytic Landau-Zener formula
(which treats only populations) is that coherence between
eigenstates generated at one level crossing does not signif-
icantly affect the next level crossing. For MAS frequen-
cies typically in current use for cross effect DNP (up to
∼15 kHz),8 with T2e ≈ 4 μs, any coherence that might be
generated during one level crossing dephases before the next
level crossing.



084508-12 K. R. Thurber and R. Tycko J. Chem. Phys. 137, 084508 (2012)

B. Spin diffusion

Spin diffusion is not included in this three-spin model
of cross effect DNP. If electron and nuclear spin diffusion is
weak, different regions of the sample surrounding differently
oriented biradicals could have widely varying nuclear polar-
izations, even with opposite signs. However, for the biradical
concentrations typically used in experiments, significant elec-
tron spin polarization exchange between neighboring birad-
icals is expected with MAS, as discussed above. This inter-
molecular polarization exchange may reduce the differences
in DNP effects for different biradical orientations. Specifi-
cally, biradicals that do not have an electron-microwave cross-
ing but do have a three-spin crossing could acquire an electron
polarization difference through electron spin diffusion, which
might enable these orientations to participate constructively in
DNP. On the other hand, electron spin diffusion may also tend
to decrease the average electron spin polarization difference
within the biradicals, decreasing cross effect DNP, because
(as discussed in the last paragraph of Sec. II B) intermolec-
ular electron-electron crossings are significant but not fully
adiabatic.

Nuclear spin diffusion is also important in typical DNP
experiments, transporting the nuclear spin polarization to nu-
clei that are far from any biradical (or far from biradicals that
have large DNP effects).14 In the three-spin model, because
the DNP time constant roughly scales as the inverse square
of the hyperfine coupling, nearby nuclei are polarized much
faster than distant nuclei. Roughly speaking, in terms of the
distance r between the nucleus and the electron, the hyper-
fine coupling scales as r−3, while the number of nuclei in a
spherical shell scales as r2. The total DNP build-up rate to all
nuclei at distance r should then scale roughly as r−4. This im-
plies that nuclei close to biradicals will be the most important
contributors to the total nuclear polarization. As discussed in
previous work by others, a spin diffusion barrier may pre-
vent the close nuclei (i.e., those with small r) from transfer-
ring their high polarization to bulk nuclei.14, 34 Due to the hy-
perfine coupling, which is primarily dipolar as seen in ESR
experiments,30 the close nuclei have large NMR frequency
shifts from their neighboring nuclei, decreasing nuclear spin
diffusion rates by reducing frequency overlap between neigh-
boring nuclei. However, under MAS, the frequencies of pairs
of nuclei will typically cross several times during the rotor
period even with a large hyperfine coupling. We can treat this
problem in terms of avoided level crossings, exactly as we did
above when two ESR frequencies crossed during MAS. As a
concrete example, we place the first nucleus at 2.08 Å from
the electron, and the second nucleus 1.5 Å from the first, with
random orientations, but requiring that the second nucleus be
at least 0.5 Å further from the electron than the first nucleus,
so that we are looking at outward spin diffusion from the first
nucleus to the second. We find that, on average, the nuclear
energy levels cross 2.7 times per rotor period. For a typical
internuclear dipole coupling (dnn = 2π × 14 kHz) and 7 kHz
MAS (which implies ∂(ωn1 − ωn2)/∂t ∼ 2π × 3 × 1011 s−2),
the probability of an adiabatic polarization exchange between
the coupled nuclei is ∼0.6%. This is small, but would result
in a typical time for polarization exchange of ∼10 ms. So,

while nuclear spin diffusion is attenuated considerably by the
hyperfine coupling, the time scale for polarization to diffuse
from a close nucleus to one of its neighbors is comparable
to tDNP. Once the polarization moves to nuclei further from
any radical, nuclear spin diffusion generally becomes faster.
Therefore, slow nuclear spin diffusion close to the radicals
(i.e., a spin diffusion barrier) may not be a serious impediment
to the transfer of nuclear polarization to the bulk. Experimen-
tally, reducing the concentration of 1H nuclei by using highly
deuterated glycerol/water solvent has improved DNP signal
enhancements,5 supporting the idea that a 1H spin diffusion
barrier is not the primary limiting factor for DNP under these
experimental conditions.

C. Experimental implications

The level crossing model for cross effect DNP under
MAS has several experimental implications. The first part
of the cross effect process is the creation of electron polar-
ization difference by the electron-microwave crossings. Elec-
tron polarization differences are preserved at highly adiabatic
electron-electron crossings. The model predicts that the elec-
tron polarization difference depends primarily on ω1, T1e, and
ωr (and may also depend on electron spin diffusion when cou-
plings between biradicals are considered). Saturation of the
electron polarization difference is predicted at roughly ω1/2π

> 1 MHz for T1e = 0.2 ms (Fig. 6), corresponding to an
experimentally accessible microwave field strength, although
detailed comparison to experiments requires consideration of
the microwave field inhomogeneity over the sample.24 Also,
the model predicts significant changes in npol,av and in the
electron spin saturation across the ESR lineshape as a func-
tion of ωr for typical experiments (Figs. 8 and S221). Ex-
perimental results do show a remarkably similar dependence
of the DNP enhancement on ωr, with a maximum at ωr/2π

∼ 3 kHz.8 In principle, the electron spin saturation could be
determined experimentally as a function of ω1, ωr, and T with
two-frequency ESR measurements.

We can estimate the order of magnitude of the experi-
mentally detected DNP enhancement if the dominant contri-
bution to DNP is from the nuclei that are closest to birad-
icals. The calculations suggest that microwave saturation of
randomly oriented biradicals (with parameters appropriate for
Totapol5) produces a ∼10 ms time scale for polarization of
the closest nuclei to ∼400 times npol,th (see Fig. 6). ESR mea-
surements see two 1H nuclei at the closest distance, with the
9 MHz hyperfine coupling used in our calculations.30 For a
20 mM biradical concentration in a glycerol/water solution,
there are roughly 5000 1H nuclei per biradical. Polarization
of the two closest 1H nuclei on a ∼10 ms time scale implies a
rough time scale for polarization of all 1H nuclei of (5000/2)
× 10 ms = 25 s. This is a sensible order of magnitude,
with experiments typically having polarization build-up times
of 3–30 s and steady-state polarizations somewhat less than
400 times npol,th.5, 35 Nuclear spin-lattice relaxation mecha-
nisms unrelated to the cross effect can reduce the final nuclear
polarization and impose an upper limit on the experimental
build-up times.



084508-13 K. R. Thurber and R. Tycko J. Chem. Phys. 137, 084508 (2012)

The dependence of cross effect DNP on B is expected to
be influenced by various factors in this model. As discussed
above and shown in Fig. 10, tDNP scales roughly as B3, if tDNP

is primarily determined by the adiabatic probability of the
three-spin flip. Dependence of T1e on B can also affect tDNP,
as shown in Fig. 6. In addition, if the electron spin polariza-
tion difference is not saturated and the ESR linewidth is dom-
inated by the g-anisotropy, the polarization difference scales
as B−1, from the effect of the ESR linewidth on the electron-
microwave crossing [see Eq. (7)]. In addition to these factors,
spin relaxation rates and electron spin diffusion constants can
depend on B. Experimentally, it has been reported that the
net DNP enhancements under MAS are roughly proportional
to B−1.5, 8, 19, 36 However, extensive studies of field-dependent
DNP enhancements and build-up rates have not yet been
reported.

The numerical calculations in this article are for a ni-
troxide biradical dopant, but the two-step cross effect process
is not limited to these specific biradicals. For example, the
two-step cross effect process should also be relevant for ex-
periments with nitroxide triradicals. Under our experimental
conditions, a nitroxide triradical has produced higher nuclear
polarization rates than a biradical.9 This may result from the
reduced probability to have no electron-microwave crossing,
or from the additional three-spin crossings, or from some
other reason.

Even though the two-step process for cross effect DNP
described here is derived with MAS, it is also likely to be rel-
evant for some DNP experiments without MAS. The simplest
model for cross effect DNP for a static sample requires that
the three-spin transition condition (ωe1 – ωe2 ≈ ±ωn) and the
resonant microwave condition (ωm ≈ ωe1 or ωm ≈ ωe2) occur
simultaneously.19, 32 However as discussed above, for a wide-
line biradical, the probability of satisfying both conditions si-
multaneously is small. In addition, even if both conditions are
satisfied simultaneously, the polarization rate is not dramati-
cally faster than in a two-step process. In a static sample, the
two-step cross effect process could occur if time-dependent
local magnetic field fluctuations from nearby electrons and
nuclei cause a given biradical to sweep through the two con-
ditions, so that both conditions are satisfied, but at different
times when the local fields are different. Alternatively, elec-
tron spin diffusion could transport partial saturation of elec-
tron polarization from radicals that are resonant with the mi-
crowaves to biradicals that satisfy the three-spin transition
condition. In these two ways, the cross effect might proceed
by two steps even in a static sample.

V. CONCLUSIONS

Using a three-spin model, we have shown that, for wide-
line biradicals with MAS at high magnetic field and with
T1e > 1/ωr, cross effect DNP can occur through spin tran-
sitions at two separate avoided energy level crossings. When
an ESR frequency crosses ωm (electron-microwave crossing),
the polarization of one of the electrons is reduced, creating
or altering the polarization difference between the two elec-
tron spins. In this three-spin model, the electron polarization
difference is primarily determined by the balance of the mi-

crowave field strength and T1e. Beyond the three-spin model,
electron spin diffusion may reduce the electron polarization
difference. In the second step, the polarization difference be-
tween the electron spins in a biradical is partially transferred
to the nucleus, through a three-spin level crossing where the
ESR frequency difference equals the NMR frequency. The
probability of polarization transfer, proportional to the square
of both the electron-electron dipole coupling and the hyper-
fine coupling, is small at any single three-spin level crossing
for typical experimental conditions. However, large nuclear
polarization can develop over many three-spin crossings. For
efficient cross effect DNP when T1e > 1/ωr, it is also im-
portant that the polarization difference between higher- and
lower-frequency electrons of the biradical be maintained over
the MAS rotor period. This requires that the electron-electron
dipole coupling be large enough relative to ωr, so that elec-
trons exchange polarization with high probability when their
ESR frequencies cross. Under MAS, a majority of random
nitroxide biradical orientations contribute to DNP in our cal-
culations. However, in principle, cross effect DNP could be
significantly improved by using a hypothetical narrow-line bi-
radical dopant, with two ESR frequencies separated by the
NMR frequency.
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