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Prostate cancer is the second leading cause of cancer death among
United States men. However, disease aggressiveness is varied, with
low-grade disease often being indolent and high-grade cancer
accounting for the greatest density of deaths. Outcomes are also
disparate among men with high-grade prostate cancer, with up-
wards of 65% having disease recurrence even after primary treat-
ment. Identification of men at risk for recurrence and elucidation of
the molecular processes that drive their disease is paramount, as
these men are the most likely to benefit from multimodal therapy.
We previously showed that androgen-induced expression profiles in
prostate development are reactivated in aggressive prostate cancers.
Herein, we report the down-regulation of one such gene, Sparcl1,
a secreted protein, acidic and rich in cysteine (SPARC) family matri-
cellular protein, during invasive phases of prostate development and
regeneration. We further demonstrate a parallel process in prostate
cancer, with decreased expression of SPARCL1 in high-grade/meta-
static prostate cancer.Mechanistically,wedemonstrate that SPARCL1
loss increases the migratory and invasive properties of prostate can-
cer cells through Ras homolog gene family, member C (RHOC), a
known mediator of metastatic progression. By using models incor-
porating clinicopathologic parameters to predict prostate cancer re-
currence after treatment, we show that SPARCL1 loss is a significant,
independent prognostic marker of disease progression. Thus,
SPARCL1 is a potent regulator of cell migration/invasion and its loss
is independently associated with prostate cancer recurrence.
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Prostate cancer is the most common noncutaneous malignancy
and the second leading cause of cancer death in United

States men. Controversy currently exists over the best treatment
strategy for men with high-risk disease (clinical stage ≥T2c,
Gleason score 8–10 or prostate-specific antigen > 20 ng/mL)
because 56–65% of these men recur after definitive local therapy
(1–5). This finding highlights the need for a better understanding
of the biologic determinants driving disease progression for both
prognostic and therapeutic development.
We and others have recently illustrated that pathways essen-

tial for prostate organogenesis are reactivated in prostate cancer
(6, 7). During organogenesis, androgens induce epithelial-
mesenchymal interactions in the urogenital sinus (UGS) and
drive its differentiation into a prostate (8). We examined early
prostate organogenesis shortly after initial androgen exposure,
when urogenital sinus epithelia (UGE) migrate and invade into
the surrounding mesenchyme and determined that the genes de-
fining this developmental stage were similarly regulated in the
transition between low- and high-grade prostate cancers (6). Among
these genes, SPARCL1 (SPARC-like 1/Hevin/SC1), a member of the
secreted protein, acidic and rich in cysteine (SPARC) family of
matricellular proteins, was down-regulated specifically during
embryonic periods of androgen-induced epithelial invasion (6)

and in aggressive prostate cancers (6, 9). Sparcl1 has been shown
to mitigate adhesion and to inhibit both fibroblast migration and
wound healing (10). The mechanisms through which Sparcl1 regu-
lates cellular adhesion and migration are not well understood;
however, Sparcl1 has been shown to bind type I collagen, a compo-
nent of the extracellularmatrix that potentiates tumor cell migration
and invasion (11–13).Although theC-terminaldomainofSPARCL1
is highly homologous to SPARC, an inhibitor of prostate tumori-
genesis and progression (14), the relationship of SPARCL1 itself to
prostate cancer aggressiveness has not been well characterized.
Herein, we describe specific roles for SPARCL1 that originate

during prostate formation and are reprised in prostate cancer
progression. We demonstrate that SPARCL1 restricts epithelial
invasion both during androgen-induced prostate development and
in prostate cancer.Mechanistically, we demonstrate that SPARCL1
blocks the activation of the Ras homolog gene family, member C
(RHOC), thereby inhibiting cellular movement. We consistently
find that SPARCL1 is not only down-regulated in localized, high-
grade prostate cancer lesions, but is also further repressed in
prostate cancer metastases, thus implicating SPARCL1 as a bio-
marker of lesions with metastatic potential. Consistent with this
finding, in multivariate analyses we find that the loss of SPARCL1
expression is significantly prognostic of metastatic recurrence after
surgery. Our findings suggest that loss of SPARCL1 leads to an
increase in the migratory potential of prostatic epithelial cells,
resulting in a more aggressive and invasive phenotype and thereby
driving disease recurrence. These data support the potential utility
of SPARCL1 as an independent prognostic factor for prostate
cancer progression.

Results
Sparcl1 Inhibits Embryonic Epithelial Bud Expansion in the Prostate.
Physiologic prostate growth occurs in an undifferentiated UGS
when androgens induce rapid proliferation and invasion of the
UGE into the surrounding mesenchyme to form epithelial prostate
buds (15, 16). During this phase of development, we previously
noted a marked suppression of Sparcl1 gene expression (6). Con-
sistent with this finding, we observed a discrete loss of Sparcl1
protein expression in the invasive epithelial buds compared with
theUGE core (Fig. 1A). Following initial epithelial bud elongation,
prostate development continues during branching morphogenesis,
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a stage that begins in utero and is complete by postnatal day 30
(16). During this phase, we noted a significant rise in Sparcl1 gene
expression that inversely correlated with physiologic androgen
levels and paralleled the percent completion of branching mor-
phogenesis (Fig. 1B) (17). When added to undifferentiated pros-
tate rudiments [embryonic day (E)15.5 male UGS] in organ
culture, recombinant Sparcl1 inhibited prostate development.
Compared with control-treated UGS, Sparcl1-treated UGS
exhibited a significant decrease in the number of prostate epithelial
buds observed in whole UGS (Fig. 1C). However, when examined
by immunohistochemistry (IHC), we noted that Sparcl1-treated
UGS had multiple small buds that were not identifiable in whole-
mount preparations (Fig. 1 C, D, and F). Consistent with this
finding, bud length was significantly decreased upon exposure to
Sparcl1 (Fig. 1E), suggesting that although bud initiation occurs,
bud elongation is abrogated. Despite diminished prostate epithelial
bud outgrowth, Sparcl1-treated UGS showed epithelial prolif-

eration comparable to control tissue (Fig. 1 F and G). Collec-
tively, these observations suggest that the loss of Sparcl1 ex-
pression is necessary for epithelial bud migration and elongation
into the surrounding mesenchyme during prostate development.

Sparcl1 Expression Is Suppressed During Adult Prostate Regeneration.
Because Sparcl1 expression is specifically suppressed in migrating
epithelial cells during prostate development, we evaluated Sparcl1
expression during androgen-mediated regression and regenera-
tion in the adult prostate. In thematuremouse gland, Sparcl1 is ex-
pressed predominantly in luminal (CK8+) epithelial cells; how-
ever, a subpopulation of basal cells (p63 and CK14+) coexpress
Sparcl1, as indicated by IHC and immunofluorescence (IF) (Fig.
2A, and Fig. S1A and B). SPARCL1 expression in human prostate
epithelial cells is similar to that in the mouse (Fig. S1D). Following
androgen withdrawal (castration), both Sparcl1 gene and protein
expression were elevated (Fig. 2 and Fig. S1C). Similar to
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Fig. 1. Sparcl1 inhibits androgen-induced fetal
prostate bud elongation. (A) Sparcl1 expression in
male mouse E17.5 UGS as detected by IHC. (B)
Sparcl1 expression examined by quantitative PCR
during prostate development. Statistical analysis
performed by one-way ANOVA with Newman–
Keuls post hoc test (mean ± SEM; n ≥ 3; **P <
0.0001). (C) Male E15.5 UGS cultured in vitro with
vehicle or Sparcl1 (10 μg/mL) for 7 d (n ≥ 13) and
examined by IHC. The black box indicates bud. (D)
Sparcl1 inhibits bud number, but not significantly as
measured by IHC (n = 4). (E) Sparcl1 significantly
inhibits bud length in UGS cultured in vitro. Bud
length determined from photomicrographs for ve-
hicle (n = 43) and Sparcl1 (n = 30) -treated UGS (n =
3 UGS); *P = 0.01. (F and G) Sparcl1 does not inhibit
epithelial proliferation as examined by IHC for Ki67
in UGS in vitro cultures. Ki67-positive and -negative
cells within the epithelial bud were counted from
IHC sections of E15.5 male UGS cultured in vitro
with vehicle or Sparcl1 (n = 3 UGS). Statistical
analysis for C and G performed by Student t test
(mean ± SEM). n.s., not significant.
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Fig. 2. Sparcl1 expression is decreased during
prostate regeneration in adult mouse. Decreased
Sparcl1 protein (A) and gene (B) expression during
androgen-induced regrowth determined by IF (A)
and quantitative PCR (B) as compared in adult mouse
prostate, adult mouse prostate 3 wk following cas-
tration, and adult mouse prostrate treated with
dihydrotestosterone (DHT) for 3 d following castra-
tion (regenerating prostate) (mean ± SD; n = 3).
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development, Sparcl1 expression was suppressed during androgen-
induced prostatic regrowth (Fig. 2). Taken together, these findings
indicate that Sparcl1 expression is repressed during phases of an-
drogen-stimulated prostatic epithelial growth and invasion in both
the embryo and the adult. Considering Sparcl1’s role in regulating
adhesion and migration, our results suggest that Sparcl1 sup-
presses epithelial expansion and migration in the prostate.

SPARCL1 Does Not Inhibit Proliferation in the Prostate. Sparcl1
markedly inhibited prostate epithelial bud elongation; however,
comparable expression of proliferation markers in Sparcl1-treated
prostate organ cultures suggests that Sparcl1 does not regulate
proliferation in the prostate. Because Sparcl1’s role in prolifer-
ation is varied, we further defined SPARCL1-mediated regula-
tion of prostatic epithelial cell growth (10, 18, 19). We examined
cellular proliferation and death in SPARCL1-treated prostate
cells and demonstrated that SPARCL1 did not restrict the growth
of multiple prostate cancer cell lines (Fig. S2A). SPARCL1 also
did not significantly affect cell cycle progression (Fig. S2B) or
cellular proliferation (Fig. S2C). SPARCL1 also did not affect
cell death (Fig. S2D). Consistent with prostate organ cultures,
these data indicate that SPARCL1 does not regulate cellular
proliferation or death in the prostate.

SPARCL1 Inhibits Prostate Cell Adhesion, Migration, and Invasion.We
hypothesized that loss of Sparcl1 expression permits epithelial
migration and invasion in prostate organogenesis and regen-
eration, and conversely that Sparcl1 expression restricts these
functions in the adult gland. To examine this theory, we used a
3D invasion assay in which single-cell epithelial isolates from
adult murine prostates can be cultured in Matrigel to form
“prostaspheres.” This process is dependent on proliferation and
3D migration and invasion into an extracellular matrix. Addition
of Sparcl1 to this matrix significantly limited prostasphere number
(Fig. 3A) and size (Fig. 3B) without affecting differentiation
(CK14, CK8, and p63) or proliferation (Ki67) (Fig. S3A). Aug-
menting Sparcl1 before or after prostasphere initiation yielded a
similar effect (Fig. S3 B and C). Similar to the mouse, SPARCL1
restricts prostasphere formation in benign adult human primary
prostate epithelial cells (Fig. S3D).
Because prostasphere culture requires attachment to an extra-

cellular matrix, and previous studies have shown that Sparcl1 is
antiadhesive (10, 20), we tested the hypothesis that SPARCL1 may
prevent prostate cellular adhesion to various extracellular matrices.
SPARCL1 delayed or abrogated adhesion of multiple prostate
cancer cell lines and primary benign prostate cells to type I collagen,
a key element within the extracellular matrix, and one to which
SPARCL1 has been shown to bind (Fig. 4 A and B, Fig. S4, and
Movies S1 and S2.) (11). Because adhesion is an initiating event
leading to a migratory/invasive phenotype, we further examined
how SPARCL1 affects cellular migration and extracellular matrix
invasion and found that SPARCL1 inhibited prostate cell migration
across a membrane (Fig. 4C). To better elucidate this phenotype,
we tested the effects of SPARCL1 on type I collagen-mediated
movement. Time-lapsemicroscopy of prostate cancer cells on a type
I collagen matrix containing SPARCL1 or vehicle demonstrated
that SPARCL1 not only delayed adhesion to type I collagen, but
also inhibitedmigration following adhesion (Fig. 4D, andMovies S1
and S2). Because invasion can be viewed as migration through
a matrix, cells that migrate ineffectively should also show defects in
invasion. Accordingly, SPARCL1 also inhibited prostate cancer cell
invasion as assayed in type I collagen-based extracellular matrices
(Fig. 4E). Collectively, these data support a role for SPARCL1 in
regulating the migratory and invasive potential of prostate cancer
cells by inhibiting their adhesive and migratory properties.

SPARCL1 Inhibits RHOCGTPase-Mediated Prostate Cancer Cell Migration.
RHOC has established roles in promoting cancer cell adhesion,
migration, invasion, and metastatic progression (21, 22). Type I
collagen engagement of its cognate receptor (α2β1-integrin) has
been shown to promote prostate cancer invasion through RHOC

(12). As Sparcl1 has been shown to bind to type I collagen, we
hypothesized that SPARCL1 restricts epithelial migration by di-
rectly disrupting the function of type I collagen-RHOC–induced
migration (11). Following adhesion to a type I collagen/SPARCL1
matrix, prostate cancer cells exhibited cellular dynamics (Movies
S1 and S2), consistent with inhibition of RHOC but not RHOA
(23). To address the possibility that SPARCL1 inhibits type I
collagen-induced RHOC activation, we measured RHOC activa-
tion in prostate cancer cells following adhesion to one of two
different matrices: a type I collagen matrix containing either BSA
(control) or SPARCL1. Specific immunoprecipitation (IP) of its
active (GTP-bound) form demonstrated that RHOC activation
was significantly suppressed when cells were grown on a type I
collagen matrix containing SPARCL1 (Fig. 5A). This effect was
specific for RHOC because SPARCL1 did not affect activation of
RHOA (Fig. 5A). SPARCL1 appeared to suppress migration
largely by inhibiting RHOC activation, as the effect of SPARCL1
was rescued by overexpressing a constitutively active RHOC mu-
tant (RHOC G14V) (Fig. 5B). In addition, we found that in-
hibition of the type I collagen receptor with a neutralizing antibody
resulted in RHOC inhibition that was comparable to that mediated
by SPARCL1. In contrast, simultaneous exposure to SPARCL1
and a α2β1-integrin–blocking antibody did not further enhance
RHOC inhibition, suggesting that SPARCL1 and α2β1-integrin
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function through the same pathway (Fig. 5C). Collectively, these
data indicate that SPARCL1 inhibits type I collagen-induced
RHOC mediated migration.

SPARCL1 Expression Inversely Correlates with Prostate Cancer
Aggressiveness. Because SPARCL1 regulated cell invasion, we
postulated that SPARCL1 may correlate with and potentially
modulate locally aggressive prostate cancers. To examine this
theory, we first evaluated Sparcl1 protein expression in two genetic
animal models of prostate cancer. Hi-Myc transgenicmice develop
murine prostatic intraepithelial neoplasia (mPIN) and locally in-
vasive adenocarcinoma caused by prostate specific overexpression
of c-Myc (24). In Hi-Myc mice, Sparcl1 expression was decreased
in invasive prostate adenocarcinoma (Fig. S5A). We further ex-
amined Sparcl1 expression in both primary and metastatic lesions
isolated from transgenic adenocarcinoma of the mouse prostate
(TRAMP) mice, a model with high rates of metastasis (25).
Compared with benign adjacent glands and mPIN, Sparcl1 ex-
pression was decreased both in invasive prostate adenocarcinoma
and in lesions which had metastasized to the liver (Fig. S5 B and
C). Taken together, these data indicate Sparcl1 loss predates
metastasis and therefore may have prognostic value.
In human prostate cancer, Gleason grade is the strongest single

predictor of prostate cancer lethality (1). Low-grade (sum 6 or less)
rarely progress, whereas men with high-grade tumors (sum 8–10)
frequently progress to metastasis and death, even after radical

treatment (1, 26). IHC analysis of SPARCL1 expression on tissue
microarrays (TMAs) demonstrated a statistically significant inverse
correlation betweenGleason grade and SPARCL1 expression (Fig.
6 A and B). Consistent with this finding, analyses of 10 datasets
indicated that parallel to protein expression, SPARCL1 gene ex-
pression declined continuously as grade increased with the most
striking loss seen in metastatic lesions (Fig. 6C and Fig. S6 A–C)
(27–36) (Oncomine; www.oncomine.org). In contrast, SPARCL1
gene expression was not significantly lost in benign prostatic hy-
perplasia or PIN (Fig. S6 D and E) (27, 28, 37) (Oncomine). In-
terestingly, gene-profiling data from the same cohorts showed that
RHOC gene expression did not correlate with prostate cancer
grade (Fig. S6 F and G) (27, 28), suggesting that alterations in
RHOC activity as opposed to expression levels, mediate RHOC-
induced metastatic progression (38).
We additionally investigated SPARCL1 expression in other pri-

mary cancers and their metastases and also found it decreased in
a variety of cancer types, including bladder (39), breast (40), and
lung (41) (Oncomine) (Fig. S6I) with further supression in me-
tastases compared with primary tumors (Fig. S6J) (41–47) (Onco-
mine). These observations suggest that SPARCL1 suppression is
a conserved and critical step in cancer progression to metastasis.

Loss of SPARCL1 Expression Is an Independent Marker of Recurrence
After Prostatectomy. A subset of men with clinically localized
prostate cancer experience disease recurrence even after primary
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Fig. 4. SPARCL1 inhibits adhesion, migration, and
invasion of prostate cancer cells. (A and B) Adhesion
of PC3 cells following incubation on a type I colla-
gen matrix containing BSA (10 μg/mL) or SPARCL1
(10 μg/mL) (n = 3). Arrows indicate adhered cells.
Magnification in A, 400×. (C) Migration of PC3 cells
incubated with BSA (10 μg/mL) or SPARCL1 (10 μg/
mL) across a filter for 20 h (n = 3). (D) Cell adhesion
and migration recorded by time-lapse microscopy
for 22 h of PC3 cells on a type I collagen matrix
containing SPARCL1 (10 μg/mL) or BSA (10 μg/mL).
(E) Invasion of PC3 cells incubated with BSA (10 μg/
mL) or SPARCL1 (10 μg/mL) of type I collagen- or
Matrigel-coated filters for 20 h (n = 3). Statistical
analysis performed by Student t test (mean ± SEM;
*P ≤ 0.005).
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RHOC, RHOA, GAPDH, and SPARCL1 expression.
ImageJ quantification of activated RHOC (normal-
ized to total pre-IP RHOC). Statistical analysis per-
formed by Student t test (mean ± SEM; n = 4; *P =
0.02). (B) PC3 cells transiently transfected with
RHOC or constitutively active RHOC (G14V), treated
with SPARCL1 (10 μg/mL) or vehicle and allowed to
migrate across a filter for 20 h. Statistical analysis performed by Student t test (mean ± SEM; n = 3; *P = 0.013). (C) PC3 cells transiently transfected with
pcDNA3.1- or hSPARCL1/pcDNA3.1, treated with isotype control or a α2β1-integrin blocking antibody, and then grown on a type I collagen matrix. Specific IP
of activated (GTP-bound) RHOA/B/C and IB for RHOC. Pre-IP lysates IB for total RHOC and GAPDH expression.
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treatment. Although current models incorporating Gleason grade,
pathologic stage, and other clinical parameters predict recurrence
(48), further delineation of risk is needed. We postulated that
SPARCL1 loss could add prognostic power to these traditionally
used variables. We examined SPARCL1 expression by IHC in
a matched nested case-control cohort designed to evaluate prog-
nostic factors for recurrence following prostatectomy (defined as
prostate-specific antigen≥0.2 ng/mL, metastasis, or prostate cancer
death) independent of Gleason grade, pathologic stage, age, and
other clinical variables [The Johns Hopkins University (JHU)
progression array] (32) (Fig. S7A).We found that loss of SPARCL1
expression in prostate adenocarcinoma was independently associ-
ated with a 3.48-fold (95% confidence interval 1.02–11.85; P =
0.046) higher risk of prostate cancer recurrence (Fig. S7).
We validated this finding in an independent cohort using

Affymetrix exon microarray analysis in a prospectively-designed
study of high-risk men who underwent radical prostatectomy at
the Mayo Clinic (Fig. S8A). We evaluated the prognostic utility
of SPARCL1 using three clinical endpoints: biochemical re-
currence (BCR), metastatic disease (MET) as defined by
a positive bone scan or CR/MRI evidence of metastatic disease,
and prostate cancer-specific mortality (PCSM). Kaplan–Meier
analyses show loss of SPARCL1 is a powerful single-gene pre-
dictor of aggressive prostate cancer (Fig. 6D). For BCR, loss of
SPARCL1 expression was associated with a median time-to-
progression of 3.5 y compared with greater than 8 y for high
SPARCL1-expressing men. Similarly, for MET-free survival,
men with loss of SPARCL1 expression had 5 yMET-free survival
of ∼60% vs. ∼80% for men with high SPARCL1 expression.
These data suggest that even in a high-risk cohort, where most
individuals are expected to experience recurrence at some point
after surgery, loss of SPARCL1 expression defines a subgroup
where BCR will occur sooner and the risk for developing met-
astatic disease and prostate cancer death is significantly higher.
Furthermore, multivariable Cox regression analyses of the

Mayo Clinic cohort confirmed the JHU observation that loss of
SPARCL1 expression is independently prognostic of prostate
cancer aggressiveness with significant hazard ratios (HR) for pre-
dicting BCR, MET, and PCSM [HR 1.40, P = 0.0045; HR 1.62,
P=0.0007;HR1.77, P=0.0028, respectively] (Fig. S8B). In groups
of men stratified by Gleason score (sum 7 and sum ≥8), SPARCL1

suppression significantly identified men at increased risk of de-
veloping metastatic disease (Gleason sum 7, HR 1.55, P= 0.03 and
Gleason sum ≥8 HR 1.86 P = 0.03) (Fig. 6E). In fact, in these
Gleason subgroups, multivariable Cox regression analyses of
SPARCL1 and standard prognostic factors including stage dem-
onstrated that loss of SPARCL1 expression was the only statistically
significant predictor of recurrence (Fig. S8C).

Discussion
Enrichment of embryonic gene-expression signatures has been
demonstrated in multiple solid malignancies, substantiating the
paradigm of embryonic reawakening in cancer and the utility of
embryonic systems to model cancer progression (6, 7, 49). With
this approach, we show that the developmental regulation of
Sparcl1 expression is paralleled in prostate cancer. Similar to
periods of physiologic growth, we illustrate an inverse correla-
tion between SPARCL1 expression and high-grade localized
prostate cancer as well as metastatic lesions. Consistent with its
role in physiologic epithelial invasion during development, we
demonstrate that the loss of SPARCL1 expression increases the
migratory and invasive properties of prostate epithelial cells
through a RHOC-mediated process. We further demonstrate
that loss of SPARCL1 expression is not only associated with
aggressive disease, but is also independently associated with
disease recurrence following treatment, indicating that loss of
SPARCL1 expression in the primary tumor may drive metas-
tasis rather than solely being a marker of metastatic lesions.
Taken together, these data suggest that by suppressing RHOC
mediated migration, SPARCL1 plays a key role in modulating
the metastatic potential of cancer and further defines loss of
SPARCL1 as an early marker of aggressive prostate cancer.
Recent studies show type I collagen stimulation of the α2β1-

integrin promotes prostate cancer cell migration through
RHOC activation (12, 50). We demonstrate here that SPARCL1, a
type I collagen-binding protein, attenuates type I collagen-induced
RHOC activation and this corresponds to decreased RHOC-me-
diated migration in the prostate (11). RHOC has been shown to
affect the localization of active Rac1, a distinct member of the
RHO family (23). Consistent with that study and our finding that
SPARCL1 negatively regulates RHOC activity, a separate report
using a small molecule inhibitor against Rac1 suggests that Sparcl1
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Fig. 6. Loss of SPARCL1 expression correlates with
Gleason grade and is an independent marker for
prostate cancer recurrence. (A and B) SPARCL1 ex-
pression is inversely proportional to prostate cancer
Gleason grade as determined by IHC in prostate ad-
enocarcinomaGleason sum 5 (n = 4), 6 (n = 16), 8 (n =
10), and 9 (n = 8), and benign adjacent glands (n = 20)
from radical prostatectomies as JHU Gleason grade
TMAs. Statistical analysis performed by one-way
ANOVA with Bonferroni post hoc test (mean ± SEM;
*P ≤ 0.002). (C) SPARCL1 expression is inversely pro-
portional to prostate cancer Gleason grade. Analysis
performed on data sets from Taylor et al. for
SPARCL1 gene expression (27). Statistical analysis
performed by one-way ANOVA. *Prostrate cancer
(PCA) vs. benign adjacent and **Met vs. PCA P≤ 0.01.
(D and E) Loss of SPARCL1 expression is prognostic of
prostate cancer recurrence. (D) Kaplan–Meier curves
for SPARCL1 in a high-risk prostate cancer cohort
from the Mayo Clinic for BCR (P = 0.007), MET (P =
0.0009), and PCSM (P = 0.07) endpoints (n = 235). (E)
Kaplan–Meier curves for SPARCL1 in a Gleason sum 7
cohort (n = 119, P = 0.046) and a Gleason sum ≥8
cohort (n = 98, P = 0.011) from the Mayo Clinic for
MET free survival. Statistical analysis found in SI
Materials and Methods.
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inhibits Rac1-dependentmigration in fibroblasts (10). Furthermore,
although RHOC expression is elevated in multiple cancers, in-
cluding breast (51), bladder (52), and nonsmall-cell lung carcinoma
(53), its expression levels do not correlate with prostate cancer ag-
gressiveness. This finding suggests that unlike other tumors, which
overexpress RHOC, prostate cancers may regulate RHOC-medi-
ated migration via modulation of SPARCL1 expression. Together,
these studies suggest a role for SPARCL1 as a master regulator of
RHOC-RAC1 mediated cellular migration and invasion.
We demonstrate that SPARCL1 may have clinical utility as

a prognostic marker that is independently associated with pros-
tate cancer recurrence. Thus, SPARCL1 expression may identify
patients who are in greatest need of additional therapies. In
addition, we outline a key biologic role for SPARCL1 in prostate
cancer. Thus, it is possible that treatments targeting this pathway
could attenuate the metastatic potential of localized cancers and
we believe that further understanding of the factors modulating
SPARCL1 will have important clinical implications for both
prognostic and therapeutic development.

Materials and Methods
Cellular andmolecular biology assays including RNA isolation, RT-PCR, in vitro
organ culture, antibodies, immunoblotting, IF, 3D prostate invasion, cell
culture, cell growth, cell cycle, apoptosis, adhesion, migration, invasion, and
activated RHO assays are described in SI Materials and Methods. Animal
studies including prostate regeneration, Hi-Myc mice, and TRAMP mice are
described in SI Materials and Methods. Cohort studies including the JHU
Gleason grade TMAs, the JHU progression analyses, and the Mayo Clinic
progression analyses are described in SI Materials and Methods.
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