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Van der Waals (vdW) interactions are ubiquitous in molecules
and condensed matter, and play a crucial role in determining the
structure, stability, and function for a wide variety of systems. The
accurate prediction of these interactions from first principles is a
substantial challenge because they are inherently quantum me-
chanical phenomena that arise from correlations between many
electrons within a given molecular system. We introduce an effi-
cient method that accurately describes the nonadditive many-body
vdW energy contributions arising from interactions that cannot be
modeled by an effective pairwise approach, and demonstrate that
such contributions can significantly exceed the energy of thermal
fluctuations—a critical accuracy threshold highly coveted during
molecular simulations—in the prediction of several relevant proper-
ties. Cases studied include the binding affinity of ellipticine, a DNA-
intercalating anticancer agent, the relative energetics between the
A- and B-conformations of DNA, and the thermodynamic stability
among competing paracetamol molecular crystal polymorphs. Our
findings suggest that inclusion of the many-body vdW energy is
essential for achieving chemical accuracy and therefore must be
accounted for in molecular simulations.
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tomistic simulations of molecular ensembles have greatly

contributed to our understanding of the microscopic details
of matter and its physical and chemical properties. To treat rea-
listic molecular systems with thousands or even millions of atoms,
these simulations are typically based on models of interatomic
potentials that approximate the solution of the full quantum
mechanical many-electron problem (1, 2). Almost all of these
interatomic potentials utilize an effective interatomic pairwise
approximation to account for nonbonded interactions, the nota-
ble exception being polarizable force fields, which treat induction
(static) effects using mutually interacting sites (3, 4). Beyond
static polarization effects, fluctuations in the electron density
lead to dispersion, or van der Waals (vdW), interactions (5-7),
that are dynamic in nature and are of paramount importance for
seemingly different phenomena, including molecular crystal for-
mation, protein folding, drug binding, self-assembly of supramo-
lecular complexes, molecular recognition, and even the adhesion
of gecko setae on glass surfaces (8). An accurate description of
dispersion interactions represents a significant theoretical chal-
lenge because dispersion itself is an inherently quantum mechan-
ical phenomenon, arising from collective many-body plasmonic
excitations (9). As such, the role of many-body vdW interactions
has been recognized and studied for model systems, such as
chains, layers, and cubes (10-14), as well as for noble gas liquids
(15-17). Despite this fact, the nonadditive many-body (beyond
two-body) contributions to the vdW energy are not explicitly
included in most molecular simulations, favoring instead an effec-
tive Cy/R® interatomic pairwise summation (18-22). Here we
demonstrate that many-body vdW interactions, which cannot be
captured using an effective pairwise approach, are of substantial
importance in the realistic modeling of molecular systems of
biological and chemical significance.

www.pnas.org/cgi/doi/10.1073/pnas.1208121109

Results and Discussion

To accurately compute the nonadditive many-body vdW energy, we
begin by performing a self-consistent quantum mechanical calcu-
lation to generate the molecular electron density using semilocal
density-functional theory (DFT) (23)—a method which accurately
treats electrostatics, induction, and hybridization effects, but lacks
the ability to describe dispersion interactions (24). We then utilize
the Hirshfeld, or stockholder, partitioning of the molecular elec-
tron density to derive a set of atomic frequency dependent polar-
izabilities that reflect the local chemical environment surrounding
each atom, as suggested by Tkatchenko and Scheffler (25). The
resulting atomic polarizabilities yield Cg4 coefficients that are accu-
rate to ~5% for a database of 1,225 atomic and molecular dimers
with reference values experimentally determined from refractive
index data. After representing the N atoms in a given molecular
system as a collection of isotropic three-dimensional quantum
harmonic oscillators (QHO), fully characterized by the aforemen-
tioned set of atomic frequency-dependent polarizabilities, we then
directly solve the Schrddinger equation corresponding to N fluc-
tuating and interacting QHOs within the dipole approximation
(10-12). By only including interactions between dipoles, diagona-
lization of the 3N x 3N interaction Hamiltonian yields the long-
range many-body vdW energy (vdW-MB) of the molecular system
in terms of coupled many-body (many-atom) eigenmodes or col-
lective plasmons (Fig. 1).

A crucial aspect of our approach is that the vdW-MB Hamil-
tonian, and therefore the vdW-MB energy expression, directly
follow from a rigorous derivation of the dipole-dipole interaction
tensor from a range-separated Coulomb potential (see Methods).
Therefore, the adjustment of a single physically motivated range-
separation parameter allows the vdW-MB method to be coupled
to a wide array of theoretical methods, ranging from classical
force fields to higher level quantum chemical calculations (26).
To accurately assess the underlying importance of the many-body
vdW energy, we completed the coupling of the DFTand vdW-MB
methods described above by utilizing a range-separation para-
meter obtained from global optimization of the total DFT
+vdW-MB energy on the S22 test set, a widely employed bench-
mark database of noncovalent intermolecular interactions (27).
Consisting of 22 dimers of common organic molecules, the S22
test set includes prototypes for hydrogen-bonded, dispersion-
bound, and mixed electrostatic/dispersion stabilized complexes,
with reference interaction energies computed using CCSD(T),
the currently accepted “gold standard” quantum chemical meth-
od with an estimated accuracy of =1% (28, 29).

To elucidate the role of nonadditive many-body vdW energy
contributions in the theoretical prediction of molecular proper-
ties, the following models were constructed:

Author contributions: R.A.D.J. and A.T. designed research; R.A.D.J.,, O.A.v.l, and AT.
performed research; R.A.D.J,, O.A.v.L, and A.T. analyzed data; and R.A.D.J., O.A.v.L, and
A.T. wrote the paper.

The authors declare no conflict of interest.
This article is a PNAS Direct Submission.

"To whom correspondence should be addressed. E-mail: tkatchen@fhi-berlin.mpg.de.

PNAS | September 11,2012 | vol. 109 | no.37 | 14791-14795

>
3
=
4]
=
w
=
v




Fig. 1. Graphical depiction of the coupled many-body vdW interactions pre-
sent in the adenine-thymine dimer, a prototypical model of n—x stacking in
DNA. Examples of two-, three-, and four-body contributions are illustrated by
the dotted (red), dashed (green), and solid (black) lines, respectively.

i. vdW-MB—the full DFT+vdW-MB model as defined above,
which includes all many-body energy contributions within the
dipole approximation. It utilizes a range-separation parameter
obtained via global optimization of the total DFT +vdW-MB
energy on the S22 benchmark database.

ii. vdW-NB—the N-body energy contribution in the full DFT
+vdW-MB model, utilizes the same range-separation para-
meter as the DFT+vdW-MB model.

iii. vdW-TB—an effective pairwise model, which computes the
dispersion energy only via two-body interactions. To fairly re-
present the pairwise dispersion energy employed in atomistic
force field simulations, we explicitly trained the vdW-TB mod-
el on the S22 benchmark database, which is the same database
used for training the full DFT+vdW-MB model. Therefore,
the vdW-TB model effectively mimics the shorter range many-
body terms by using a larger value of the range-separation
parameter than vdW-MB.

Comparisons made between the vdW-MB and vdW-TB models
quantify higher-order correlation effects that can only be cap-
tured by explicitly including the nonadditive many-body vdW
contributions beyond the two-body term and cannot be mimicked
by an effective pairwise approach. Comparisons made between
the vdW-MB and vdW-NB models distinguish contributions aris-
ing from different orders in the many-body vdW energy expan-
sion. Furthermore, we also include comparisons with a different
effective pairwise approach, namely the vdW-TS model (25),
which has been extensively used in the literature for many mole-
cular and condensed-matter systems. The vdW-TS method uses
an empirical Fermi-type damping function, which distinguishes
it from the range-separated Coulomb potential employed in the
vdW-TB and vdW-MB models.

We first assessed the performance of the vdW-MB method on
the aforementioned benchmark database of prototypical non-
covalent dimers, the S22 test set (27). The mean absolute (rela-
tive) error of the vdW-MB model on the complete S22 database is
0.26 kcal/mol (6.2%) compared to 0.33 kcal/mol (7.9%) for the
vdW-TB model. In comparison, the effective pairwise vdW-TS
approach yields an error of 0.32 kcal/mol (10.3%). As one might
expect, the vdW-MB and vdW-TB models yield essentially the
same results for small hydrogen-bonded dimers and complexes
bound by predominantly electrostatic interactions, and in most
cases, the many-body effects were found to be repulsive. In fact,
the deviation between these models is almost negligible at
0.1 kcal/mol, with the vdW-MB model yielding better overall
agreement with the CCSD(T) reference binding energies. How-
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ever, when considering only the dispersion-bound complexes
in the S22 test set the deviation between the vdW-TB and vdW-
MB models is indeed more significant. For example, the vdW-TB
model underestimates the stability of the adenine-thymine stack
(Fig. 1) by ~1 kcal/mol, whereas inclusion of the nonadditive
many-body effects at the vdW-MB level reduces this error by an
order of magnitude, clearly illustrating both the limitations of an
effective pairwise approach and the importance of higher-order
correlation effects in one of the simplest prototypes for non-
bonded stacking interactions in DNA. Taking the analysis one
step further, we decomposed the vdW-MB energy for the ade-
nine-thymine complex and the other n-x stacking dimers in the
S22 test set, and found that the magnitude of the vdW-3B and
vdW-4B contributions were x30% and ~10% of the pairwise
vdW-2B contribution, respectively.

We also extended our study to the larger S66 database, which
was recently designed to provide a well-balanced representation
of the intermolecular interactions found in bioorganic molecular
systems by including benchmark energetics for a wider array of
noncovalent binding motifs (30). In general, the same conclusions
found above hold for the S66 database, in that both vdW-MB
and vdW-TB are able to treat small electrostatically stabilized
molecular dimers with an exceptional yet similar degree of accu-
racy. Again, we noticed a significant discrepancy between the
performance of the vdW-MB and vdW-TB models when dealing
with the expanded selection of dispersion-bound complexes pre-
sent in the S66 database—vdW-MB consistently yields larger and
more accurate interaction energies than the vdW-TB effective
pairwise approach.

Having assessed the accuracy of the vdW-MB method for small
organic molecules, we now examine the role of the many-body
vdW energy in the theoretical prediction of binding affinities in
larger biomolecular systems. For this purpose, we revisited ellip-
ticine, an anticancer agent whose mode of action is based on
DNA intercalation and inhibition of the topoisomerase II enzyme
(31-33). In particular, we computed the many-body vdW energy
contributions to the binding energy of a model of the DNA-inter-
calation complex consisting of ellipticine sandwiched between
two Watson-Crick bonded cytosine-guanine base pairs linked by
their phosphate sugar puckers. The resulting energetics (Table 1)
confirm that vdW interactions are essential even for a qualitative
prediction of the binding energy in this system, as the DNA-
ellipticine complex is unbound at the DFT level of theory
(AEy;ng = +5.2 keal/mol). Inclusion of vdW interactions using
the vdW-TB model corrects the relative thermodynamic ordering
and stabilizes the DNA-ellipticine complex by 44.3 kcal/mol, but
once again, the effective pairwise approach underestimates the
many-body vdW contribution to the binding energy. In fact, the
contribution from the nonadditive many-body vdW interactions
is quite significant in this system, increasing the overall binding
strength of the DNA-ellipticine complex from —39.1 kcal/mol
(vdW-TB) to —50.7 kcal/mol (vdW-MB). Furthermore, when
using the effective pairwise vdW-TS method (25), the DNA-ellip-
ticine binding energy is predicted to be —46.6 kcal/mol, still an

Table 1. Binding energies for the DNA-ellipticine complex
and DNA conformers

Level of theory AEping AERT AESS
DFT +5.2 +4.2 +1.9
vdW-TS —46.6 +2.5 -3.7
vdW-TB -39.1 +2.6 -35
vdW-MB -50.7 -0.1 -8.2

(Left) Binding energies (AEy;,q) for the DNA-ellipticine complex in
kcal/mol. (Right) Relative conformational energies of A-DNA and
B-DNA (AEgz_p = Eg — Ep) consisting of pure adenine-thymine (A:T)
and cytosine—guanine (C:G) sequences in kcal/mol per bp. All DFT
calculations were performed using the PBE functional (37).

DiStasio et al.



Bane

/

I\

=y

underestimation of 4.1 kcal/mol compared to the full vdW-MB
model. This additional stabilization of at least 4 kcal/mol, arising
solely from nonadditive many-body vdW contributions, is a clear
illustration of the increasingly important role played by these
higher-order effects as molecular systems become larger and more
structurally complex than the small organic molecular dimers
considered before. In the context of predicting biomolecular ligand
affinities, the difference between the DNA-ellipticine binding
energies computed using the vdW-TB and vdW-MB models repre-
sents a marked discrepancy, as a decrease of about 1 kcal/mol in
A Gy;ng, the binding free energy, corresponds to an order of mag-
nitude decrease in the predicted equilibrium binding constant. In
fact, to capture the vdW-MB energy with chemical accuracy, i.e., to
within 1 kcal/mol, one needs to include the contributions from all
terms up to vdW-7B in the many-body vdW energy expansion
(Fig. 2). Although there is no high-level benchmark data currently
available for ellipticine binding to DNA, our findings provide com-
pelling evidence that nonadditive many-body vdW interactions
play a substantial role in the binding of drugs to targets.

To further elucidate the role of the many-body vdW energy in
biological systems, we investigated the relative energetics between
the A- and B-conformations of DNA. By modeling each confor-
mer as a right-handed double-helix of fifteen Watson—Crick base
pairs, consisting of either pure adenine-thymine (A:T) or pure
cytosine-guanine (C:G) sequences, we computed the many-body
vdW contributions to the cohesive energy of the central base pair
in A-DNA vs. B-DNA conformations (see Methods). The resulting
energetics (Table 1) reinforce the view that there is a need for in-
cluding vdW interactions to obtain even qualitatively consistent
results—in this case, DFT predicts A-DNA to be the more stable
conformation by 4.2 and 1.9 kcal/mol/bp for the A:T and C:G
sequences, respectively. However, using the effective pairwise
approach to include vdW interactions is not enough to predict
a consistent relative ordering among these DNA conformers;
for both A:T and C:G DNA, the vdW-TB model destabilizes the
A-DNA conformer by 1.6 and 5.4 kcal /mol/bp, respectively, but
only in the C:G case is the B-DNA conformer now predicted to be
lower in energy (in our DNA model). For these systems, the ef-
fective pairwise vdW-TS method yields essentially the same results
as the vdW-TB model. Similar to the case of DNA-ellipticine
binding, the energy contributions arising from the nonadditive
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Fig. 2. Percentagewise convergence of the individual vdW-NB contributions
with respect to the vdW-MB energy. Displayed cases include the binding
energy of the DNA-ellipticine complex (blue circles) and the relative binding
energies of a single base pair in A-DNA and B-DNA consisting of pure
adenine-thymine (black triangles) and pure cytosine-guanine (red squares)
sequences. The unfilled markers at N =2 correspond to the predictions
of the vdW-TB effective pairwise model for each of the aforementioned
systems.
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vdW interactions were quite significant—the vdW-MB energy
contribution was nearly 170% (A:T) and 90% (C:G) larger than
the effective two-body vdW energy contribution. Hence, the vdW
contributions to the relative DNA conformational energetics are
dominated by many-body effects. Furthermore, the convergence
of the many-body vdW contribution in predicting DNA conforma-
tional energetics was found to be remarkably slow. To capture
80% of the vdW-MB energy for the A:Tand C:G DNA sequences,
one needs to include all contributions up to vdW-6B and vdW-5B,
respectively, whereas the same level of convergence is reached at
the vdW-3B level in the prediction of the DNA-ellipticine binding
energy (Fig. 2). With these findings in mind, we therefore con-
clude that although several other energetic contributions, e.g.,
thermal, solvent, and even nuclear quantum effects, are relevant
for the modeling of DNA, it is evident that many-body vdW inter-
actions, with energy contributions of nearly 3 kcal/mol/bp for A:
T DNA and almost 5 kcal/mol/bp for C:G DNA, play an integral
role in the conformational stability of DNA.

Having examined the many-body vdW energy contributions
to binding affinities and relative conformational energetics, we
now consider their role in predicting the relative thermodynamic
stability among polymorphs of extended molecular crystals. The
ability to characterize and distinguish competing molecular crys-
tal polymorphs, which are often very close in energy (i.e., AE~
0.1 kcal/mol per molecule), yet exhibit quite different physical
and chemical properties, is of paramount importance in many
fields, ranging from materials science and solid-state physics to
biochemistry and pharmacology (34). In what follows, we focus
our discussion on paracetamol (acetaminophen), an over-the-
counter pharmaceutical agent used worldwide for its analgesic
and antipyretic properties, which is experimentally known to have
two polymorphs, P-I and P-II, that are essentially degenerate in
lattice energy competing for the global minimum (35). To com-
plicate matters, a recent computational study using DFT with
an empirically parameterized effective pairwise vdW correction,
identified a new polymorph, P-IV, and predicted it to lie energe-
tically between P-I and P-II, thereby challenging experimentalists
to search for this new form of paracetamol (36). Once again, we
find that the inclusion of higher-order nonadditive many-body
vdW contributions makes a significant difference; at the vdW-MB
level, the P-IV polymorph is actually destabilized with respect to
P-I and P-II by 0.79 and 0.92 kcal/mol/paracetamol molecule,
respectively. Under the assumption that an essential condition
for the accessibility of a given molecular crystal polymorph is that
its energy lies within thermal energy (~0.6 kcal/mol) of the glo-
bal minimum, this destabilization of P-IV due to the many-body
vdW energy contributions would make it virtually inaccessible to
experimental determination, as there are many other possible
metastable structures with similar energies (36). We also note
that the nonadditive many-body vdW energy contributions to the
energy difference between the experimentally observed P-I and
P-IT polymorphs amounts to a mere 0.14 kcal/mol, which is con-
sistent with the fact that both forms were identified as stable poly-
morphs. These findings reiterate the limitations of an effective
pairwise approach and further demonstrate the importance of
the many-body vdW energy in the theoretical prediction of mo-
lecular properties; because the nonadditive many-body vdW en-
ergy contributions can be significantly larger than kT, our ability
to make reliable predictions about the thermodynamic stability
among competing molecular crystal polymorphs requires an ac-
curate treatment of these energetically important contributions.

Previous studies of noble gas clusters and fluids (11, 15-17)
found repulsive many-body vdW contributions when compared
to the pairwise vdW energy. These findings contrast with our
result that the nonadditive many-body energy stabilizes the ellip-
ticine-DNA complex with respect to the effective pairwise model.
We explain this difference by the relatively complex molecular
geometries and higher polarizability densities utilized herein
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when compared to the noble gas cluster and liquid systems
previously reported. In fact, previous work assumed a bare di-
pole—dipole interaction potential between all atoms, leading to
a nondivergent many-body vdW energy only when relatively low
atomic polarizabilities were utilized. In the vdW-MB method, the
short-range contributions to the energy are treated by the under-
lying DFT functional, permitting the use of an attenuated Cou-
lomb potential. As a result, the vdW-MB energy is nondivergent
and real for all molecular systems studied herein. Interestingly,
we find that the many-body vdW energy can be attractive or re-
pulsive, with a subtle dependence upon the given molecular geo-
metry and the nature of the intermolecular binding (i.e., whether
the complex is predominantly electrostatic or dispersion bound).

In conclusion, we have introduced the vdW-MB model, which
accurately captures the long-range many-body vdW energy in
large molecular systems, to illustrate both the limitations of the
effective pairwise approach as well as the crucial role played by
the higher-order nonadditive vdW contributions in the prediction
of several molecular properties of interest. We note that more
work is needed to gain a deeper understanding of the binding
situations and molecular geometries in which many-body vdW
effects can be effectively described using a pairwise approach,
which has been the predominant approach for a wide variety of
systems to date (18-22). However, our findings provide compel-
ling evidence that the many-body vdW energy contribution can-
not always be mimicked with an effective pairwise model; instead,
it is a complex physical quantity that depends on the overall mo-
lecular system size, the inherent structural motifs defining the
underlying topology of the chemical environment, as well as the
molecular property being investigated (Fig. 2). The many-body
vdW energy described herein can be computed quite efficiently,
thus it can realistically be incorporated into current model intera-
tomic potentials.

Methods

Description of the vdW-MB Method. The vdW-MB energy is calculated by exact
diagonalization of the Hamiltonian corresponding to a set of N coupled
isotropic three-dimensional quantum harmonic oscillators (11, 12):

1 N 1 N N
H = ) V;?p +§Z‘°§Xp2 + Zmpmqv“p“qxpgpqxtr (1]
p=1 p=1 p>q
in which y, = /mpp, is defined in terms of u,, the displacement of a given
oscillator p from its equilibrium position, and m, = («,03)~". In the above
equation, the first two terms correspond to the kinetic and potential energy
for the individual oscillators, respectively. The last term in the Hamiltonian
describes the coupling between oscillators via the dipole-dipole interaction
tensor [Tpg = Vi, ® Vi, W(rpg), where W(rp,) will be defined below]. The in-
put parameters a, and w,, for each oscillator are defined as functionals of the

. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem
66:27-85.
2. Mackerell AD (2004) Empirical force fields for biological macromolecules: Overview
and issues. J/ Comput Chem 25:1584-1604.
3. Ponder JW, et al. (2010) Current status of the AMOEBA polarizable force field. J Phys
Chem B 114:2549-2564.
4. Kumar R, Wang FF, Jenness GR, Jordan KD (2010) A second generation distributed
point polarizable water model. J Chem Phys 132:014309.
. Stone AJ (1997) The Theory of Intermolecular Forces (Oxford University Press,
New York).
6. Kaplan IG (2006) Intermolecular Interactions (Wiley, New York).
7. Parsegian VA (2005) Van der Waals Forces: A Handbook for Biologists, Chemists,
Engineers and Physicists (Cambridge University Press, Cambridge).
8. Autumn K, et al. (2002) Evidence for van der Waals adhesion in gecko setae. Proc Nat/
Acad Sci USA 99:12252-12256.
9. Dobson JF (1994) Quasi-local-density approximation for a van der Waals energy func-
tional. Topics in Condensed Matter Physics, ed MP Das (Nova, New York), pp 121-142.
10. Bade WL (1957) Drude-model calculation of dispersion forces. I. General theory.
J Chem Phys 27:1280-1284.
11. Donchev AG (2006) Many-body effects of dispersion interaction. J Chem Phys
125:074713.
12. Cole MW, Velegol D, Kim H-Y, Lucas AA (2009) Nanoscale van der Waals interactions.
Mol Simul 35:849-866.
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self-consistent electron density, using the Tkatchenko-Scheffler method (25).
For all DFT calculations, we used the Perdew-Burke-Ernzerhof functional (37)
and the FHI-aims all-electron code (38).

The vdW-MB interaction energy for the full many-body system is then
computed as the difference between the zero-point energies of the coupled
and uncoupled oscillators, i.e.,

3N N
EvdW-MB:%Z\/E_SZm , [2]
p=1 p=1

in which 2, are the vdW-MB Hamiltonian matrix eigenvalues. In the standard
formulation of Eq. 1, in which the classical expression for the dipole-dipole
interaction tensor is used, the vdW-MB energy would have an imaginary com-
ponent due to the fact that the dipole-dipole interaction diverges at short
distances, i.e., the well-known polarization catastrophe. Because we are only
interested in computing the long-range many-body vdW energy, we utilize a
dipole-dipole interaction tensor derived from the following Coulomb poten-
tial, which is attenuated at short interoscillator distances, namely, (26)

W(rpq) =(1- CXP(—(rpq/R};’gw)ﬁ))/rpq, [31
where r,, is the distance between oscillators p and g, p is a range-separation
parameter that controls how quickly W(ryq) reaches the long-range 1/ryq
asymptote, and RYgW = Ry + RYW defines the vdW correlation length in
terms of the individual vdW radii, also defined as functionals of the density
(25). Utilizing this modified dipole-dipole interaction tensor in Eq. 1 allows us
to avoid the near-field divergence, and as a result, all of the vdW-MB energy
components reported herein are real. The optimized values of the p para-
meter were found as 2.56 and 2.76 for the vdw-MB and vdW-TB models,
respectively.

Construction of DNA Structures. The A- and B-DNA structures were generated
with 15 A-T and G-C base pairs using the TINKER DNA generation module
available at: http:/dasher.wustl.edu/ffe/. The negatively charged phosphate
groups were protonated to yield overall neutral molecules. All conformer
geometries were optimized at the vdW-TS level of theory (25) subject to
the constraint of fixed phosphate atom positions in order to maintain the
overall helix conformation. To compute the base pair binding energy contri-
bution, we utilized an isodesmic replacement of the central base pair with
hydrogen atoms that were relaxed while keeping the rest of the molecule
fixed in order to ensure conservation of molecular charge and number of
covalent bonds.
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