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Summary
Regularities are gradually represented in cortex after extensive experience [1], and yet they can
influence behavior after minimal exposure [2,3]. What kind of representations support such rapid
statistical learning? The medial temporal lobe (MTL) can represent information from even a single
experience [4], making it a good candidate system for assisting in initial learning about
regularities. We combined anatomical segmentation of the MTL, high-resolution functional
magnetic resonance imaging (fMRI), and multivariate pattern analysis (MVPA) to identify
representations of objects in cortical and hippocampal areas of human MTL, assessing how these
representations were shaped by exposure to regularities. Subjects viewed a continuous visual
stream containing hidden temporal relationships—pairs of objects that reliably appeared nearby in
time. We compared the pattern of blood oxygen level-dependent (BOLD) activity evoked by each
object before and after this exposure, and found that perirhinal cortex (PRC), parahippocampal
cortex (PHC), subiculum, CA1, and CA2/CA3/dentate gyrus (CA2/3/DG) encoded regularities by
increasing the representational similarity of their constituent objects. Most regions exhibited
bidirectional associative shaping, while CA2/3/DG represented regularities in a forward-looking
predictive manner. These findings suggest that object representations in MTL come to mirror the
temporal structure of the environment, supporting rapid and incidental statistical learning.

Experimental Procedures
The experimental procedures are summarized briefly throughout the Results and in Figure 1,
and are presented in complete detail in Supplemental Experimental Procedures.

Results
We often encounter new environments whose structure remains stable over subsequent
experiences. For example, we pass the same landmarks while commuting to work, observe
the same interactions in a social group, and practice the same plays when picking up a sport.
Learning such regularities can help us effectively perceive and act in familiar environments.

Neurophysiological studies suggest that MTL cortex is involved in representing regularities.
For example, after viewing a sequence of fractal patterns repeatedly, neurons in macaque
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PRC respond more similarly to fractals nearby in the sequence [5]. Similarly, PRC neurons
develop selectivity for paired stimuli in paired-associate tasks [6]. This pair coding occurs
even when learning is unsupervised and pairs are task-irrelevant [7]. While sometimes
attributed to area TE and inferior temporal cortex (IT), PRC shows stronger and earlier
effects [8] and is necessary for learning to occur in IT [9,10].

How the learning of regularities alters stimulus representations in hippocampus proper has
been largely unexplored (cf. [11–13]). Human neuroimaging and patient studies support the
possibility that the hippocampus is involved in such learning [3,14,15]. For example, the
hippocampus responds more strongly during incidental exposure to structured vs. random
sequences [3]. However, prior studies of the intact human brain have relied on univariate
activation and could thus not assess representational changes: Changes in activation do not
necessarily reflect changes to the representations of specific associated objects, and might
instead reflect a scalar signal that can apply generically to any object (e.g., mutual
information [16], novelty [17]).

The present work was inspired by the following questions: What are the consequences of
exposure to regularities for representations in the human MTL? What role might the
hippocampus play in such rapid forms of statistical learning? How do representations
change from before to after learning? To answer these questions, we used high-resolution
fMRI to measure how multivariate representations of objects in the MTL are shaped by
temporal regularities.

Behavior
Subjects viewed a 40-min stream of colorful fractals presented one-at-a-time. During this
time, they performed an orthogonal cover task of detecting grayscale patches that appeared
infrequently on the fractals. Detection performance was excellent (mean A'=.893, SD=.038;
t[16]=42.9, p<.001). Unbeknownst to subjects, the fractal stream was generated from
temporal pairs (Fig. 1A). For half of these pairs, the two objects always appeared
successively ('strong' pairs). For the other half, the objects appeared successively one-third
of the time ('weak' pairs). These pairs were used to generate the stream, but the fractals
appeared continuously with no cues to the boundaries between pairs other than the temporal
statistics. Before and after this exposure, fractals were presented in a random order to assess
representational change (see below). Because the pair structure was disrupted by the final
random run, we conducted a separate behavioral experiment without this run. Subjects could
discriminate strong vs. weak pairs (t[11]=2.40, p=.035; Fig. S1), suggesting that learning
took place.

ROI Analyses
We hypothesized that the representations of paired fractals would become more similar after
exposure to temporal structure. This cannot be tested during pair exposure because two
fractals appearing close in time will have similar representations simply due to the temporal
autocorrelation of BOLD signal. To avoid this confound, we presented fractals in the same
random order before and after pair exposure, and estimated the distributed neural
representation of each fractal with a GLM (Fig. 1B).

We focused on the MTL, although other brain systems likely also participate in and benefit
from learning about regularities [3]. MTL ROIs were segmented manually using anatomical
landmarks and aligned into a common space with the functional data. Because ROIs were
segmented at a higher anatomical resolution, the labeling of functional voxels is inherently
inexact. Therefore, these ROIs provide an index of only the relative contribution of
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underlying subregions. Patterns of parameter estimates for each fractal were extracted from
every ROI and correlated before and after learning.

We first examined bilateral MTL cortex (Fig. 2), including PHC, PRC, and entorhinal cortex
(ERC). The pattern correlation for fractals from strong pairs increased from before to after
learning over the entire MTL cortex (t[16]=3.01, p=.008), relative to the change in
correlation for recombinations of the same fractals ('shuffled' pairs). This increase was
reliable in PHC (t[16]=2.53, p=.022) and PRC (t[16]=2.45, p=.026), but not in ERC
(t[16]=1.21, p=.245). Strong pairs also exhibited a greater increase than weak pairs over the
entire MTL cortex (t[16]=4.08, p<.001), and in PHC (t[16]=3.04, p=.008) and PRC
(t[16]=3.96, p=.001), but only marginally in ERC (t[16]=2.08, p=.054). Weak pairs
exhibited a decreased correlation relative to shuffled pairs over the entire MTL cortex
(t[16]=−2.40, p=.029), and in PHC (t[16]=−2.27, p=.037) and PRC (t[16]=−2.14, p=.048),
but not in ERC (t[16]=−1.43, p=.173).

We next examined bilateral hippocampus, including subiculum, CA1, and CA2/3/DG ROIs.
The pattern correlation for fractals from strong pairs increased from before to after learning
over the entire hippocampus (t[16]=3.20, p=.006), relative to shuffled pairs. This increase
was reliable in subiculum (t[16]=2.99, p=.009), CA1 (t[16]=3.61, p=.002), and CA2/3/DG
(t[16]=3.48, p=.003). Strong pairs also exhibited a greater increase than weak pairs over the
entire hippocampus (t[16]=3.82, p=.002), and in subiculum (t[16]=2.83, p=.012), CA1
(t[16]=4.38, p<.001), and CA2/3/DG (t[16]=4.64, p<.001). Weak pairs exhibited a decrease
in pattern correlation relative to shuffled pairs over the entire hippocampus (t[16]=−2.15,
p=.048), and in CA2/3/DG (t[16]=−2.21, p=.042), but not in subiculum (t[16]=−1.39, p=.
183) or CA1 (t[16]=−1.71, p=.107).

Searchlight Analyses
Above, we calculated correlations over all voxels in each ROI. However, representational
changes may have also occurred in local subregions. To examine such local changes, we
swept a cubic searchlight through all MTL ROIs. These ROIs were registered across
subjects with non-linear deformation tools to allow for voxelwise statistical tests
(permutation-test p<.001). We focused on the main comparison of strong vs. weak pairs, and
found greater increases for strong pairs in right and left PHC, left PRC, left subiculum, right
CA1, and right CA2/3/DG (Fig. 3). An exploratory searchlight analysis outside of the MTL
revealed similar effects in four other regions (Table S1).

Nature of Representational Shaping
Increased pattern similarity after learning could reflect different types of changes in the
underlying representations. Seeing one member of a pair may activate the other because
their representations became unitized or connected. In this case, after learning pair AB, the
representation of A should be similar to how B was initially represented, and the
representation of B should be similar to how A was initially represented ('association'
hypothesis). Alternatively, because pairs appeared in a fixed order, the first member may
activate the second more than the second activates the first. In this case, the representation of
A should be similar to how B was initially represented, but the representation of B may not
change as much ('prediction' hypothesis).

The association and prediction hypotheses are indistinguishable after learning, since the AB
pattern correlation should be higher in both cases. However, correlating the representation of
one member after learning with the other before learning is helpful (Fig. 4): If the A
representation moved towards the initial B representation, then the A pattern after learning
(Apost) will resemble the B pattern before learning (Bpre). If this correlation is greater than
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that for B after learning (Bpost) with A before learning (Apre), then the prediction hypothesis
would be supported. We therefore defined an asymmetry index, which reflects prediction if
positive: corr(Apost,Bpre)–corr(Bpost,Apre).

We limited this analysis to ROIs and conditions that showed overall increases, since it only
makes sense to ask how representations changed if there was an overall change to begin
with. Over the entire MTL cortex and hippocampus ROIs, only right hippocampus showed
marginal evidence for asymmetric changes (t[16]=2.06, p=.056; right MTL cortex:
t[16]=1.33, p=.201; left MTL cortex and hippocampus: ts<1). Among subregions, only right
CA2/3/DG exhibited asymmetric changes (t[16]=2.55, p=.022), with a trend in right
subiculum (t[16]=1.82, p=.087), consistent with the encoding of forward-looking
predictions. The index was non-significant in all other ROIs (ts<1), consistent with them
encoding bidirectional associations.

Discussion
We found that object representations in the MTL rapidly changed based on incidental
exposure to temporal regularities. That is, the multivoxel representations of strongly paired
objects became more similar in PRC, PHC, subiculum, CA1, and CA2/3/DG, with this
increase occurring asymmetrically in CA2/3/DG. The discovery that distributed patterns in
the MTL are tuned by regularities sheds light on the role of the human MTL in statistical
learning, beyond what can be inferred from univariate methods [3,16,17]. This ability to
track multivoxel representations of specific items [18], in particular, holds great promise for
studying the formation and evolution of representations in memory [19,20].

Representational Changes
The plasticity observed in PRC/PHC may reflect similar changes in the selectivity of
neurons to what has been reported in non-human primates [5]. The way that representations
of paired items might change ranges on a continuum from completely indistinguishable or
'unitized' [21] to largely discrete but weakly associated. Our results are consistent with either
possibility. Indeed, PRC exhibits both types of changes, with subregion A35 supporting
unitized representations and A36 supporting associative representations [22]. Relatedly,
PHC has been implicated in associative retrieval, contextual associations, relational
memory, and event order memory [23–27], all processes that could be supported by the
representational changes we observed.

The use of fMRI allowed us to assess representational changes in the MTL more broadly.
We were especially interested in the hippocampus because of its ability to rapidly encode
information [4], its circuitry specialized for sequential processing [28,29], and hints of its
involvement in similar forms of learning [3,14,15]. Increases in representational similarity
were widespread in the hippocampus, analogous to multivariate changes in MTL cortex.
This discovery challenges the standard view that learning of regularities is the domain of
cortex [4]. The generality of these changes suggests that multiple hippocampal subfields
may be involved in representing regularities. However, an important limitation of the current
study is that our fMRI resolution and preprocessing, combined with the point-spread
function of the BOLD response, generate ambiguity in attributing voxel-level responses to
particular subfields. Future studies with higher functional resolution and field strength are
needed to address this issue, but as a first step we replicated our pattern of results very
closely using only voxels for which we had the highest confidence in subfield membership
(Figs. S3,S4).

The apparent generality may also result from the interactivity of subfields. For instance,
subiculum and CA1 are thought to compare predictions generated by CA3 with current input
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transmitted from ERC [30,31]. How patterns in CA3 and ERC relate to patterns in
subiculum/CA1—and how these interactions generate match-mismatch signals—are
interesting questions for future research. That said, not all subfields exhibited the same
pattern of results. For example, only CA2/3/DG (and possibly subiculum) represented
regularities predictively: The first member of strong pairs reinstated the second member
more than the second reinstated the first. Within the CA2/3/DG ROI, CA2, CA3, and DG
cannot be distinguished, and so these findings cannot be attributed to any one subfield.
Nevertheless, they are consistent with the role of CA3 in predicting future states, such as
when place cells in rat CA3 fire predictively to locations ahead of the current position during
navigation [29]. CA3 may represent and retrieve temporal information via recurrent
dynamics [28], allowing it to reproduce previously experienced sequences [32]. This
predictive function may be a special case of 'pattern completion', whereby partial cues
reinstate information that was present during encoding [33–35].

More generally, increases in representational similarity were not universal. ERC did not
show increased pattern similarity for strong pairs in either ROI or searchlight analyses. In
addition, across all ROIs, increased representational similarity only occurred when fractal
pairings were arbitrary (as in main analyses): Strong pairs containing fractals that were
visually similar to begin with did not show increases (Fig. S2). These visually similar pairs
were presented under the same protocol as arbitrary pairs, suggesting specificity in our
results not only to strong regularities, but also to regularities among dissimilar-looking
objects.

Hippocampus and Regularities
While the hippocampus is often studied in terms of its important role in the formation of
conscious or declarative memories [36], a different perspective on hippocampal function
focuses instead on characterizing the kinds of learning processes that it can support—
including relational, configural, and contextual learning [37]. We interpret our findings in
this latter framework, with hippocampal changes reflecting the learning of temporal
relationships. These relationships seemed to be learned incidentally: they were orthogonal to
the behavioral task, they were not cued by instructions or timing, and no subjects reported
noticing the pairs when debriefed. As a result, we have no reason to believe that the
observed hippocampal changes require strategic or intentional processes. Our findings are
thus consistent with the view that conscious accessibility may not be a necessary
consequence of hippocampally-mediated learning [38]. While these issues are controversial
[39], learning occurs rapidly in all accounts of hippocampal function [4,34]. Thus,
irrespective of awareness, the hippocampus is well-suited to forms of statistical learning that
can occur after minimal exposure [2,3].

Open Questions
Although we focused on increased pattern similarity for strong pairs, the opposite result was
obtained for weak pairs. This intriguing finding suggests a non-monotonic relationship
between regularity strength and representational change: Strong pairs appeared most
frequently during exposure (average joint probability of 0.067 each) and showed increased
pattern similarity, shuffled pairs were rare (0.006) and showed no change in similarity, and
weak pairs appeared occasionally (0.022) but showed decreased similarity. How did
intermediate probabilities lead to differentiated representations? One possibility is that
during initial exposure to weak pairs, the first member generated a feeble prediction of the
second member that was violated most of the time, leading to an eventual prediction of non-
occurrence. This process might cause a reduction in pattern similarity for these items from
before to after learning.
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The role of the hippocampus and CA2/3/DG in particular in generating predictions raises
interesting questions about what purpose these predictions serve. Such predictions may be
compared against sensory input in the hippocampus, to refine existing knowledge [30,31].
Predictions may also output to more posterior temporal cortex. The same interlaminar
circuits in PRC that provide feedforward input during sensory processing reverse during
retrieval [40], providing feedback to IT [8]. Indeed, objects that afford predictions activate
both the hippocampus and visual areas specialized for processing the predicted information
[15]. Future work could relate patterns in MTL to the reinstatement of stimulus-specific
patterns in visual cortex, and to facilitated sensory processing of predicted objects.

Conclusions
Our study demonstrates that temporal regularities cause representational changes in the
MTL. This statistical learning can occur incidentally and rapidly, allowing the MTL to
efficiently model the structure of the environment. Such representations may underlie the
tendency in naturalistic settings for objects to effortlessly reactivate memories of other
objects experienced in similar contexts.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Voxel patterns provide a window into how MTL represents object regularities

• Incidental exposure to objects paired in time increases similarity of their
patterns

• Such changes occur in both cortical areas and hippocampal subfields of human
MTL

• Regularities are represented in a forward-looking predictive manner in CA2/3/
DG
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Figure 1.
(A) For each subject, fractals were randomly assigned to be the first or second member of
'strong' pairs or 'weak' pairs. During sequence exposure (middle runs), the order of fractals
was generated from these pairs, with the constraint that no pair appeared twice in a row. For
strong pairs, the first member was always followed by the second. For weak pairs, the first
member was followed by the second on only one-third of trials. To equate the frequency of
members from weak pairs, the second member was inserted into the trial sequence on its
own on the remaining two-thirds of trials. Trials were presented continuously, with no
grouping or segmentation cues to the pair structure other than the temporal regularities. (B)
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Before and after sequence exposure (first and last run, respectively), the same fractals were
presented in a random order. This allowed their representations to be measured while
avoiding the concern that the temporal proximity of paired fractals would artificially
increase their representational similarity. The same random order was used in the first and
last run to equate for any spurious order effects or biases in modeling the BOLD response.
For each fractal, the parameter estimates across voxels in each ROI were extracted and
arranged into a vector. Pattern similarity was assessed by computing the Pearson correlation
of vectors from different fractals. This produced three types of correlations: (1) between
members of a strong pair, (2) between members of a weak pair, and (3) between members of
different pairs ('shuffled' pairs). In all runs, fractals were presented for 1s, separated by a 1, 3
or 5s ISI. Subjects always performed an orthogonal cover task of detecting grayscale patches
appearing randomly on 10% of otherwise colorful fractals. Subjects responded on every
trial, indicating whether they saw a grayscale patch or not. See also Figure S1.
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Figure 2.
Changes in pattern similarity (higher values indicate an increase) from before to after
sequence exposure are shown for strong and weak pairs. The baseline (shuffled pairs)
reflects the change in correlation for recombinations of fractal images into untrained pairs.
Brain images show segmented ROIs on a T2 anatomical scan for a representative subject
(R=right, L=left). See text for primary bilateral analyses. (A) MTL cortex: strong vs.
shuffled pairs (R, t[16]=3.27, p=.005; L, t[16]=2.27, p=.037), strong vs. weak pairs (R,
t[16]=3.30, p=.004; L, t[16]=3.10, p=.007), and weak vs. shuffled pairs (R, t[16]=−1.26, p=.
226; L, t[16]=−2.72, p=.015). (B) MTL subregions: strong vs. shuffled pairs (R PHC,
t[16]=2.54, p=.022; L PHC, t[16]=1.95, p=.069; R PRC, t[16]=2.55, p=.021; L PRC,
t[16]=1.13, p=.276; R ERC, t[16]=1.09, p=.291; L ERC, t<1), strong vs. weak pairs (R PHC,
t[16]=2.70, p=.016; L PHC, t[16]=2.83, p=.012; R PRC, t[16]=2.96, p=.009; L PRC,
t[16]=1.88, p=.078; R ERC, t<1; L ERC, t[16]=2.25, p=.039), weak vs. shuffled pairs (R
PHC, t[16]=−1.05, p=.311; L PHC, t[16]=−2.62, p=.019; R PRC, t[16]=−1.28, p=.220; L
PRC, t[16]=−1.79, p=.093; R ERC, t<1; L ERC, t[16]=−3.31, p=.004). (C) Hippocampus:
strong vs. shuffled pairs (R, t[16]=3.79, p=.002; L, t[16]=2.20, p=.042), strong vs. weak
pairs (R, t[16]=4.27, p<.001; L, t[16]=2.51, p=.023), weak vs. shuffled pairs (R, t[16]=
−1.46, p=.165; L, t[16]=−1.78, p=.095). (D) Hippocampus subregions: strong vs. shuffled
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pairs (R subiculum [SUB], t[16]=2.77, p=.014; L SUB, t[16]=2.66, p=.017; R CA1,
t[16]=3.03, p=.008; L CA1, t[16]=2.40, p=.029; R CA2/3/DG, t[16]=3.67, p=.002; L CA2/3/
DG, t[16]=2.11, p=.051), strong vs. weak pairs (R SUB, t[16]=2.72, p=.015; L SUB,
t[16]=2.58, p=.020; R CA1, t[16]=2.62, p=.019; L CA1, t[16]=3.27, p=.005; R CA2/3/DG,
t[16]=4.26, p<.001; L CA2/3/DG, t[16]=2.47, p=.025), weak vs. shuffled pairs (R SUB, t<1;
L SUB, t[16]=−1.86, p=.082; R CA1, t<1; L CA1, t[16]=−1.76, p=.098; R CA2/3/DG,
t[16]=−2.03, p=.060; L CA2/3/DG, t[16]=−1.27, p=.221). *p<.05; **p<.01; ***p<.001.
Error bars denote ± 1 SEM. See also Figure S2.
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Figure 3.
ROIs for each subject were warped to a common template (green). Searchlights within right
and left PHC, left PRC, left SUB, right CA1, and right CA2/3/DG showed a greater increase
in pattern similarity for strong vs. weak pairs (p<.001 uncorrected). The lack of a left PRC
increase in ROI analyses suggests that noise from other voxels may have swamped a local
effect. The lack of searchlight effects in right PRC, right SUB, left CA1, and left CA2/3/DG
despite increases in ROI analyses suggests that the underlying representations were
distributed beyond the scope of searchlights, that we benefitted from the increased statistical
power of ROI analyses and greater voxel sample sizes, and/or that specific locations of local
changes were misaligned across subjects. For visualization, differences in pattern similarity
for strong vs. weak pairs were assigned to the center voxel of each searchlight and resulting
statistical maps were thresholded at p<.01. See also Figure S3 and Table S1.
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Figure 4.
Asymmetry index. If the first member of a pair (fractal A) elicits the representation of the
second member (fractal B) but not vice versa, then the correlation of A post-learning with B
pre-learning should be greater than that of B post-learning with A pre-learning. Among the
seven ROIs that showed increased pattern similarity for strong pairs, only right CA2/3/DG
was reliably asymmetric. *p<.05. Error bars denote ± 1 SEM. See also Figure S4.
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